
5

Financial Networks

5.1 Introduction

Activity in the stock markets, has always attracted a great deal of interest from not
only investors, but also scientists. Both for different (or maybe the same) reasons, have
wanted to discover regularity in price fluctuations. The theory of random walks (Bache-
lier, 1900) and fractals theory (Mandelbrot, 1963) both originated from studies on
pricing of commodities. Continuous storage of a variety of data i.e. numbers of trans-
actions, pricing, numbers of bids and asks for all traded stocks worldwide constantly
produces one of the largest datasets available to researchers. As mentioned, this dis-
cipline has attracted over time the interest of investors convinced that it would in
principle be possible to predict the future behaviour by inspecting the past history. It
is noteworthy that since the market is not totally isolated, if many believe that the
price will go up, then the price will effectively go up (self-fulfilling prophecy). This
creates an interesting feedback between observer and system observed. What can be
considered to be certain is that we have clear evidence of correlations in the form of
self-affinities in price history, with the presence of characteristic roughness exponents.
The study of time series is just one of the ways in which we can study quantitatively
economic and financial networks. Another approach that is particularly fruitful is to
describe the various connections between financial institutions in the form of a net-
work. The structure obtained is particularly complex, since an edge (or various kinds
of edges) can represent lending, exposure, insurance, credit default swaps (CDS), own-
ership, interlock in the board etc. The aim of this chapter is to provide the reader with
the main quantitative instruments to describe these systems. Codes, data and/or links
for this chapter are available from http://book.complexnetworks.net.

5.2 Data from Yahoo! Finance

Financial data are very difficult to collect, essentially due to disclosure problems, but
also because of the absence of specific policy regulations on certain kinds of trans-
actions; also most of the data are not available in an aggregated form. Nevertheless,
after the financial crisis which started with sub-prime mortgages in 2008, it became
clear to a variety of policy regulators and control organisations, that the complexity of
the financial structure and our poor knowledge of it had been one of the causes of the
turndown in the economy. From that moment a series of international organisations
and companies started collecting and making available various data, unfortunately not
always accessible to scientists. The set of data we present here has been downloaded
from the Yahoo! Finance web service, which offers daily historical data for the closure

Data Science and Complex Networks. First Edition. Guido Caldarelli and Alessandro Chessa.

Press.
c© Guido Caldarelli and Alessandro Chessa 2016. Published in 2016 by Oxford University

92 Financial Networks

prices of stock traded in various markets. In the following we present how to interact
with the service in order to get the relevant data we need to explore the correlations
between stocks for companies present in the NYSE (New York Stock Exchange) index.

Connecting with the Yahoo! Finance service

import yahoo_finance as yf

yahoo = yf.Share(’YHOO’)

d=yahoo.get_historical(’2014-05-19’, ’2014-05-20’)

print "A week of stock daily quotations:"

for e in d:

print e

print "Info about the company:",yahoo.get_info()

print "Market capitalization in dollars:",yahoo.get_market_cap()

OUTPUT

A week of stock daily quotations:

{’Volume’: ’18596700’, ’Symbol’: ’YHOO’, ’Adj_Close’: ’33.869999’,

’High’: ’34.470001’, ’Low’: ’33.669998’, ’Date’: ’2014-05-20’,

’Close’: ’33.869999’, ’Open’: ’33.990002’}

{’Volume’: ’14845700’, ’Symbol’: ’YHOO’, ’Adj_Close’: ’33.889999’,

’High’: ’33.990002’, ’Low’: ’33.279999’, ’Date’: ’2014-05-19’,

’Close’: ’33.889999’, ’Open’: ’33.41’}

Info about the company: {’start’: ’1996-04-12’, ’symbol’: ’YHOO’,

’end’: ’2015-06-17’, ’CompanyName’: None}

Market capitalization in dollars: 38.13B

The historical data from Yahoo! Finance presents information about the volume of
stocks transacted, the highest, the lowest, the opening, and the closing values, as well
as an adjusted closing value that provides the closing price (on the requested day, week,
or month for any stock) adjusted for all applicable splits and dividend distributions.
Starting from this data we can easily compute the total transaction volume for the
day as the product of the number of shares exchanged and the adjusted closing value.

Transaction volumes computation and plotting (see Fig. 5.1)

d=yahoo.get_historical(’2014-01-01’, ’2014-12-31’)

V = []

for s in d:

print s[’Date’],float(s[’Volume’])*float(s[’Adj_Close’])

Data from Yahoo! Finance 93

Fig. 5.1 One year of stock quotations for the Yahoo share from January 01, 2014, up to

December 31, 2014. The values are in 1010$ (US Dollars).

V.append(float(s[’Volume’])*float(s[’Adj_Close’]))

plot(V)

savefig(’yahoo_volume.png’)

#OUTPUT

2014-12-31 469995531.39

2014-12-30 548233280.704

2014-12-29 334735978.375

2014-12-26 262930947.17

2014-12-24 301970246.924

2014-12-23 776010280.0

2014-12-22 1228679313.04

2014-12-19 1226727000.11

We could also get all information related to shares present in the NYSE in-
dex querying the Yahoo! Finance service, but here we will follow a mixed and
hopefully simpler approach. We will retrieve the sector and industry from a web
page where it is possible to download a CSV file with all of this information
(http://www.nasdaq.com/screening/company-list.aspx), while the actual market cap-
italisation will be obtained from the Yahoo service. Only companies with a capitalisa-
tion greater than 50 billion dollars will be considered in our analysis.

94 Financial Networks

Get stock labels, sector, and industries

#this code will take approximative 1 hour to retrieve the data

#depending on the internet connection

#if you want to skip this procedure just uncomment

#the following lines

#import sys

#f=open("./data/list_stocks_50B_6_may_2016.txt",’r’)

#list_stocks=[]

#while True:

next_line=f.readline()

if not next_line: break

list_stocks.append(tuple(next_line.split(’\t’)[:-1]))

#f.close()

#sys.exit()

import time

hfile=open("./data/companylist.csv",’r’)

#we choose to get only companies with a market capitalisation

#greater than 50B$

cap_threshold=50.0

list_stocks=[]

nextline=hfile.readline()

while True:

nextline=hfile.readline()

if not nextline:

break

line=nextline.split(’,’)

sym=line[0][1:-1]

share = yf.Share(sym)

y_market_cap=share.get_market_cap()

if not y_market_cap: continue

#we will exclude stocks with char ^ that will

#give errors in the query process

if y_market_cap[-1]==’B’ and float(y_market_cap \

[:-1])>cap_threshold and line[0].find(’^’)==-1:

print sym,y_market_cap

list_stocks.append((line[0][1:-1],line[1][1:-1],\

line[5][1:-1],line[6][1:-1]))

time.sleep(1)

Data from Yahoo! Finance 95

hfile.close()

print list_stocks[0]

OUTPUT

MMM 99.27B

ABB 50.54B

ABT 72.17B

ABBV 106.37B

ACN 60.56B

AEB 50.61B

..........

(’MMM’, ’3M Company’, ’Health Care’, ’Medical/Dental Instruments’)

When we need to plot using specific colour codes for companies in the plot, and
we need specific dictionaries to handle companies, colours, and sectors.

Generate dictionaries for companies, sectors, and colours

diz_sectors={}

for s in list_stocks:

diz_sectors[s[0]]=s[2]

list_ranking=[]

for s in set(diz_sectors.values()):

list_ranking.append((diz_sectors.values().count(s),s))

list_ranking.sort(reverse=True)

#list_colors=[’red’,’green’,’blue’,’black’’cyan’,’magenta’,’yellow’]

list_colors=[’0.0’, ’0.2’, ’0.4’, ’0.6’,’0.7’, ’0.8’, ’0.9’]

#’white’ is an extra color for ’n/a’ and ’other’ sectors

diz_colors={}

#association color and more represented sectors

for s in list_ranking:

if s[1]==’n/a’:

diz_colors[s[1]]=’white’

continue

if list_colors==[]:

96 Financial Networks

diz_colors[s[1]]=’white’

continue

diz_colors[s[1]]=list_colors.pop(0)

5.3 Prices time series

The time series of a stock price is a typical quantity that investors (right or wrong) use
when considering their investments (we do not comment here whether they are right or
not in doing so). This field of finance is particularly awkward to study since phenomena
observed are heavily affected by our actions. As already mentioned, if all investors of a
stock suddenly believe that a signal in a stock price time series is indicating impending
bankruptcy, all of them will sell the stock causing the bankruptcy for real (a typical
case of a self-fulfilling prophecy).

Retrieving historical data

start_period=’2013-05-01’

end_period=’2014-05-31’

diz_comp={}

for s in list_stocks:

print s[0]

stock = yf.Share(s[0])

diz_comp[s[0]]=stock.get_historical(start_period, end_period)

#create dictionaries of time series for each company

diz_historical={}

for k in diz_comp.keys():

if diz_comp[k]==[]: continue

diz_historical[k]={}

for e in diz_comp[k]:

diz_historical[k][e[’Date’]]=e[’Close’]

for k in diz_historical.keys():

print k,len(diz_historical[k])

In the (strong) hypothesis that, in calm periods, various psychological effects can-
cel out, investors study the statistical properties of the time series, trying to spot
regularities that could anticipate the future behaviour of the price. While the link be-
tween past and future performance has never been demonstrated, there is nevertheless
a certain consensus that “on average” this information is valuable to the investors. In
particular the return and the volatility are considered the most important indicators.
Given a time interval Δt, let us consider an asset price at the beginning p(t0) and at
the end p(t0 +Δt). We define the proportional return of the investment in the period

Prices time series 97

Δt as

r(Δt) =
p(t0 +Δt)− p(t0)

p(t0)
. (5.1)

Here we assumed investment in only a certain number of one type of stock, so that
we can use the price to determine costs and gains. The above equation in the limit

(Δt → 0) can be written as r(t) � d ln (p(t))
dt .

This expression passing to discrete time steps takes the following form:

r = ln p(t0 +Δt)− ln p(t0). (5.2)

Return of prices

reference_company=’ABEV’

diz_returns={}

d=diz_historical[reference_company].keys()

d.sort()

print len(d),d

for c in diz_historical.keys():

#check if the company has the whole set of dates

if len(diz_historical[c].keys())<len(d): continue

diz_returns[c]={}

for i in range(1,len(d)):

#price returns

diz_returns[c][d[i]]=math.log(\

float(diz_historical[c][d[i]])) \

-math.log(float(diz_historical[c][d[i-1]]))

print diz_returns[reference_company]

Among the various definitions of volatility σ, the simplest is the standard deviation
of the value of prices p(t).

Basic statistics and the correlation coefficient

#mean

def mean(X):

m=0.0

for i in X:

m=m+i

return m/len(X)

#covariance

98 Financial Networks

def covariance(X,Y):

c=0.0

m_X=mean(X)

m_Y=mean(Y)

for i in range(len(X)):

c=c+(X[i]-m_X)*(Y[i]-m_Y)

return c/len(X)

#pearson correlation coefficient

def pearson(X,Y):

return covariance(X,Y)/(covariance(X,X)**0.5 * \

covariance(Y,Y)**0.5)

5.4 Correlation of prices

In the same spirit, correlations in time series (or more simply comovements) are also
considered to be extremely valuable. The idea is that every investor has precise knowl-
edge of the market (highly unrealistic (Greenwald, Bruce and Stiglitz, 1993)) and since
(s)he is perfectly rational (another strong assumption), (s)he wants to maximise the
return and at the same time minimise the risk of their investments. This is obtained by
choosing the proportion of the investments among all the assets present in the market
(considered “complete”) and by essentially building a portfolio of all the different as-
sets. All these concepts have been formalised in the “Theory of portfolio”(Markowitz,
1952) and constitute the basis of operation for professional investors.

Coming back to the real market, if two or more assets have a past history of
common behaviour (i.e. they both go up or down at the same time) we can measure a
correlation between their price evolution as given by these “comovements”. Of course
there is no proof that the presence of such a correlation in the past is also a good proxy
of its presence in the future. On the other hand, it may very well be that two assets
belonging to the same industrial sector have similar behaviour. For example when few
firms producing high technology objects (such as computers) go up in the market, it is
true that all the assets linked to that technology go up as well. Another example could
be when the first asset owns a part of the second, so that a movement (up or down)
of one causes the same movement in the second. In these exempla if the correlation
in the price is caused by a “hidden link” between the assets, it is fair to assume that
we shall also have price correlation in the future. This is important to know when we
build our portfolio. Having many assets all behaving the same is like putting all our
eggs in a single basket, thereby reducing the risk protection. In a market of say 1000
assets, correlations are of the order of millions (since for N assets, the independent
correlations we need to check are of the order of N2) a number typically too large
to allow eye-inspection analysis. Therefore filtering of information is necessary before
proceeding to any choice of investment.

The crucial variable is the daily closure price ri(t) of company i on day t. From
that, one can consider all the possible pairs of companies and compute the correlation

Minimal spanning trees 99

between the respective price returns. Two price stocks are correlated if they vary in
a similar way. In other words companies i and j are correlated when the price of
stock i increases if the price of stock j also increases. To quantify such a relation, we
compute the correlation ρij(Δt) between the price returns over a time Δt. Correlation
is computed by means of

ρij(Δt) =
〈rirj〉 − 〈ri〉〈rj〉√

(〈r2i 〉 − 〈ri〉2)(〈r2j 〉 − 〈rj〉2)
. (5.3)

By definition, ρij(Δt) can vary from −1 (when stocks i and j are completely anti-
correlated) to 1 (when stocks i and j are completely correlated). In between there is
another important situation: when ρij(Δt) = 0 the two stocks i and j are uncorrelated.
Given its meaning, the matrix of the correlation coefficient is symmetric with a value
of ρij(Δt) = 1 along the main diagonal (autocorrelation).

Correlation of price returns

def stocks_corr_coeff(h1,h2):

l1=[]

l2=[]

intersec_dates=set(h1.keys()).intersection(set(h2.keys()))

for d in intersec_dates:

l1.append(float(h1[d]))

l2.append(float(h2[d]))

return pearson(l1,l2)

#correlation with the same company has to be 1!

print stocks_corr_coeff(diz_returns[reference_company], \

diz_returns[reference_company])

OUTPUT

1.0

5.5 Minimal spanning trees

We have already seen that both Traceroute paths and food webs can be represented in
the form of trees. Trees are economical graphs in the sense that they connect a fixed
number of vertices through the minimal number of edges. One can further reduce the
number of links in a tree, by dividing it into two parts and creating more, smaller
sub-clusters. A set of disjoint (sub-)trees is called (intuitively) a forest.

Given this “economical” feature, it is hardly a surprise that they are very frequently
used in complex systems. For similar reasons, trees are also often used to investigate
network structure, as in the case of the breadth first search algorithms and/or as in
this case, to filter the information present in a complete graph. More generally, trees
are perfect for classifying information. In the case of botany or zoology, this is very

100 Financial Networks

easy and is the basis of taxonomic trees. We start from species and we cluster them
according to their morphology. Classes of species can be clustered in the same way.
Step by step we form a tree composed of different layers.

Using the correlation values previously defined we obtain a set of n × (n − 1)/2
numbers characterising the similarity of any of the n stocks with respect to all the other
n−1 stocks. This set of numbers forms a complete graph with different edge strengths
given by the correlation value. At this point we use trees to filter the information
reducing the density of the graph. To every entry of the above-defined correlation
matrix we can associate a metric distance between any pair of stocks by defining

di,j(Δt) =
√
2(1− ρij(Δt)). (5.4)

With this choice, di,j(Δt) fulfils the three axioms of a metric distance:

• di,j(Δt) = 0 if and only if i = j;

• di,j(Δt) = dj,i(Δt)∀i, j;
• di,j(Δt) ≤ di,k(Δt) + dk,j(Δt)∀i, j, k.

The distance matrix D(Δt) is then used to determine the MST connecting the n
stocks (Gower, 1966; Mantegna, 1999).

Building the network with the metric distance

import math

import networkx as nx

corr_network=nx.Graph()

num_companies=len(diz_returns.keys())

for i1 in range(num_companies-1):

for i2 in range(i1+1,num_companies):

stock1=diz_returns.keys()[i1]

stock2=diz_returns.keys()[i2]

#metric distance

metric_distance=math.sqrt(2*(1.0-stocks_corr_coeff\

(diz_returns[stock1],diz_returns[stock2])))

#building the network

corr_network.add_edge(stock1, stock2, weight=metric_distance)

print "number of nodes:",corr_network.number_of_nodes()

print "number of edges:",corr_network.number_of_edges()

The method for constructing the MST linking N objects is known in multivariate
analysis as the “nearest neighbour single linkage cluster algorithm” (Mardia et al.,
1979). The idea is to consider the above-defined distance (5.4) between two vertices
as the weight of the link connecting them. At this point we keep only the strongest

Minimal spanning trees 101

correlations or the shortest distances. To filter among the � n2 links we first rank all
the edges, then we start from the vertices which are nearest and we keep adding new
vertices by following the rank of the edges, discarding all the links that would form a
cycle (in this way, by construction, the graph is acyclic, i.e. a tree). Finally, we stop
when all the vertices are drawn (in this way the tree is spanning). Schematising:

1. rank a couple of vertices (stocks) from the nearest to the farthest

2. draw the first edge from this rank

3. continue in the rank

4. if the new edge does not close a cycle draw it

5. go to point 3

6. stop when all the vertices have been drawn.

Minimal spanning tree (Prim’s algorithm)

tree_seed=reference_company

N_new=[]

E_new=[]

N_new.append(tree_seed)

while len(N_new)<corr_network.number_of_nodes():

min_weight=10000000.0

for n in N_new:

for n_adj in corr_network.neighbors(n):

if not n_adj in N_new:

if corr_network[n][n_adj][’weight’]<min_weight:

min_weight=corr_network[n][n_adj][’weight’]

min_weight_edge=(n,n_adj)

n_adj_ext=n_adj

E_new.append(min_weight_edge)

N_new.append(n_adj_ext)

#generate the tree from the edge list

tree_graph=nx.Graph()

tree_graph.add_edges_from(E_new)

#setting the color attributes for the network nodes

for n in tree_graph.nodes():

tree_graph.node[n][’color’]=diz_colors[diz_sectors[n]]

Printing the financial minimum spanning tree (see Fig. 5.2)

pos=nx.graphviz_layout(tree_graph,prog=’neato’, \

102 Financial Networks

Fig. 5.2 Minimum spanning tree of 141 highly capitalised stocks traded in the US equity

markets (NYSE). The filtering procedure has been obtained by considering the correlation

coefficient of stock returns time series computed at a one trading day time horizon (6 h and

30 min). Each circle represents a stock labelled by its tick symbol. The minimum spanning

tree presents a large amount of stocks having a single link and some stocks having several

links. Some of these stocks act as the “hub” of a local cluster.

args=’-Gmodel=subset -Gratio=fill’)

figure(figsize=(20,20))

nx.draw_networkx_edges(tree_graph,pos,width=2, \

edge_color=’black’, alpha=0.5, style="solid")

nx.draw_networkx_labels(tree_graph,pos)

for n in tree_graph.nodes():

nx.draw_networkx_nodes(tree_graph, pos, [n], node_size = 600, \

alpha=0.5, node_color = tree_graph.node[n][’color’], \

with_labels=True)

axis(’off’)

savefig(’./data/MST_50B_new.png’,dpi=600)

