
X R D S • f a l l 2 0 1 2 • V o l . 1 9 • N o . 130

Designing Good
MapReduce
Algorithms
An introduction to designing algorithms for the MapReduce
framework for parallel processing of big data.

By Jeffrey D. Ullman
DOI: 10.1145/2331042.2331053

If you are familiar with “big data,” you are probably familiar with the MapReduce approach
to implementing parallelism on computing clusters [1]. A cluster consists of many compute
nodes, which are processors with their associated memory and disks. The compute nodes
are connected by Ethernet or switches so they can pass data from node to node.

Like any other programming mod-
el, MapReduce needs an algorithm-de-
sign theory. The theory is not just the
theory of parallel algorithms—MapRe-
duce requires we coordinate parallel
processes in a very specific way. A Map
Reduce job consists of two functions
written by the programmer, plus some
magic that happens in the middle:

1.	 The Map function turns each
input element into zero or more key-
value pairs. A “key” in this sense is not
unique, and it is in fact important that
many pairs with a given key are gener-
ated as the Map function is applied to
all the input elements.

2.	 The system sorts the key-value
pairs by key, and for each key creates
a pair consisting of the key itself and
a list of all the values associated with
that key.

3.	 The Reduce function is applied,
for each key, to its associated list of val-
ues. The result of that application is a
pair consisting of the key and whatev-
er is produced by the Reduce function
applied to the list of values. The output
of the entire MapReduce job is what

results from the application of the Re-
duce function to each key and its list.

When we execute a MapReduce
job on a system like Hadoop [2], some
number of Map tasks and some num-
ber of Reduce tasks are created. Each
Map task is responsible for applying
the Map function to some subset of the
input elements, and each Reduce task
is responsible for applying the Reduce
function to some number of keys and
their associated lists of values. The ar-
rangement of tasks and the key-value
pairs that communicate between them
is suggested in Figure. 1. Since the
Map tasks can be executed in parallel
and the Reduce tasks can be executed
in parallel, we can obtain an almost
unlimited degree of parallelism—pro-
vided there are many compute nodes
for executing the tasks, there are many
keys, and no one key has an unusually
long list of values

A very important feature of the Map
Reduce form of parallelism is that
tasks have the blocking property [3];
that is, no Map or Reduce task delivers
any output until it has finished all its

work. As a result, if a hardware or soft-
ware failure occurs in the middle of a
MapReduce job, the system has only to
restart the Map or Reduce tasks that
were located at the failed compute node.
The blocking property of tasks is essen-
tial to avoid restart of a job whenever
there is a failure of any kind. Since Map-
Reduce is often used for jobs that
require hours on thousands of compute
nodes, the probability of at least one
failure is high, and without the blocking
property large jobs would never finish.

There is much more to the technol-
ogy of MapReduce. You may wish to
consult, a free online text that covers
MapReduce and a number of its appli-
cations [4].

Efficient MapReduce
Algorithms
A given problem often can be solved
by many different MapReduce algo-
rithms. We shall start with a real ex-
ample of what can go wrong and then
examine a model that lets us talk
about the important tradeoff between
the communication (from Map to Re-

X R D S • f a l l 2 0 1 2 • V o l . 1 9 • N o . 1 31

duce tasks) and computation (at the
Reduce tasks).

Reducers. It is convenient to have a
term to refer to the application of the
Reduce function to a single key and its
list. We call this application a reduc-
er. The input size for a reducer is the
length of the list. Notice that reduc-
ers are not exactly the same as Reduce
tasks. Typically a Reduce task is given
many keys and their lists, and thus ex-
ecutes the work of many “reducers.”
However, there could be one Reduce
task per reducer, and in fact, there
could even be one compute node per
reducer if we wanted to squeeze the ab-
solute maximum degree of parallelism
out of an algorithm.

Analogously, we can think of a map-
per as the application of the Map func-
tion to a single input element. Nor-
mally, mappers are grouped into Map
tasks, and each Map task is responsi-
ble for many mappers. It is more com-
mon for us to be able to gain efficiency
by redesigning the nature of the reduc-
ers than by redesigning the mappers,
so we shall be concentrating on the re-
ducers in this article.

Communication and computation
costs. There are three principal sources
of cost when you run a MapReduce job:

1.	 There is a map cost of executing
the mappers. Normally, the input is
a file distributed over many compute
nodes, and each Map task executes at
the same compute node that holds the
input elements to which it is applied.
This cost is essentially fixed, and con-
sists of the computation cost of execut-
ing each mapper.

2.	 Each key-value pair must be
transmitted to the location of the Re-
duce task that will execute the reducer
for that key. While by coincidence this
Reduce task may be located at the
same compute node as the Map task
that generated that key-value pair, we
shall assume for convenience each
key-value pair is shipped across the
network that connects the compute
nodes. The communication cost, or
cost of moving the data from Map
tasks to Reduce tasks, is thus propor-
tional to the total number of key-value
pairs generated by the mappers.

3.	 Each reducer must execute at the
compute node to which its key is as-
signed. The computation cost for an al-

gorithm is the sum of the time needed
to execute each reducer.

This distinction between commu-
nication cost and computation cost ap-
pears to ignore the computation need-
ed to execute the mappers. However,
commonly, this cost is proportional to
the number of key-value pairs gener-
ated, and thus can be included in the
communication cost. We shall there-
fore not discuss the cost of executing
the mappers further.

It may not be obvious, but com-
munication cost often dominates the
computation cost. Typically, compute
nodes are connected by gigabit Ether-
net. That seems fast if you are down-
loading a song, but when you have to
move a terabyte, it will take at least
three hours across a gigabit Ethernet
connection.

Skew and wall-clock time. We focus
on communication and computation
cost because in a public cloud, like

G
en

er
at

iv
e

ar
tw

or
k

by
 G

w
en

 V
an

he
e.

 C
re

at
ed

 in
 H

TM
L5

 a
nd

 J
av

as
cr

ip
t.

Figure 1: The structure of a MapReduce job.

key-value pairs

Map tasks Reduce tasks

Output Input

feature

X R D S • f a l l 2 0 1 2 • V o l . 1 9 • N o . 1

and low wall-clock time.
The study of optimal MapReduce

algorithms can thus be viewed as the
study of the function that gives the least
possible replication rate for a given
reducer input size. We need to do two
things: Prove lower bounds on the rep-
lication rate as a function of input size;
and discover algorithms whose replica-
tion rate matches the lower bound.

An Example of the Tradeoff
To see how the grand compromise
works in practice, I am going to tell a
story about a real project. At Stanford, I
coached several teams in the data-min-
ing project course. One of the teams was
looking at medical records for about a
million patients, and was trying to dis-
cover unknown drug interactions. They
were indeed successful not only in veri-
fying known interactions, but in discov-
ering several very suspicious, heretofore
unknown, combinations of drugs that
have significant side effects.

To find pairs of drugs that had par-
ticular side effects, they created a re-
cord for each of the 6,500 drugs in the
study. That record contained informa-
tion about the medical history of pa-
tients who had taken the drug; these
records averaged about a megabyte
in length. The records for each pair of
drugs needed to be compared in order
to determine whether a particular side
effect was more common among pa-
tients using both drugs than those us-
ing only one or neither.

Their initial plan was to use MapRe-
duce with one reducer for each pair of
drugs. That is, keys would be ordered
lists of two drugs [i, j] with i < j, and
the associated values would be the re-
cords for the two drugs. The Map func-
tion would take a drug i with record R
and turn it into many key-value pairs.
Each of these had a value (i, R), mean-
ing that R was the record for drug i. But
the keys were all the lists consisting of
i and any other drug j. For each of the
6,500 drugs they therefore created
6,499 key-value pairs—each about a
megabyte in size—for a total commu-
nication cost of about 20 terabytes. It
was no surprise that they were unable
to do this MapReduce job, even given
the generous allocation of free EC2
service that Amazon had provided for
the class to use.

So they needed to make a compro-
mise between their desire to run as
many reducers as possible in parallel
and their need to keep the communi-
cation within bounds. They grouped
the drugs into 65 groups, numbered
1 to 65, of 100 drugs each. Instead of
keys being sets of two drugs, they used
keys sets of two group numbers. The
mapper for drug i and record R created
64 key-value pairs. In each, the value
was (i, R), as before. The keys were all
pairs of two groups, one of which is the
group of drug i and the other of which
is any other group.

A reducer in the new scheme re-
ceived a key that is a set of two groups,
and a list of 200 elements (i, R), where i
is a drug in one of the two groups and
R is the patient record for that drug.
The reducer compared each element
(i1, R1) and (i2, R2) on its list, provided i1
and i2 were drugs in different groups.
A small trick that I won’t go into was
necessary to make sure that drugs in
the same group were also compared by
exactly one of the reducers.

As a result, every pair of drugs had
their records compared exactly once,
just as in the original scheme, so the
computation cost was essentially the
same as before. The input size to a re-
ducer grew by a factor of 100, so the
minimum wall-clock time was much
greater under the new scheme. How-
ever, the replication rate shrunk by a
factor of over 100, so the communica-
tion was around 200 gigabytes instead
of 20 terabytes. Using the new scheme,
the various costs balanced well, and
the job was able to complete easily.

Some Concrete Tradeoffs
Now, we are going to see some facts
about particular problems and the
way reducer input size and replication
rate are related for these problems. We
shall look at the problem of finding bit
strings at Hamming distance 1, and
then at the problem of finding trian-
gles in a graph. However, we begin by
looking at the tradeoff implied by the
previous discussion.

Tradeoff for the medical example.
We can generalize the two different
strategies we considered as follows.
Suppose there are d drugs, and we
want to group them into g groups. The
record for each drug is then replicated

Amazon’s EC2, that is what you pay for
[5]. You pay by the gigabyte for moving
data across the network, and you rent
compute nodes by the hour. However,
in addition to wanting to minimize
what we pay, we also want our job to
finish soon. Thus, the total elapsed
time before finishing the MapReduce
job is also important.

As long as no mapper or reducer has
too large an input size, we can divide
them among as many compute nodes as
we have access to, and thus have a wall-
clock finishing time that is roughly the
total time of the computation and com-
munication, divided by the number of
compute nodes. However, if we are not
careful, or the data has a bad form, then
we are limited in how fast we can finish
by the phenomenon of skew.

The most common form of skew
is when the data causes one key K to
be produced a significant fraction
of the time. If, say, half the key-value
pairs generated by the mappers have
key K, then the reducer for key K has
half of all the data communicated.
The computation time of the reducer
for K will be at least half of the total
computation time; it could be more if
the running time of the Reduce func-
tion grows faster than linearly in the
size of the list. In such a situation, the
wall-clock time for finishing cannot
be less than half the total computa-
tion cost, no matter how many com-
pute nodes we use. From this point
onward, we shall assume that skew is
not a problem, although there is much
evidence that skew does affect the
wall-clock time significantly in many
cases; see Kwon et al. for example [6].

The grand compromise. For many
problems, there is a tradeoff between
the input size for the reducers and
the replication rate, or number of key-
value pairs generated per input ele-
ment. The smaller the input size, the
more parallelism we can have, which
leads to a lower wall-clock time. But for
problems that are not “embarrassingly
parallel,” lowering the input size for
the reducers means increasing the rep-
lication rate and therefore increasing
the communication. The more com-
munication, the slower the job runs
and the more it costs. Thus, we must
find just the right input size to compro-
mise between our desire for low cost

32

X R D S • f a l l 2 0 1 2 • V o l . 1 9 • N o . 1

g – 1 times, which we’ll approximate as
g times to simplify the formulas. The
input size for each reducer is 2d/g re-
cords. Conventionally, we use q for the
maximum allowable input size for a re-
ducer and r for the replication rate. In
this case, we have r = g and q = 2d/g, so r
as a function of q is

r = 2d/q

That is, the replication rate is propor-
tional to the number of drugs and in-
versely proportional to the reducer in-
put size.

As long as g divides d evenly, we can
choose any g we like and have an algo-
rithm that solves the problem. We dis-
cussed only two cases: d = g = 6,500 (the
original attempt) and d = 6,500, g = 65,
which worked. However, if the commu-
nication were still too costly at g = 65,
we could have lowered it further to de-
crease the replication rate yet again. At
some point, the communication cost
would cease to be the dominant cost,
and we could extract what parallelism
remains to keep the wall-clock time as
low as possible.

Strings at Hamming distance 1. We
are now going to take up a problem
that was analyzed in a recent paper
on understanding the limits of map-
reduce computation [7]. Two bit strings
of the same length b are at Hamming
distance d if they differ in exactly d
corresponding bits. For example, 0011
and 1011 are at Hamming distance 1
because they differ only in the first bit.

For d = 1 there is an interesting low-
er bound on replication rate as a func-
tion of q, the maximum number of
strings that can be sent to any reduc-
er. For an algorithm to find all pairs
of strings at Hamming distance 1 in
some input set of bit strings of length
b, every pair of bit strings at distance
1 must be covered by some reducer; in
the sense that if they exist in the in-
put set, then both strings will be sent
to that reducer (perhaps among other
reducers). The number of possible
inputs is 2b, and the number of pos-
sible outputs—pairs at distance 1— is
(b ⁄ 2)2b. To see why the latter count is
correct, notice that each of the 2b bit
strings of length b is at distance 1 from
b other strings; those are the strings
constructed by flipping exactly one

of the b bits. So we would expect b2b
pairs, but that counts each pair twice,
once from the point of view of each of
the two strings. Thus the correct count
of possible outputs is (b ⁄ 2)2b.

There is a theorem that says among
any collection of q bit strings, there are
at most (q/2)log2 q pairs at distance 1
[7]. We’re not going to prove it here, but
we’ll use it to get an exact lower bound
on the replication rate r as a function
of q. First, suppose we use p reducers,
and the ith reducer has qi≤q bit strings
that it will receive if they are present in
the input. Since all the (b ⁄ 2)2b pairs of
strings at distance 1 must be covered
by some reducer, we know that

i = 1

p

Σ
That is, the sum of the maximum num-
ber of outputs that each reducer can
cover must be at least the number of
outputs.

We are going to replace log2 qi by
log2 q in the above inequality. Since q
is an upper bound on qi, the inequality
must continue to hold; that is

i = 1

p

Σ
Notice we chose not to replace the

factor qi by q.
The replication rate r is the sum of

the number of inputs qi to each reducer

divided by the total number of pos-
sible inputs, 2b, that is, ∑(i=1)

p qi/2b. We
can manipulate the inequality above
so that exactly ∑ (i=1)

p qi/2b appears on the
left, and everything else is on the right.
That gives us

i = 1

p

Σqi/2b b/log2 qr =

This inequality says for the problem of
finding strings at Hamming distance
1, the replication rate is proportional to
b, the string length, and inversely pro-
portional to the logarithm of the maxi-
mum number of inputs that can be as-
signed to one reducer. Figure 2 shows
the form of the lower bound on r and
also shows points where we have algo-
rithms that match the lower bound.

The algorithms at the endpoints
are easy to see. If log2 q = b, then q = 2b,
which means that one reducer can get
all the possible inputs. In that case,
there is no need for any replication;
that is, if log2 q = b, then r = 1 suffices.

At the other extreme, if log2 q = 1,
that is, q = 2, then we need one reduc-
er for each possible pair of strings at
distance 1. Each string s must be sent
to the b different reducers that corre-
spond to pairs {s, t} where t is one of the
b strings at Hamming distance 1 from
s. In terms of key-value pairs, the keys
are pairs of strings at distance 1. The
Map function generates from an input

33

Figure 2: Known algorithms matching the lower bound on replication rate.

r

1

1 b

log2 q

2

3

4

5

6

b

.
.
.

b
6
b
5
b
4

b
3

b
2

feature

X R D S • f a l l 2 0 1 2 • V o l . 1 9 • N o . 1

published last year [9]. On a graph with
m edges, it uses total computation time
O(m(3/2)), which is the best possible ac-
cording to Alon [10]. This MapReduce
algorithm makes use of a serial algo-
rithm for finding all triangles in time
O(m3/2), due to Schank’s Ph.D. work [11],
and the conversion of that algorithm
to a MapReduce algorithm using the
same total computation is from Suri
and Vassilvitskii [12].

Suppose the m edges of a graph on
n nodes are chosen so that each pos-
sible edge is equally likely to be chosen.
If we run the algorithm using enough
reducers so that the expected number
of edges at any reducer is q, then the
replication rate is O(√m/q). That is, each
edge will be sent as the value of a key-
value pair to that number of different
reducers. We shall not give the argu-
ment here, but it is shown that Ω(√m/q)
is also a lower bound on the replication
rate [7]; i.e., the algorithm mentioned
gives, to within a constant factor, the
lowest possible replication rate.

Summary
We have tried to motivate the need to
study MapReduce algorithms from the
point of view of how they trade paral-
lelism for communication cost. We
represent the degree of parallelism by
the upper limit on the number of in-
puts that one reducer may receive; the
smaller this limit, the more potential
parallelism. We represent commu-
nication cost by the replication rate,
that is, the number of key-value pairs
produced for each input. Depending
on your computational resources and
your network, you may prefer one of
many different points along the curve
that represents this tradeoff. As a re-
sult, it is interesting to discover lower
bounds on the replication rate as a
function of the reducer input size.

For two problems, finding strings
at Hamming distance 1 and finding
triangles in a graph, we gave lower
bounds on replication rate r as a func-
tion of input size q that are tight. That
is, there are algorithms for a wide vari-
ety of q values whose replication rate is,
to within a constant factor, that given
by the lower bound.

However, there are problems in
a variety of domains for which opti-
mal MapReduce algorithms have not

string s the b key-value pairs with value
s and key {s, t}, where t is one of the bit
strings at distance 1 from s. Then the
reducer for key {s, t} looks at the list
of values associated with this key, and
if both s and t are present outputs that
pair. Otherwise, it outputs nothing.
(In fact, unless at least one of s and t is
present on the input, this reducer will
not even exist.)

The other points shown in Figure
1 represent variants of the “splitting”
algorithm [8]. For any integer k ≥ 2 that
divides b, we can split the positions of
b-bit strings into k equal parts. Let a
reducer correspond to one of these k
segments and a particular bit string of
length 2(k-1)b/k that can appear in all but
that segment. A bit string s is sent to
k different reducers. Start by deleting
the first of the k segments from s and
send s to the reducer corresponding to
segment number 1 and the bits of s in
all but segment 1. Then, starting from
s again, drop the second segment and
send s to the reducer corresponding
to segment 2 and the bits of s that re-
main. Continue in this way for each of
the k segments. For example, if b = 6,
k = 3, and s = 011100, then send s to the
three reducers:

1.	 Segment = 1 and string = 1100.
2.	 Segment = 2 and string = 0100.
3.	 Segment = 3 and string = 0111.
The replication rate is clearly r = k,

and the number of bit strings that can
be assigned to any reducer is the num-
ber of possible strings in any one seg-
ment, that is, q = 2b/k. If we take loga-
rithms, we get log2 q = b/k. Since r = k,
we find r = b/log2 q is an upper bound as
well as a lower bound.

Triangle Finding. Another prob-
lem for which we can obtain closely
matching upper and lower bounds on
the replication rate as a function of
the maximum input size for a reducer
is finding the number of triangles in a
large graph, such as the graph of a so-
cial network. We shall not go into the
applications of triangle-finding, but
intuitively, we expect that closely knit
communities of friends would have
many triangles. That is, whenever A is
friends with both B and C, we would
expect it is likely that B and C are also
friends with each other. The most ef-
ficient MapReduce algorithm for find-
ing triangles is from a technical report

been studied. Analyzing these prob-
lems requires deriving new lower
bounds, designing algorithms that
attain them, and choosing parame-
ters to balance the tradeoff between
communication and computation
costs on modern computer architec-
tures. By understanding such trad-
eoffs, we can design MapReduce algo-
rithms that are efficient both in terms
of wall-clock time and in terms of data
movement.

References

[1]	 Dean, J. and Ghemawat, S. MapReduce: Simplified
data processing on large clusters. In Proceedings of
the Sixth Conference on Symposium on Opearting
Systems Design & Implementation (San Francisco,
Dec. 6-8, 2004). 137–150.

[2]	 White, T. Hadoop: The Definitive Guide. Storage and
Analysis at Internet Scale, Second Edition. O’Reilly
Media, Sebastopol, CA, 2011.

[3]	 Afrati, F.N., Borkar, V. R., Carey, M. J., Polyzotis,
N., and Ullman, J. D. MapReduce extensions and
recursive queries. In Proceedings of the 14th
International Conference on Extending Database
Technolog (Uppsala, Sweden, March 21-24). ACM
Press, New York, 2011, 1–8.

[4]	 Rajaraman, A., and Ullman, J. D. Mining of Massive
Datasets. Cambridge University Press, Cambridge,
UK, 2011. Also available on-line at http://infolab.
stanford.edu/~ullman/mmds.html.

[5]	 Amazon Elastic Compute Cloud (Amazon EC2).
Amazon Inc., 2008.

[6]	 Kwon, Y., Balazinska, M., Howe, B., and Rolia,
J. A. Skewtune: mitigating skew in MapReduce
applications. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data (Scottsdale, May 20-24). ACM Press, New York,
2012, 25–36.

[7]	 Afrati, F. N., Das Sarma, A., Salihoglu, S., and Ullman,
J. D. Vision paper: Towards an understanding of
the limits of MapReduce computation. CoRR,
abs/1204.1754, 2012.

[8]	 Afrati, F. N., Das Sarma, A., Menestrina, D.,
Parameswaran, A. and Ullman, J. D. Fuzzy joins using
MapReduce. In Proceedings of the International
Conference on Data Engineering (Washington, D.C.,
April 1-5, 2012).

[9]	 Afrati, F. N., Fotakis, D., and Ullman, J. D.
Enumerating subgraph instances using MapReduce.
Technical report. Stanford University, December
2011. http://ilpubs.stanford.edu:8090/1020/.

[10]	 Alon, N. On the number of subgraphs of prescribed
type of graphs with a given number of edges. Israel
Journal of Mathematics 38, 1-2 (1981), 116–130.

[11]	 Schank, T. Algorithmic Aspects of Triangle-Based
Network Analysis. Ph.D. Thesis. Universitat
Karlsruhe (TH), 2007.

[12]	 Suri, S. and Vassilvitskii, S. Counting triangles and
the curse of the last eeducer. In Proceedings of the
20th International Conference on World Wide Web
(Hyderabad, India, Mar. 28-April 1). ACM Press, New
York, 2011, 607–614.

Biography

Jeff Ullman is a retired professor of computer science at
Stanford University. He has written textbooks covering
automata theory, compilers, data structures and
algorithms, database systems, and data mining. During his
teaching career at Princeton and Stanford, he graduated
53 Ph.D. students, many of whom have become leaders in
academia and industrial startups.

© 2012 ACM 1528-4972/12/09 $15.00

34

