Data Science as 9 problems

DSTA

A gentle-yet-focussed introduction

Figure 1: Ch. 2

1. (was 2) Regression/value estimation

Instance:

- a collection (dataset) of numerical $\langle \mathbf{x}, y \rangle$ datapoints
- a regressor (independent) value \mathbf{x}

. .

Solution: a regressand (dependent) value y

that complements \mathbf{x}

Measure: error over the collection

2. (was 1) Classification and class probability

Instance:

- a collection (dataset) of datapoints from X
- a classification system $C = \{c_1, c_2, \dots c_k\}$

. .

Solution: classification function $\gamma: \mathbf{X} \to C$

Measure: misclassification

. . .

[PF] "classification predicts whether something will happen, whereas regr. predicts how much something will happen."

Figure 2: Type I and II errors

3. Similarity

Identify similar individuals based on data known about them.

Instance:

- a collection (dataset) of data points from $\mathbf{X},$ e.g., \mathbb{R}^n
- (distance functions for some of the dimensions)

. . .

Solution: similarity function $\sigma: \mathbf{X} \to \mathbb{R}$

[Measure: error]

4. Clustering (segmentation)

group individuals in a population together by their similarity (but not driven by any specific purpose)

Figure 3: Ch. 2

Instance:

- a collection (dataset) **D** of datapoints from **X**, e.g., \mathbb{R}^n
- a relational structure on X (a graph)
- a small integer k

. . .

Solution: a partition of $\mathbf D$ into $\mathcal C_\infty,\dots\mathcal C_\parallel$

Measure: network modularity Q: proportion of the relational structure that *respects* the clusters.

Detection version: k is part of the output.

See an example research work (from yours truly)

5. Co-occurence (frequent itemset mining)

similarity of objects based on their appearing together in transactions.

Instance:

- a collection (dataset) ${\bf T}$ of itemsets (subsets of ${\bf X}$) or sequences
- a the shold τ

. .

Solution: All frequent patterns: subsets that appear in T above τ

. . .

Detection version: τ is part of the output.

6. Profiling (behaviour description)

Instance:

- a user description ${\bf u}$ drawn from a ${\bf D}$ collection
- a stimulus $a \in \mathbf{A}$
- ullet a set of possible responses ${f R}$

. . .

Solution: a functional reaction of **u** to **a**, i.e., $\rho : \mathbf{U} \times \mathbf{A} \to \mathbf{R}$

. . .

Application: anomaly/fraud detection.

Example research work on Social media profiling

7. Link prediction

Instance: a dynamical graph (network) G , i.e., a sequence

$$< V, E' = E + \{(u, v)\} >,$$

$$< V, E'' = E' + \{(r, s)\} > \dots$$

Question: what is the next link to be created?

What YouTube video will you watch next?

Alternatives: predict the **strength** of the new link; link deletion.

8. Data reduction

Instance:

- a collection (dataset) ${\bf D}$ of data points from ${\bf X},$ e.g., \mathbb{R}^m
- [a distinct independent variable x_i]

. . .

Solution: a projection of **D** onto \mathbb{R}^n , n < m

Measure: error in the estimation of x_i

Example: genre identification in consumer behaviour analysis

9. Causal modelling

Instance:

- a collection (dataset) **D** of datapoints from **X**, e.g., \mathbb{R}^m
- a distinct dependent variable x_i

. .

Solution: a variable x_j of **D** that controls x_i

Measure: effectiveness of x_i tuning to tune x_i in turn.

. . .

Example: Exactly What food causes you to put on weight?

Controlled clinical trials, A/B testing.

[Un]Supervision

Supervised Data Science

- obtain a dataset of examples, inc. the "target" dimension, called label
- split it in training and test data
- run a. on the test data, find a putative solution
- test the quality/pred. power against test data

. . .

Regression involves a numeric target while classification involves a categorical/binary one $\,$

Supervised

- 1: Regression
- 2: Classification
- 9: Causal Modelling

Could be either

- 3: Similarity matching,
- 7: link prediction,
- 8: data reduction

(mostly) unsupervised

- 4: Clustering
- 5: co-occurrence grouping
- 6: profiling