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ABSTRACT

The success of data-driven solutions to difficult problems,
along with the dropping costs of storing and processing mas-
sive amounts of data, has led to growing interest in large-
scale machine learning. This paper presents a case study
of Twitter’s integration of machine learning tools into its
existing Hadoop-based, Pig-centric analytics platform. We
begin with an overview of this platform, which handles “tra-
ditional” data warehousing and business intelligence tasks
for the organization. The core of this work lies in recent Pig
extensions to provide predictive analytics capabilities that
incorporate machine learning, focused specifically on super-
vised classification. In particular, we have identified stochas-
tic gradient descent techniques for online learning and en-
semble methods as being highly amenable to scaling out to
large amounts of data. In our deployed solution, common
machine learning tasks such as data sampling, feature gen-
eration, training, and testing can be accomplished directly
in Pig, via carefully crafted loaders, storage functions, and
user-defined functions. This means that machine learning
is just another Pig script, which allows seamless integration
with existing infrastructure for data management, schedul-
ing, and monitoring in a production environment, as well
as access to rich libraries of user-defined functions and the
materialized output of other scripts.

Categories and Subject Descriptors: H.2.3 [Database
Management]: Languages

General Terms: Languages

Keywords: stochastic gradient descent, online learning, en-
sembles, logistic regression

1. INTRODUCTION

Hadoop, the open-source implementation of MapReduce [15],
has emerged as a popular framework for large-scale data pro-
cessing. Among its advantages are the ability to horizon-
tally scale to petabytes of data on thousands of commodity
servers, easy-to-understand programming semantics, and a
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high degree of fault tolerance. Although originally designed
for applications such as text analysis, web indexing, and
graph processing, Hadoop can be applied to manage struc-
tured data as well as “dirty” semistructured datasets with
inconsistent schema, missing fields, and invalid values.

Today, Hadoop enjoys widespread adoption in organiza-
tions ranging from two-person startups to Fortune 500 com-
panies. It lies at the core of a software stack for large-scale
analytics, and owes a large part of its success to a vibrant
ecosystem. For example, Pig [37] and Hive [47] provide
higher-level languages for data analysis: a dataflow language
called Pig Latin and a dialect of SQL, respectively. HBase,
the open-source implementation of Google’s Bigtable [13],
provides a convenient data model for managing and serving
semistructured data. We are also witnessing the develop-
ment of hybrid data-processing approaches that integrate
Hadoop with traditional RDBMS techniques [1, 34, 3, 30],
promising the best of both worlds.

The value of a Hadoop-based stack for “traditional” data
warehousing and business intelligence tasks has already been
demonstrated by organizations such as Facebook, LinkedIn,
and Twitter (e.g., [22, 41]). This value proposition also lies
at the center of a growing list of startups and large com-
panies that have entered the “big data” game. Common
tasks include ETL, joining multiple disparate data sources,
followed by filtering, aggregation, or cube materialization.
Statisticians might use the phrase descriptive statistics to
describe this type of analysis. These outputs might feed
report generators, frontend dashboards, and other visual-
ization tools to support common “roll up” and “drill down”
operations on multi-dimensional data. Hadoop-based plat-
forms have also been successful in supporting ad hoc queries
by a new breed of engineers known as “data scientists”.

The success of the Hadoop platform drives infrastructure
developers to build increasingly powerful tools, which data
scientists and other engineers can exploit to extract insights
from massive amounts of data. In particular, we focus on
machine learning techniques that enable what might be best
termed predictive analytics. The hope is to mine statistical
regularities, which can then be distilled into models that are
capable of making predictions about future events. Some
examples include: Is this tweet spam or not? What star
rating is the user likely to give to this movie? Should these
two people be introduced to each other? How likely will the
user click on this banner ad?

This paper presents a case study of how machine learning
tools are integrated into T'witter’s Pig-centric analytics stack
for the type of predictive analytics described above. Focus-



ing on supervised classification, we have integrated standard
machine learning components into Pig loaders, storage func-
tions, and user-defined functions (UDFs) [18], thereby cre-
ating a development environment where machine learning
tasks (data sampling, feature generation, training, testing,
etc.) feel natural. A noteworthy feature is that machine
learning algorithms are integrated into Pig in such a way
that scaling to large datasets is accomplished through en-
semble methods. A key characteristic of our solution is that
machine learning is just another Pig script, which allows
seamless integration with existing infrastructure for data
management, scheduling, and monitoring in a production
environment, as well as access to rich libraries of existing
UDFs and the materialized output of other scripts.

We view this work has having three contributions. First,
we provide an overview of Twitter’s analytics stack, which
offers the reader a glimpse into the workings of a large-scale
production platform. Second, we describe Pig extensions
that allow seamless integration of machine learning capa-
bilities into this production platform. Third, we identify
stochastic gradient descent and ensemble methods as being
particularly amenable to large-scale machine learning. We
readily acknowledge that this paper does not present any
fundamental contributions to machine learning. Rather, we
focus on end-to-end machine learning workflows and integra-
tion issues in a production environment. Although specifi-
cally a case study, we believe that these experiences can be
generalized to other organizations and contexts, and there-
fore are valuable to the community.

2. BACKGROUND AND RELATED WORK

We begin with a brief overview of machine learning. Let
X be the input space and Y be the output space. Given
a set of training samples D = {(z1,y1), (z2,¥2)...(Tn,Yn)}
from the space X XY (called labeled examples or instances),
the supervised machine learning task is to induce a function
f: X — Y that best explains the training data. The notion
of “best” is usually captured in terms of minimizing “loss”,
via a function L which quantifies the discrepancy between
the functional prediction f(x;) and the actual output y;, for
example, minimizing the quantity Z(z“yi)eD L(f(x:),y:)-
Once a model is learned, i.e., the best f is selected from a
hypothesis space, it can then be applied to make predictions
on previously unseen data (hence, predictive analytics).

In most cases, x; is represented as a feature vector, i.e.,
x; € R%. For the supervised classification task, y is draw
from a finite set, and in the case of binary classification,
y € {—1,+1}. In practice, multi-class classification can
be decomposed into ensembles of binary classifiers. Com-
mon strategies include training one-vs-all classifiers, pair-
wise one-vs-one classifiers, or classifier cascades. Thus, bi-
nary classifiers form primitives on which more complex clas-
sifiers can be built. It is, of course, impossible to do justice
to the immense literature on machine learning in the space
available for this paper; for more details, we refer the reader
to standard textbooks [6, 23].

There are three main components of a machine learning
solution: the data, features extracted from the data, and the
model. Accumulated experience over the last decade has
shown that in real-world settings, the size of the dataset is
the most important factor [21, 28]. Studies have repeatedly
shown that simple models trained over enormous quantities
of data outperform more sophisticated models trained on
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less data [4, 8, 16]. This has led to the growing dominance
of simple, data-driven solutions.

Labeled training examples derive from many sources. Hu-
man annotators can be paid to manually label examples, and
with the advent of crowdsourcing the cost can be quite rea-
sonable [45]. However, the amount of training data that can
be manually generated pales in comparison to the amount of
data that can be extracted automatically from logs and other
sources in an organization’s data warehouse. As a simple
example, query and interaction logs from commercial search
engines can be distilled into relevance judgments [24]. These
data tend to be noisy, but modern “learning to rank” [27] al-
gorithms are resilient (by design) to noisy data. By mining
log data, an organization can generate practically limitless
amounts of training data for certain tasks.

Traditionally, the machine learning community has as-
sumed sequential algorithms on data that fit in memory.
This assumption is no longer realistic for many scenarios,
and recently we have seen work on multi-core [35] and cluster-
based solutions [2]. Examples include learning decision trees
and their ensembles [46, 39], MaxEnt models [32], structured
perceptrons [33], support vector machines [12], and simple
phrase-based approaches [5]. Recent work in online learning
(e.g., by Bottou [7] and Vowpal Wabbit') is also applicable
to a large-data setting, although in practice such learners
are often limited by disk I/O. Online learning also exempli-
fies the increasingly popular approach where one does not
attempt to arrive at exactly the same solution as using an
equivalent batch learner on a single machine. Rather, re-
searchers and practitioners often exploit stochastic learn-
ers or large ensembles of learners with limited communica-
tion [46]. Since “data is king”, these approaches work well
due to their ability to process massive amounts of data.

Despite growing interest in large-scale learning, there are
relatively few published studies on machine learning work-
flows and how such tools integrate with data management
platforms: Sculley et al. [42] describe Google’s efforts for
detecting adversarial advertisements. Cohen et al. [14] ad-
vocate the integration of predictive analytics into traditional
RDBMSes. It is well known that Facebook’s data analytics
platform is built around Hive [47], particularly for tradi-
tional business intelligence tasks, but we are not aware of
any published work on its infrastructure for machine learn-
ing. LinkedIn similarly has built significant infrastructure
around Hadoop for offline data processing and a variety of
systems for online data serving [31], but once again little is
known about machine learning.

The increasing popularity of Hadoop has sparked a num-
ber of efforts to implement scalable machine learning tools
in MapReduce (e.g., the open source Mahout project®). A
number of algorithms have been “ported” to MapReduce
(e.g., [35, 39, 44]), including a declarative abstraction for
matrix-style computations [20]. Other research prototypes
that attempt to tackle large-scale machine learning include
Spark [49], ScalOps [48], and a number of proposals at a
recent NIPS workshop on “Big Learning”. However, it is not
entirely clear how these systems fit into an end-to-end pro-
duction pipeline. That is, how do we best integrate machine
learning into an existing analytics environment? What are
the common architectural patterns and the tradeoffs they
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encode? Are there best practices to adopt? While this pa-
per does not definitively answer these questions, we offer a
case study. Since Twitter’s analytics stack consists mostly
of open-source components (Hadoop, Pig, etc.), much of our
experience is generalizable to other organizations.

3. TWITTER’S ANALYTICS STACK

A large Hadoop cluster lies at the core of our analytics
infrastructure, which serves the entire company. Data is
written to the Hadoop Distributed File System (HDFS) via
a number of real-time and batch processes, in a variety of
formats. These data can be bulk exports from databases,
application logs, and many other sources. When the con-
tents of a record are well-defined, they are serialized using
either Protocol Buffers® or Thrift.* Ingested data are LZO-
compressed, which provides a good tradeoff between com-
pression ratio and speed (see [29] for more details).

In a Hadoop job, different record types produce different
types of input key-value pairs for the mappers, each of which
requires custom code for deserializing and parsing. Since this
code is both regular and repetitive, it is straightforward to
use the serialization framework to specify the data schema,
from which the serialization compiler generates code to read,
write, and manipulate the data. This is handled by our sys-
tem called Elephant Bird,> which automatically generates
Hadoop record readers and writers for arbitrary Protocol
Buffer and Thrift messages.

Instead of directly writing Hadoop code in Java, analyt-
ics at Twitter is performed mostly using Pig, a high-level
dataflow language that compiles into physical plans that are
executed on Hadoop [37, 19]. Pig (via a language called Pig
Latin) provides concise primitives for expressing common
operations such as projection, selection, group, join, etc.
This conciseness comes at low cost: Pig scripts approach the
performance of programs directly written in Hadoop Java.
Yet, the full expressiveness of Java is retained through a
library of custom UDFs that expose core Twitter libraries
(e.g., for extracting and manipulating parts of tweets). For
the purposes of this paper, we assume that the reader has
at least a passing familiarity with Pig.

Like many organizations, the analytics workload at Twit-
ter can be broadly divided into two categories: aggregation
queries and ad hoc queries. The aggregation queries materi-
alize commonly-used intermediate data for subsequent anal-
ysis and feed front-end dashboards. These represent rela-
tively standard business intelligence tasks, and primarily in-
volve scans over large amounts of data, triggered periodically
by our internal workflow manager (see below). Running
alongside these aggregation queries are ad hoc queries, e.g.,
one-off business requests for data, prototypes of new func-
tionalities, or experiments by our analytics group. These
queries are usually submitted directly by the user and have
no predictable data access or computational pattern. Al-
though such jobs routinely process large amounts of data,
they are closer to “needle in a haystack” queries than aggre-
gation queries.

Production analytics jobs are coordinated by our work-
flow manager called Oink, which schedules recurring jobs at
fixed intervals (e.g., hourly, daily). Oink handles dataflow
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dependencies between jobs; for example, if job B requires
data generated by job A, then Oink will schedule A, verify
that A has successfully completed, and then schedule job B
(all while making a best-effort attempt to respect periodicity
constraints). Finally, Oink preserves execution traces for au-
dit purposes: when a job began, how long it lasted, whether
it completed successfully, etc. Each day, Oink schedules
hundreds of Pig scripts, which translate into thousands of
Hadoop jobs.

4. EXTENDING PIG

The previous section describes a mature, production sys-
tem that has been running successfully for several years and
is critical to many aspects of business operations. In this
section, we detail Pig extensions that augment this data an-
alytics platform with machine learning capabilities.

4.1 Development History

To better appreciate the solution that we have developed,
it is perhaps helpful to describe the development history.
Twitter has been using machine learning since its earliest
days. Summize, a two year old startup that Twitter ac-
quired primarily for its search product in 2008, had as part
of its technology portfolio sentiment analysis capabilities
based in part on machine learning. After the acquisition,
machine learning contributed to spam detection and other
applications within Twitter. These activities predated the
existence of Hadoop and what one might recognize as a
modern data analytics platform. Since our goal has never
been to make fundamental contributions to machine learn-
ing, we have taken the pragmatic approach of using off-the-
shelf toolkits where possible. Thus, the challenge becomes
how to incorporate third-party software packages along with
in-house tools into an existing workflow.

Most commonly available machine learning toolkits are
designed for a single machine and cannot easily scale to the
dataset sizes that our analytics platform can easily gener-
ate (although more detailed discussion below). As a result,
we often resorted to sampling. The following describes a
not uncommon scenario: Like most analytics tasks, we be-
gan with data manipulation using Pig, on the infrastructure
described in Section 3. The scripts would stream over large
datasets, extract signals of interest, and materialize them
to HDF'S (as labels and feature vectors). For many tasks, it
was as easy to generate a million training examples as it was
to generate ten million training examples or more. However,
generating too much data was counterproductive, as we of-
ten had to downsample the data so it could be handled by a
machine learning algorithm on a single machine. The train-
ing process typically involved copying the data out of HDF'S
onto the local disk of another machine—frequently, this was
another machine in the datacenter, but running experiments
on individuals’ laptops was not uncommon. Once a model
was trained, it was applied in a similarly ad hoc manner.
Test data were prepared and sampled using Pig, copied out
of HDFS, and fed to the learned model. These results were
then stored somewhere for later access, for example, in a flat
file that is then copied back to HDFS, as records inserted
into a database, etc.

There are many issues with this workflow, the foremost
of which is that downsampling largely defeats the point of
working with large data in the first place. Beyond the issue
of scalability, using existing machine learning tools created



workflow challenges. Typically, data manipulation in Pig is
followed by invocation of the machine learning tool (via the
command line or an API call), followed perhaps by more
data manipulation in Pig. During development, these con-
text switches were tolerable (but undoubtedly added friction
to the development process). In production, however, these
same issues translated into brittle pipelines. It is common
to periodically update models and apply classifiers to new
data, while respecting data dependencies (e.g., data import
schedules). To accomplish this, we often resorted to brittle
shell scripts on cron, and in a few cases, having individu-
als remember to rerun models (by hand) “once in a while”.
Due to application context switches between data manip-
ulation in Pig and machine learning in separate packages,
we could not take advantage of our Oink workflow manager,
which was designed only for Pig jobs. Although internally,
we have another system called Rasvelg for managing non-
Pig jobs, coordination between the Pig and non-Pig portions
of the workflow was imperfect. Disparate systems rendered
error reporting, monitoring, fault handling, and other pro-
duction considerations needlessly complex.

It became clear that we needed tighter integration of ma-
chine learning in Pig. Recognizing the deficiencies described
above, we set out on a redesign with the following two goals:

e Seamless scaling to large datasets. First and fore-
most, the framework must support large datasets. We
should be able to exploit as much data as we can gener-
ate. However, we recognize that there remains value in
small-scale experiments on sampled data, particularly for
development purposes. Thus, our goal is an architecture
that can scale seamlessly from tens of thousands of exam-
ples to tens of millions of examples and beyond. Specifi-
cally, we want to avoid separate processes for developing
on a laptop, prototyping on a server in the datacenter,
and running at scale on our Hadoop cluster.

e Integration into production workflows. The value of
analytics manifests itself only when deployed in a produc-
tion environment to generate insights in a timely fashion.
Twitter’s analytics platform already has well-defined pro-
cesses for deployment in production, and it is important
that our machine learning tools integrate naturally into
these existing workflows.

Clearly, certain machine learning capabilities are awkward
to directly implement in Pig: for these, existing code needs
to be “wrapped” in a manner that presents a clean abstrac-
tion. On the other hand, other common machine learning
tasks seem suitable to directly implement in Pig. So the de-
sign challenge boils down to this: what are the core non-Pig
machine learning primitives, and how can they be combined
with built-in Pig language constructs to create a machine
learning platform that meets the above design goals?

At the high-level, our solution is simple: feature extrac-
tors are written as user-defined functions; the inner loop of
a single-core learner is encapsulated in a Pig storage func-
tion; and prediction using learned models is performed us-
ing UDFs. Everything else is considered “glue” and directly
handled by Pig. In this overall design, the question of what
code we actually use for the non-Pig machine learning prim-
itives is mostly an implementation detail. After exploring a
few options, we integrated mostly in-house code, for reasons
explained below.

796

As previously mentioned, Vowpal Wabbit is a fast online
learner. It would have been a great candidate to integrate
into our Pig framework as a core learner and classifier, ex-
cept it is implemented in C++, which doesn’t fit well with
Twitter’s JVM-centric runtime environment.

The other package we examined was Mahout, a large-scale
machine learning toolkit for Hadoop. Although the Mahout
project began in 2008, the pace at which capabilities ma-
tured was uneven in its early days. Many components in
Twitter’s codebase for machine learning reached maturity
before or at around the same time as similar capabilities in
Mahout. Maturity aside, Mahout was designed as a stand-
alone package, complete with its own learners, internal rep-
resentations, mechanisms for flow control, etc. It wasn’t
practical to simply take our Pig output and “run Mahout”,
for exactly the workflow issues discussed above. Pig integra-
tion would have required pulling apart Mahout components,
deciding which we should wrap and expose as Pig primitives,
and which we should ignore—this is exactly our challenge to
begin with, so having Mahout doesn’t actually get us closer
to the solution. Ultimately, we decided not to build around
Mahout, because it would have required significant rework-
ing of legacy code already in production.

Although we ultimately did not use Mahout components
in our implementation, it is entirely possible to integrate
Mahout with Pig using the same techniques we introduce
in this paper: wrapping core machine learning functionality
as Pig primitives, and leveraging Pig itself to manage large,
complex dataflows. In more recent work, we take this route
to leverage some of Mahout’s other capabilities (beyond clas-
sification). Twitter has recently open-sourced Pig bindings
for Mahout’s internal data representation (SequenceFiles of
VectorWritables) in its Elephant Bird package. This in turn
has enabled an outside prototype that demonstrates deeper
integration with Mahout’s learners, along the same lines as
presented in this paper.® In many ways, this illustrates the
flexibility of our design and the generalizability of our solu-
tion. As discussed earlier, our contributions lie in the over-
all framework of how machine learning primitives can be
composed in Pig—whether these primitives are backed by
in-house code or open-source components is an implementa-
tion detail. In the future, we envision an ecosystem of Pig
primitives which are merely thin wrappers around existing
machine learning components, all interoperating in complex
dataflows orchestrated by Pig.

4.2 Core Libraries

Our machine learning framework consists of two compo-
nents: a core Java library and a layer of lightweight wrappers
that expose functionalities in Pig.

The core library is worth a passing description, but is
not terribly interesting or innovative. It contains basic ab-
stractions similar to what one might find in Weka, Mallet,
Mahout, and other existing packages. We have a representa-
tion for a feature vector, essentially a mapping from strings
to floating point feature values, mediated by integer fea-
ture ids for representational compactness. A classifier is an
object that implements a classify method, which takes as
input a feature vector and outputs a classification object
(encapsulating a distribution over target labels). There are
two different interfaces for training classifiers: Batch trainers
implement a builder pattern and expose a train method that

Shttp://github.com/tdunning/pig-vector



takes a collection of (label, feature vector) pairs and returns
a trained classifier. Online learners are simply classifiers that
expose an update method, which processes individual (label,
feature vector) pairs. Finally, all classifiers have the ability
to serialize their models to, and to load trained models from
abstract data streams (which can be connected to local files,
HDFS files, etc.).

Our core Java library contains a mix of internally built
classifiers and trainers (for logistic regression, decision trees,
etc.), as well as adaptor code that allows us to take advan-
tage of third-party packages via a unified interface. All of
these abstractions and functionalities are fairly standard and
should not come as a surprise to the reader.

4.3 Training Models

For model training, our core Java library is integrated into
Pig as follows: feature vectors in Java are exposed as maps
in Pig, which we treat as a set of feature id (int) to feature
value (float) mappings. Thus, a training instance in Pig has
the following schema:

(label: int, features: mapl[])

As an alternative, training instances can be represented in
SVMLight format, a simple sparse-vector encoding format
supported by many off-the-shelf packages. SVMLight is a
line-based format, with one training instance per line. Each
line begins with a label, i.e., {+1,—1}, followed by one or
more space separated (feature id, feature value) pairs inter-
nally delimited by a colon (:). We have Pig loaders and
storage functions for working with instances in this format,
as well as UDFs to convert to and from Pig maps.

One of the primary challenges we had to overcome to
enable Pig-based machine learning was the mismatch be-
tween typical Pig dataflows and dataflows in training ma-
chine learning models. In typical Pig scripts, data flow from
sources (HDF'S files, HBase rows, etc.), through transforma-
tions (joins, filters, aggregations, etc.), and are written to
sinks (other HDFS files, another HBase table, etc.). In this
dataflow, UDFs might read “side data”, for example, load-
ing up dictionaries. When training a classifier, the input
data consist of (label, feature vector) pairs and the output
is the trained model. The model is not a “transformation” of
the original data in the conventional sense, and is actually
closer (both in terms of size and usage patterns) to “side
data” needed by UDFs.

Our solution is to embed the learner inside a Pig storage
function. Typically, the storage function receives output
records, serializes them, and writes the resulting represen-
tation to disk. In our case, the storage function receives
output records and feeds them to the learner (without writ-
ing any output). Only when all records have been processed
(via an API hook in Pig) does the storage function write the
learned model to disk. That is, the input is a series of tuples
representing (label, feature vector) pairs, and the output is
the trained model itself.

This design affords us precise control of how the learning is
carried out. Since storage functions are called in the final re-
duce stage of the overall dataflow, by controlling the number
of reducers (with the Pig parallel keyword), we can control
the number of models that are learned. For example, if we
set the parallel factor to one, then all training instances are
shuffled to a single reducer and fed to exactly one learner.
By setting larger parallel factors n > 1, we can learn sim-
ple ensembles—the training data is partitioned n-ways and
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Figure 1: Illustration of how learners are integrated
into Pig storage functions. By controlling the num-
ber of reducers in the final MapReduce job, we can
control the number of models constructed: on the
left, a single classifier, and on the right, a two-
classifier ensemble.

models are independently trained on each partition. This
design is illustrated in Figure 1.

In short, the parallelization provided by running multi-
ple reducers corresponds naturally to training ensembles of
classifiers, and using this mechanism, we can arbitrarily scale
out (overcoming the bottleneck of having to shuffle all train-
ing data onto a single machine). As is often the case for
many machine learning problems, and confirmed in our ex-
periments (see Section 6), an ensemble of classifiers trained
on partitions of a large dataset outperforms a single classi-
fier trained on the entire dataset (more precisely, lowers the
variance component in error).

The reader here might object that our design violates an
abstraction barrier, in that Pig is an abstract dataflow lan-
guage, and we require the programmer to have an under-
standing of the underlying MapReduce-based physical plan.
However, we argue that Pig is so tightly coupled to Hadoop
in practice that being a competent Pig programmer requires
at least passing knowledge of how the dataflow translates
into Hadoop jobs. Even failing that, for the novice Pig user
we can supply a standard idiom (see below) that is guaran-
teed to trigger a (final) Hadoop job just prior to training,
i.e., we can offer the following instructions: “when in doubt,
include these lines at the end of your Pig script, and set the
parallel there for training n classifiers in parallel.”

Now putting the pieces together: in our design, training a
classifier can be as simple as two lines in Pig:

training = load ‘training.txt’
using SVMLightStorage()
as (target: int, features: map[]);
store training into ‘model/’
using FeaturesLRClassifierBuilder();

In this case, FeaturesLRClassifierBuilder is a Pig storage
function that wraps the learner for a logistic regression clas-
sifier from our core Java library.

Our machine learning algorithms can be divided into two
classes: batch learners and online learners. Batch learners
require all data to be held in memory, and therefore the
Pig storage functions wrapping such learners must first in-
ternally buffer all training instances before training. This
presents a scalability bottleneck, as Hadoop reduce tasks are
typically allocated only a modest amount of memory. Online
learners, on the other hand, have no such restriction: the Pig
storage function simply streams through incoming instances,



feeds them to the learner, and then discards the example.
Parameters for the model must fit in memory, but in prac-
tice this is rarely a concern. Online learners are preferable
for large datasets, but often batch learners perform better
on less data and thus remain useful for experiments. We
provide more details in Section 5.

In addition to training models, many other types of data
manipulations common in machine learning can be straight-
forwardly accomplished in Pig. For example, it is often de-
sirable to randomly shuffle the labeled instances prior to
training, especially in the case of online learners, where the
learned model is dependent on the ordering of the examples.
This can be accomplished by generating random numbers for
each training instance and then sorting by it, as follows:

training = foreach training generate
label, features, RANDOM() as random;
training = order training by random parallel 1;

Shuffling data just prior to training is not only good practice,
it triggers a final MapReduce job and provides an opportu-
nity to control the number of models learned.

Another common operation is to separate data into train-
ing and test portions (or fold creation for cross-validation).
Generating a 90/10 training/test split can be accomplished
in Pig as follows:

data = foreach data generate target, features,

RANDOM() as random;
split data into training if random <= 0.9,
test if random > 0.9;

We have shown how training models can be accomplished
entirely in Pig (in as few as two lines). In addition, many
common ways of manipulating data become idiomatic in Pig,
which makes scripts easier to understand.

4.4 Using Learned Models

Once a classification model has been learned, its accuracy
on held out test data needs to be verified. Only after that
can the solution be deployed. Deployment of machine learn-
ing solutions is dependent on the nature of the problem, but
the two primary modes are: to make periodic batch predic-
tions on new incoming data and to make predictions in an
online setting over live data streams. The second is beyond
the scope of this paper,” and the first is also handled by our
analytics infrastructure—for example, a model might be ap-
plied on an hourly basis to classify newly imported log data.
As it turns out, applying learned models to make batch pre-
dictions and the problem of verifying model accuracy are
basically the same, and require the same functionalities to
be exposed in Pig.

We have developed wrappers that allow us to use clas-
sifiers directly in Pig. For each classifier in our core Java
library, we have a corresponding Pig UDF. The UDF is ini-
tialized with the model, and then can be invoked like any
other UDF. Thus, we can evaluate classifier effectiveness on
held out test data in the following manner:

define Classify ClassifyWithLR(‘model/’);

data = load ‘test.txt’ using SVMLightStorage()
as (target: double, features: map([]);
data = foreach data generate target,

Classify(features) as prediction;

7Note, however, that after a model is trained, it can be easily
used anywhere (with a JVM).

798

With additional processing, we can compute standard met-
rics such as precision, recall, area under the curve, etc. See
Section 6 for a complete example. In this specific case, we
are evaluating classifier effectiveness, but the only difference
between this and making batch predictions on new data is
whether or not we have ground truth labels.

To take advantage of ensembles, we have a separate UDF
that encapsulates the desired functionality:

define Classify ClassifyWithEnsemble(‘model/’,
‘classifier.LR’, ‘vote’);

Here, the model directory contains multiple models. The
UDF specifies the base classifier (logistic regression) and
the evidence combination method (simple majority voting).
It instantiates the ensemble, and on each call, passes the
feature vector to each classifier and combines the evidence
appropriately—this is transparent to the programmer. In
Section 5.2 we describe our ensembles in more detail.

4.5 Discussion

The key characteristic of our design is that a machine
learning job is just another Pig script, which allows seam-
less integration with existing infrastructure. Oink sched-
ules a multitude of production jobs that run daily, out-
putting results in directories on HDFS along the lines of
/processed/task/YYYY/MM/DD/ (while managing data depen-
dencies, monitoring job completion, etc.). Machine learning
scripts can take advantage of Oink, for example, to build
daily models. Another job could then use the most recent
model to make predictions on incoming data every hour—
also scheduled by Oink, which figures out the data depen-
dencies. Thus, productionizing machine learning jobs is no
more difficult than Pig scripts that count records.

Also, the machine learning code has access to all data
stored on HDFS (complete with schemas where available)
since Pig loaders already exist (via Elephant Bird). The
machine learning code has access to hundreds of UDFs in
Twitter libraries that have accumulated over the years for
manipulating everything from tweets to timestamps to IP
addresses. We have thus far not explicitly addressed feature
generation, because it is largely dependent on the problem
domain and requires the creativity of the engineer to be
able to cull the relevant signals from vast quantities of data.
However, we describe a sample application in Section 6 to
give the reader a feel for the complete process. It suffices
to say that the algorithm designer has access the entire Pig
analytics stack. In many cases, basic feature generators are
simply repurposed existing UDF's.

Finally, Pig allows us to seamlessly scale down onto indi-
vidual servers or even laptops by running in “local mode”.
Pig local mode allows evaluation of scripts on a single ma-
chine, without requiring access to a cluster, which is very
useful for rapid prototyping and debugging. After a Pig
script has been debugged and verified to run correctly in
local mode, it can be deployed to the cluster at scale with
minimal modification. Although there is overhead to run-
ning Pig in a single-machine environment, this disadvantage
is more than compensated for by the ability to seamlessly
work with datasets whose sizes differ by orders of magnitude.

S. SCALABLE MACHINE LEARNING

The field of machine learning is incredibly rich and diverse,
but from the vast literature, we have identified two classes



of techniques that are particularly amenable to large-scale
machine learning. The first is stochastic gradient descent,
representative of online learners that can easily scale to large
datasets. The second is ensemble methods, which allow us
to parallelize training in an nearly embarrassingly parallel
manner, yet retain high levels of effectiveness. Both are well
known in the machine learning literature, and together they
form a powerful combination. These techniques occupy the
focus of our implementation efforts.

5.1 Stochastic Gradient Descent

In recent years, the machine learning community has seen
a resurgence of interest in online learning methods that do
not require multiple iterations over a dataset. Aside from
the fact that these methods naturally adjust to changing
data conditions (e.g., temporal variation in the dependence
of the target variable on the input features), they are also
amenable to handling massive datasets that do not fit into
memory. For applications involving text it has been shown
that online learning algorithms lead to competitive clas-
sification accuracies compared to support vector machines
(SVMs) while being orders of magnitude faster to train [7,
2]. While there are many different flavors of online learning,
we focus on stochastic gradient descent (SGD) for logistic
regression, which is a well known linear model that auto-
matically outputs well-calibrated estimates of the posterior
class probabilities.

Stochastic gradient descent is an approximation to gradi-
ent descent methods commonly used in batch learning [43].
In standard gradient descent, one computes the gradient of
the objective loss function using all training examples, which
is then used to adjust the parameter vector in the direction
opposite to the gradient [6]. The process is repeated each it-
eration till convergence. Subgradient methods represent an
approximation in which only a subset of all training exam-
ples is used in each gradient computation, and when the size
of the subsample is reduced to a single instance, we arrive
at stochastic gradient descent.

Assuming a two-class problem with a training set D =
{(z1,91), (z2,92)...(Tn,Yn)}, where z’s are feature vectors
and y € {—1,+1}, we define a class of linear discriminative
functions of the form:

F(z): RY = {-1,+41}

+lifw-xz>t
F = -
() {—1ifw~w<t

where t represents a decision threshold and w is the weight
vector. The modeling process usually optimizes the weight
vector based on the training data D, and the decision thresh-
old is subsequently tuned according to various operational
constraints (e.g., taking precision, recall, and coverage into
account). A range of methods for learning w have been
proposed, where generally different methods optimize a dif-
ferent form of a loss or objective function defined over the
training data. One particularly well-established technique is
known as logistic regression, where the linear function w - x
is interpreted as the logarithmic odds of = belonging to class

+1 over —1, i.e.,
g [P = 1] _

p(y =—1z)
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The objective of regularized logistic regression (using Gaus-
sian smoothing) is to identify the parameter vector w that
maximizes the conditional posterior of the data.

L =exp (f)\w2/2) . Hp (yilzs)

where
1

p(y=+1lz) = Tt om (=

w-x))
and
1

—llz) =1- (1 + exp(w-x))

p(y p(y=+1z) =

Maximizing L is equivalent to maximizing log(L), which for
gradient descent is accomplished by adjusting the weight
vector in the direction opposite to the gradient of log(L):

—)\w—i—z y|x

=w+ Zyip (yilwi) (1 — p (yilwi))

i

—Vlog (L (yi|$i)

Let v represent the update rate, then in stochastic gradient
update where the gradient is computed based on a single
training instance, the update to the weight vector upon see-
ing the ith training example is given by

(yilzi) (1= p (yilwi))]

Note that all elements of the weight vector w are decayed
by factor (1 — v\) at each iteration, but in situations where
the feature vectors of training instances are very sparse (as
is true for text) we can simply delay the updates for features
until they are actually seen.

The SGD variant of logistic regression depends on the
choice of two regularization parameters, A of the Gaussian
prior and the update rate . Both can be selected a priori or
tuned using validation data. The update rate is commonly
decreased as the training progresses, e.g., as o« 1/t where ¢ is
the index of the current update. A recently proposed exten-
sion of SGD, called Pegasos [43], modifies the update process
such that after each modification of the weight vector, the
weights are rescaled to fit with an L2 ball of radius . This
is coupled with an update rate defined as o« 1/\f. While
Pegasos is generally a subgradient method (i.e., it performs
updates on small batches of training data), it also supports
traditional stochastic gradient learning with updates per-
formed for each training instance. Our machine learning
library includes an implementation of SGD regularized lo-
gistic regression with fixed and decaying update rates, as
well as its Pegasos variant.

In applications of machine learning to large datasets com-
prising different and diverse data sources, it is common to
find features with drastically different properties: binary,
multi-valued discrete, integer-valued, real-valued, etc. This
calls for data pre-processing and normalization, especially
if common regularization parameters are used. In our case,
we typically discretize the features prior to model training
using the MDL algorithm [17].

5.2 Ensemble Methods

Recall that in our Pig framework, the parallel keyword
associated with the final MapReduce job determines the
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number of reducers, and hence, the number of indepen-
dent models that are learned. When applying these learned
models, evidence from individual classifier instances must
be combined to produce a final prediction. This is where
ensemble methods come into play.

Given n independently trained, but possibly correlated,
classifiers C1,C5> ... C,, there are many known methods to
combine evidence from individual classifier decisions [32].
The simplest is majority voting, where the output y pre-
dicted for an input x is:

p— / p—
y = arg I;éag; axl (arg max[pi(y'|x) = y}>

where I is an indicator function of the predicate it takes
as argument. Alternatively, the class probabilities could be
taken into account:

y = argmax ;; opi (y]x)

This evidence combination method allows, for example, two
classifiers that are “unsure” of their decisions to be overruled
by a third classifier that is highly confident in its prediction.
We have implemented both evidence combination methods.

In the default case, all a’s are set equal to one, indicat-
ing that each vote is equally important, although this need
not be the case. Uniform weighting is particularly suited to
scenarios where all members of the ensemble represent the
same underlying learner and trained over similar quantities
of data. According to the bias-variance decomposition of
the generalization error [10] applied to ensembles, averaging
models characterized by similar inductive biases leads to a
reduction of the variance component of the ensemble when
compared to an individual model [26]. Large datasets are
amenable to this type of learning via sampling and partition-
ing, but for smaller ones bagging has been used, where each
member of the ensemble is trained with data representing
a bootstrap sample (i.e., sampling with replacement) from
the original dataset [9].

There are also cases where different o (importance) weights
are assigned to each classifier. For classifiers of different
types such an assignment may stem from prior knowledge
of their strength, but more generally they can be learned,
e.g., in a stacking framework. Here, individual classifiers
are trained first and then applied to held-out validation in-
stances. These outcomes are then used as input features to
a gating or combiner model that learns the values of .

Randomization does not need to be restricted to choosing
which sets of instances are used to learn which model. More
generally, it can also be used to decide which subset of fea-
tures is available to a model. This is particularly relevant
to high dimensional problems. Lowering the dimensionality
of the feature subspace seen by a model not only speeds up
the induction process but also makes the model more robust
by preventing the dominance of a few strong features over
the rest. Random forests [11] are an example of models that
are particularly well suited to randomizing both the feature
space and the instance space; they are also well suited to par-
allel implementations since all trees in the forest are created
independently from one another (unlike in boosting where
tree induction is sequential).

One current limitation of Pig is that it is not well suited
for iterative processing. There have been recent efforts to
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adapt MapReduce to iterative-style algorithms (e.g., boost-
ing [39]), as well as similar efforts using different cluster-
based architectures (e.g., MPI [46]). We elected to stay
within the confines of Pig, and it will be interesting to see
when simple acyclic dataflows are no longer sufficient.

6. SENTIMENT ANALYSIS APPLICATION

In this section, we present an application of our machine
learning tools to the problem of sentiment analysis. Al-
though the problem is intrinsically interesting, our discus-
sion primarily exists to illustrate the various features of our
machine learning framework and show how all the pieces
“come together”.

6.1 Methodology

Sentiment analysis, and more broadly, opinion mining, is
an area of natural language processing that has received sig-
nificant interest in recent years; Pang and Lee provide a nice
overview [40]. These technologies have also seen widespread
commercial interest, particularly as applied to social media:
sentiment analysis and related technologies promise solu-
tions to brand and customer relations management, as well
as insights into consumer behavior in the marketplace. Sen-
timent analysis applied to tweets has naturally received at-
tention [38, 36, 25]. In contrast to previous approaches,
which use some form of linguistic processing, we adopt a
knowledge-poor, data-driven approach. It provides a base-
line for classification accuracy from content, given only large
amounts of data.

More specifically, we tackle the binary polarity classifi-
cation task. That is, given a tweet known in advance to
express some sentiment, the classifier’s task is to predict
yi € {NEGATIVE, POSITIVE}. To generate labeled train-
ing data for polarity classification, we use the well-known
“emoticon trick”.® That is, we simply assume that tweets
with positive emoticons, e.g., :-) and variants, are positive
training instances, and tweets with negative emoticons, e.g.,
:-(and variants, are negative training instances. Obviously,
these assumptions are not completely valid and do not cap-
ture phenomena such as sarcasm, irony, humor, etc., but,
overall, data gathered in this manner are quite reasonable.
For illustrative purposes, the “emoticon trick” is typical of a
mechanism for generating a large number of labeled, albeit
noisy, training examples.

We prepared a test set consisting of one million English
tweets with emoticons from Sept. 1, 2011, at least 20 charac-
ters in length. The test set was selected to contain an equal
number of positive and negative examples. For training,
we prepared three separate datasets containing 1 million,
10 million, and 100 million English training examples from
tweets before Sept. 1, 2011 (also containing an equal number
of positive and negative examples). In preparing both the
training and test sets, emoticons are removed.

Our experiments used a simple logistic regression clas-
sifier learned using online stochastic gradient descent (as
described in Section 5), using hashed byte 4-grams as fea-
tures. That is, the feature extractor treated the tweet as
a raw byte array, moved a four-byte sliding window along

81t is not exactly clear who “discovered” this trick. Pak and
Paroubek [38] is the earliest reference in the academic literature
we could find, although Twitter search has had the ability to
retrieve tweets by emoticons since the very beginning.



the array, and hashed the contents of the bytes, the value
of which was taken as the feature id. Features were treated
as binary (i.e., feature values were always one, even if the
tweet contained multiple occurrences of the same byte 4-
gram). Thus, we made no attempt to perform any linguistic
processing, not even word tokenization.

For each of the {1,10,100} million example datasets, we
trained a single logistic regression model with all the data
(i.e., one reducer at the end received all training instances).
For the {10,100} million example datasets, we additionally
experimented with ensembles of different sizes. For each
condition, we conducted 10 different trials—the dataset was
fixed, but each trial yielded a random shuffle of the training
examples and the partitions (for ensembles). Each learned
model was then evaluated on the 1 million instance held-out
test set. For evidence combination in the ensemble experi-
ments, the final prediction was made by taking into account
the probabilities of individual classifiers (but otherwise the
importance weights assigned to each classifier o was simply
1). We measured accuracy of the predictions—in our case,
accuracy is exactly the same as precision and recall, since
this is a forced-choice binary classification problem. Because
our training and test sets were balanced by construction, the
baseline is 0.5 (random guessing).

Table 1 shows the Pig script for training the sentiment
classifiers. We begin by loading tweets using a specialized
Pig loader (which handles uncompressing and unmarshalling
the data). A randomly generated value is associated with
each tweet (used later for sampling) and the instances are
filtered to exclude non-English tweets based on a UDF that
performs language identification. The training script then
splits into two separate branches, one handling positive ex-
amples, and the other handling negative examples. In each,
the label is generated along with the tweet (sans emoticons).
A fixed number of examples is then selected using the ran-
dom values previously generated. Finally, the positive and
negative examples are unioned together: generation of ran-
dom numbers and then sorting by them shuffles the positive
and negative examples together.

In the training script, processed data are directly fed into
the TextLRClassifierBuilder storage function that wraps the
actual learner (logistic regression with SGD). As a common-
case optimization, the feature extractor is folded into the
learner itself to avoid materializing features. An entirely
equivalent method would be to explicitly apply the feature
extractor, then feed into the FeaturesLRClassifierBuilder.
The variable $PARTITIONS controls the number of reducers
in the final Hadoop job, and therefore the size of the en-
semble built. Our actual experiments, however, followed a
slightly different procedure: to conduct multiple trials on the
same dataset, we first materialized the {1,10,100} million
training instances on HDFS. Scanning over large numbers
of tweets to sample is fairly expensive, so we avoided resam-
pling on every trial. For experiments involving 10 and 100
million instances, the instances were materialized in smaller
chunks, which we then combined using the Pig union opera-
tor. Each trial involved a random shuffle of the training set
(i-e., sorting by randomly generated values).

Note that to productionize this simple example would not
require much more effort. It would consist of adding Oink
bindings, which include specifying data dependencies (for
example, that this script depends on tweets) and additional
metadata such as job frequency. After that, Oink would
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Figure 2: Accuracy of our tweet sentiment polarity
classifier on held out test set of 1 million examples.
Each bar represents 10 trials of a particular setting,
with {1,10,100} million training examples and vary-
ing sizes of ensembles. Error bar denote 95% confi-
dence intervals.

handle model training at the correct periodicity, material-
izing results to a known HDFS directory (which can then
be picked up by other systems). In addition, all alerting,
monitoring, fault handling, etc. would come “for free”.

Testing the learned models is accomplished by the script
shown in Table 2. The TextScoreLR UDF is initialized with
the model. We have another UDF called EnsembleTextScoreLR
for ensembles; it is initialized with a directory containing
multiple models as well as the evidence combination mode.
The UDF outputs p(PoSITIVE|z) if the predicted label is
POSITIVE or —p(NEGATIVE|z) if the predicted label is NEG-
ATIVE. For EnsembleTextScoreLR, the evidence combination
logic is handled within the UDF, and so it has the same
output behavior as TextScoreLR. After running the classifier
on all the test instances, the Pig script makes hard clas-
sification decision, compares with the ground truth labels,
and separately tallies the number of correct and incorrect
predictions.

6.2 Results

Results of our polarity classification experiments are shown
in Figure 2. The bars represent mean across 10 trials for
each condition, and the error bars denote 95% confidence
intervals. The leftmost group of bars show accuracy when
training a single logistic regression classifier on {1, 10,100}
million training examples. We get an accuracy boost going
from 1 to 10 million examples, but a smaller increase moving
from 10 to 100 million examples.

The middle and right group of bars in Figure 2 show the
results of learning ensembles. In the middle we present the
10 million examples case, with ensembles of {3,5,7...19}
separate classifiers. On the right we present the 100 million
examples case, with ensembles of {3,5,11,21, 31,41} classi-
fiers. As expected, ensembles lead to higher accuracy—and
note that an ensemble trained with 10 million examples out-
performs a single classifier trained on 100 million examples.

We are not able to report accurate running times because
all our experiments were run on a production cluster with
concurrently-running jobs of different types and sizes. How-
ever, informal observations confirm that the algorithms be-
have as they should: ensembles take shorter to train because



status = load ‘/tables/statuses/$DATE’ using TweetLoader() as (id: long, uid: long, text: chararray);

status = foreach status generate text, RANDOM() as random;
status = filter status by IdentifyLanguage(text) == ‘en’;

-- Filter for positive examples

positive = filter status by ContainsPositiveEmoticon(text) and not ContainsNegativeEmoticon(text)

and length(text) > 20;

positive = foreach positive generate 1 as label, RemovePositiveEmoticons(text) as text, random;

positive = order positive by random; -- Randomize ordering of tweets.
positive = limit positive $N; -- Take N positive examples.

-- Filter for negative examples

negative = filter status by ContainsNegativeEmoticon(text) and not ContainsPositiveEmoticon(text)

and length(text) > 20;

negative = foreach negative generate -1 as label, RemoveNegativeEmoticons(text) as text, random;

negative order negative by random; -- Randomize ordering of tweets
negative = limit negative $N; -- Take N negative examples

training = union positive, negative;

-- Randomize order of positive and negative examples

training = foreach training generate $0 as label, $1 as text, RANDOM() as random;
training = order training by random parallel $PARTITIONS;

training = foreach training generate label, text;

store training into ‘$0UTPUT’ using TextLRClassifierBuilder();

Table 1: Pig script for training binary sentiment polarity classifiers. The script processes tweets, separately
filtering out those containing positive and negative emoticons, which are unioned together to generate the
final training set. As detailed in Section 4.3, the learner (in this case, SGD logistic regression) is embedded
inside the Pig store function, such that the learned model is written directly to HDFS.

define TextScoreLR TextScoreLR(‘hdfs://path/model’);

data = load ‘testdata’ using PigStorage() as (label: int, tweet: chararray);
data = foreach data generate label, (TextScoreLR(tweet) > 0 ? 1 : -1) as prediction;
results = foreach data generate (label == prediction ? 1 : 0) as matching;

cnt = group results by matching;
cnt = foreach cnt generate group, COUNT(results);

—-- Outputs number of incorrect and correct classification decisions
dump cnt;

Table 2: Pig script for evaluating the trained sentiment polarity classifiers. Note that the classifier is wrapped
in a Pig UDF that is applied to test instances. Classification decisions are checked against ground truth labels;

grouping and counting arrives at the final correct and incorrect predictions.
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models are learned in parallel, and there is no single machine
onto which all data must be shuffled. In terms of applying
the learned models, running time increases with the size of
the ensembles—since an ensemble of n classifiers requires
making n separate predictions.

7. STATUS AND FUTURE WORK

Work began on Pig integration of machine learning tools
in Spring 2011, using existing code that was refactored to
comprise our core Java library. Although code for machine
learning had existed long before that, this represented the
first attempt to pull together a common set of libraries that
would be shared across the entire company. Working proto-
types were quickly completed, and we had our first produc-
tion deployment during Summer 2011. Currently, there are
a handful of machine-learned solutions running in produc-
tion; applications include spam analysis, ranking functions
for user search, and linked-based friend suggestions.

Experiences with the framework have been very positive—
the learning curve for engineers and data scientists who al-
ready work with Pig on a daily basis is very shallow. It
involves pointing people at internal wiki pages, using which
they quickly come up to speed. As is common in devising
machine learning solutions, most of the creativity lies in for-
mulating the problem, and most of the programming effort
is spent implementing feature extractors. For the first, there
is no substitute for domain understanding and insight. This
independent of our machine learning framework itself, since
large classes of non-machine-learning problems also require
implementing custom UDFs. Using our machine learning
framework is mostly a matter of learning a few Pig idioms;
the rest feels just like typical analysis tasks. Put it another
way: machine learning becomes a natural extension of data
science, where insights gleaned from data are operational-
ized in computational models.

From what we can tell, broader adoption of our machine
learning framework is not limited by inherent capabilities
of our design, but rather by the “readiness” of groups in the
organization to embrace machine-learning solutions. We ob-
serve that groups often progress through a series of “phases”
when tackling complex problems—usually beginning with
manual intervention, hand-crafted rules, regular expression
patterns, and the like. There is, of course, nothing inherently
wrong with such solutions, and through them one learns a
great deal about a problem domain. However, growing com-
plexity beyond that which can be humanly managed even-
tually compels groups to seek alternative solutions, based
on machine learning approaches or hybrid solutions that
combine elements from automatic and manual techniques.
Thus, the challenges in moving toward predictive analytics
are cultural more than technical. We are presently actively
engaging individuals and groups within the organization to
evangelize both machine learning solutions in general and
our approach in particular.

In terms of building out additional capabilities, we are
adopting a pragmatic approach of implementing new fea-
tures only when there is a need—we believe strongly in let-
ting the problem drive the tools. Nevertheless, looking into
the future we can imagine other types of machine learning
tasks being integrated into Pig in much the same way. Al-
though the focus of this paper has been on classification,
regression and ranking can receive the same treatment. The
same goes with clustering. However, without a concrete ap-

803

plication to drive the development, tools will forever remain
solutions in search of problems.

8. CONCLUSION

As the cost of storage and processing continues to drop, or-
ganizations will accumulate increasing amounts of data from
which to derive insights. Inevitably, the sophistication of
analyses will increase over time. Business intelligence tasks
such as cubing to support “roll up” and “drill down” of multi-
dimension data are already commonplace, with mature best
practices both in the context of traditional data warehouses
and Hadoop-based stacks. We are, however, witnessing the
transition from simple descriptive analytics to more pow-
erful predictive analytics, which promises to unlock greater
troves of insights. There has not yet emerged a consensus on
architectures and best practices for these types of activities.
Nevertheless, we hope that through the accumulation of ex-
periences, the community will converge on a body of shared
knowledge. We hope that our experiences in integrating ma-
chine learning tools in a Pig-centric analytics environment
contribute to this end goal.
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