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Generative vs Discriminative

= A generative model like Naive Bayes makes use
of the likelihood term P(d|c), which expresses
how to generate the features of a document d if
we knew It was of class c.

= Adiscriminative model like Logistic Regression
IN this text categorization scenario attempts to
directly compute P(c|d).

likelihood prior

—— N

¢ =argmax P(d|c) P(c)
ceC
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Components

A feature representation of the input. For each input observation x), this
will be a vector of features |xi,x»,...,x,|. We will generally refer to feature

¢ for mnput x\) as XE'I ), sometimes simplified as x;, but we will also see the
notation f;, f;(x), or, for multiclass classification, fj(c,x).

. A classification function that computes ¥, the estimated class, via p(y|x). In

the next section we will introduce the sigmoid and softmax tools for classifi-
cation.

. An objective function for learning, usually involving minimizing error on

training examples. We will introduce the cross-entropy loss function

An algorithm for optimizing the objective function. We introduce the stochas-
tic gradient descent algorithm.



Stages

training: we train the system (specifically the weights w and b) using stochastic
gradient descent and the cross-entropy loss.

test: Given a test example x we compute p(y|x) and return the higher probability
label y=1 ory=0.



Classification Function

= The weights and = The sigmoid
bias (a special case of

logistic function)

n 1
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Classification Function
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QTR  The sigmoid function y = 5 +1€—:, takes a real value and maps it to the range |0, 1.

Because it is nearly linear around O but has a sharp slope toward the ends, it tends to squash
outlier values toward O or 1.



Classification Function

$= P(y=1lx)= o(w-x+Db)
1
— 1 + e_(w.'\-_’_b}

prediction [ 1 if P(y=1|x) > 0.5
(decision) | O otherwise
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IOT A A sample mini test document showing the extracted features in the vector x.



Example

Var  Definition Value in Fig. 5.2
X count(positive lexicon) € doc) 3
X2 count(negative lexicon) € doc) 2

I if “no” € doc

3 { 0 otherwise 1

x4 count(lst and 2nd pronouns € doc) 3
. 1 if “!” € doc 0
: 0 otherwise

x¢  log(word count of doc) In(64) =4.15



Example

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,—5.0,—1.2,0.5,2.0,0.7]|, while b = 0.1.

p(+|x)=PY =1|x) = o(w-x+D)
_ s(0805)
= 0.69

p(—|x)=P(Y =0|x) = l—oc(w-x+b)
= 0.31



Features

= Where do they come from?
» Feature Engineering

» Representation Learning (using Deep Learning
methods etc.)



LR vs NB

= Naive Bayes has overly strong conditional
Independence assumptions. By contrast, logistic
regression is much more robust to correlated
features.

= Thus when there are many correlated features,
logistic regression will assign a more accurate
probability than Naive Bayes.

= S0 logistic regression generally works better on
large datasets or long documents, and is a
common default.



LR vs NB

= Despite the less accurate probabilities, Naive
Bayes still often makes the correct classification
decision.

= Naive Bayes works extremely well (even better
than Logistic Regression) on small datasets or
short documents.

= Furthermore, it is easy to implement and very
fast to train (there’s no optimization step).

= S0 it's still a reasonable approach to use in some
situations.



Learning

= Objective:
to minimize the cross-entropy loss function

L(v,y) = How much y differs from the true y

plyly) = 9" (1-9)'

Lee(9.y) = —logp(ylx) = —[ylog$+(1—y)log(l—¥)]

=3
m

:——Z} log o(w - x! +b)+(1—1”)10g( o (w-x" ‘|’b))
m



Learning

s Algorithm: Stochastic Gradient Descent
s Regularization



Multinomial Logistic Regression

= Also called the softmax regression
(or, historically, the maxent classifier)

The softmax of an input vector z = |z1,22,..., 2| iS:

softmax(z) = .

DRTCED DAY D SRS

The denominator Zile e“ 1s used to normalize all the values into probabilities.

for each of the K classes:

oWe X+ b,
p(}} — C‘X) — k

Z Wit X -+ b_j

J=1




Multinomial Logistic Regression

s T he softmax function

Thus for example given a vector:
z=10.6,1.1,—1.5,1.2,3.2, —1.1]

the result softmax(z) 1s
0.055,0.090,0.0067,0.10,0.74,0.010]

>>> import numpy as np

>»>> z = [1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0]

>>> softmax = lambda z:np.exp(z)/np.sum(np.exp(z))

>>> softmax(z)

array([©.02364054, 0.06426166, 0.1746813 , 0.474833 , 0.02364054,
0.06426166, 0.1746813 ])



Multinomial Logistic Regression

= The cross-entropy loss function (for K classes)

» For a hard classification task (where only one
class is the correct one for each document), this is
just the negative log-likelihood.

= Given a training document x in class k, i.e.,
y=10, ..., 1, ... 0] where y,=1 and y;=0 for £k .
K
Lep(y,y) = Z —y; log(y;) = — log(y).) = — log (softmax(z);.)
1=1
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