NLP & IR

Chapter 5
Logistic Regression

Dell Zhang
Birkbeck, University of London

Generative vs Discriminative

- A **generative** model like Naïve Bayes makes use of the *likelihood* term P(d|c), which expresses how to generate the features of a document d if we knew it was of class c.
- A **discriminative** model like Logistic Regression in this text categorization scenario attempts to directly compute P(c|d).

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} \ \ \overbrace{P(d|c)}^{\operatorname{prior}} \ \ \overbrace{P(c)}^{\operatorname{prior}}$$

Components

- 1. A **feature representation** of the input. For each input observation $x^{(i)}$, this will be a vector of features $[x_1, x_2, ..., x_n]$. We will generally refer to feature i for input $x^{(j)}$ as $x_i^{(j)}$, sometimes simplified as x_i , but we will also see the notation f_i , $f_i(x)$, or, for multiclass classification, $f_i(c,x)$.
- 2. A classification function that computes \hat{y} , the estimated class, via p(y|x). In the next section we will introduce the **sigmoid** and **softmax** tools for classification.
- 3. An objective function for learning, usually involving minimizing error on training examples. We will introduce the **cross-entropy loss function**
- 4. An algorithm for optimizing the objective function. We introduce the **stochastic gradient descent** algorithm.

Stages

training: we train the system (specifically the weights w and b) using stochastic gradient descent and the cross-entropy loss.

test: Given a test example x we compute p(y|x) and return the higher probability label y = 1 or y = 0.

Classification Function

The weights and bias

The sigmoid

 (a special case of logistic function)

$$z = \left(\sum_{i=1}^{n} w_i x_i\right) + b$$
$$= w \cdot x + b$$

$$y = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Classification Function

Figure 5.1 The sigmoid function $y = \frac{1}{1+e^{-z}}$ takes a real value and maps it to the range [0, 1]. Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier values toward 0 or 1.

Classification Function

$$\hat{y} = P(y = 1|x) = \sigma(w \cdot x + b)$$

$$= \frac{1}{1 + e^{-(w \cdot x + b)}}$$

prediction (decision) =
$$\begin{cases} 1 & \text{if } P(y=1|x) > 0.5 \\ 0 & \text{otherwise} \end{cases}$$

Example

```
It's lokey There are virtually no surprises, and the writing is local econd-rate. So why was it so enjoyable? For one thing, the cast is local econd-rate. Another nice touch is the music D was overcome with the urge to get off the couch and start dancing. It sucked no in , and it'll do the same to local econd-rate.

x_1=3
x_5=0
x_6=4.15
x_4=3
```

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

Example

Var	Definition	Value in Fig. 5.2
$\overline{x_1}$	$count(positive lexicon) \in doc)$	3
x_2	$count(negative lexicon) \in doc)$	2
x_3	<pre> { 1 if "no" ∈ doc</pre>	1
x_4	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	log(word count of doc)	ln(64) = 4.15

Example

Let's assume for the moment that we've already learned a real-valued weight for each of these features, and that the 6 weights corresponding to the 6 features are [2.5, -5.0, -1.2, 0.5, 2.0, 0.7], while b = 0.1.

$$p(+|x) = P(Y = 1|x) = \sigma(w \cdot x + b)$$

$$= \sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.15] + 0.1)$$

$$= \sigma(0.805)$$

$$= 0.69$$

$$p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b)$$

= 0.31

Features

- Where do they come from?
 - Feature Engineering
 - Representation Learning (using Deep Learning methods etc.)

LR vs NB

- Naïve Bayes has overly strong conditional independence assumptions. By contrast, logistic regression is much more robust to correlated features.
- Thus when there are many correlated features, logistic regression will assign a more accurate probability than Naïve Bayes.
- So logistic regression generally works better on large datasets or long documents, and is a common default.

LR vs NB

- Despite the less accurate probabilities, Naïve Bayes still often makes the correct classification decision.
- Naïve Bayes works extremely well (even better than Logistic Regression) on small datasets or short documents.
- Furthermore, it is easy to implement and very fast to train (there's no optimization step).
- So it's still a reasonable approach to use in some situations.

Learning

 Objective: to minimize the cross-entropy loss function

 $L(\hat{y}, y) = \text{How much } \hat{y} \text{ differs from the true } y$

$$p(y|x) = \hat{y}^y (1-\hat{y})^{1-y}$$

$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

$$Cost(w,b) = \frac{1}{m} \sum_{i=1}^{m} L_{CE}(\hat{y}^{(i)}, y^{(i)})$$

$$= -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \sigma(w \cdot x^{(i)} + b) + (1 - y^{(i)}) \log \left(1 - \sigma(w \cdot x^{(i)} + b)\right)$$

Learning

- Algorithm: Stochastic Gradient Descent
- Regularization

Multinomial Logistic Regression

 Also called the **softmax** regression (or, historically, the maxent classifier)

The softmax of an input vector $z = [z_1, z_2, ..., z_k]$ is:

softmax(z) =
$$\left[\frac{e^{z_1}}{\sum_{i=1}^k e^{z_i}}, \frac{e^{z_2}}{\sum_{i=1}^k e^{z_i}}, ..., \frac{e^{z_k}}{\sum_{i=1}^k e^{z_i}}\right]$$

The denominator $\sum_{i=1}^{k} e^{z_i}$ is used to normalize all the values into probabilities.

for each of the *K* classes:

$$p(y = c|x) = \frac{e^{w_c \cdot x + b_c}}{\sum_{i=1}^k e^{w_j \cdot x + b_j}}$$

Multinomial Logistic Regression

The softmax function

Thus for example given a vector:

```
z = [0.6, 1.1, -1.5, 1.2, 3.2, -1.1]
the result softmax(z) is
[0.055, 0.090, 0.0067, 0.10, 0.74, 0.010]
```

```
>>> import numpy as np
>>> z = [1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0]
>>> softmax = lambda z:np.exp(z)/np.sum(np.exp(z))
>>> softmax(z)
array([0.02364054, 0.06426166, 0.1746813 , 0.474833 , 0.02364054, 0.06426166, 0.1746813 ])
```

Multinomial Logistic Regression

- The cross-entropy loss function (for K classes)
 - For a hard classification task (where only one class is the correct one for each document), this is just the negative log-likelihood.
 - Given a training document x in class k, i.e., y = [0, ..., 1, ... 0] where $y_k=1$ and $y_i=0$ for $i\neq k$.

$$L_{CE}(\widehat{\mathbf{y}}, \mathbf{y}) = \sum_{i=1}^{K} -y_i \log(\widehat{y}_i) = -\log(\widehat{y}_k) = -\log(\operatorname{softmax}(\mathbf{z})_k)$$

$$= -\log\left(\frac{e^{z_k}}{\sum_{j=1}^K e^{z_j}}\right) = -\log\left(\frac{e^{\mathbf{w}_k \mathbf{x} + b_k}}{\sum_{j=1}^K e^{\mathbf{w}_j \mathbf{x} + b_j}}\right)$$