Data Science as 9 problems

DSTA

A gentle-yet-focussed introduction

Figure 1: Ch. 2

1. (was 2) Regression/value estimation

Instance:

- a collection (dataset) of numerical $\langle\mathbf{x}, y\rangle$ datapoints
- a regressor (independent) value \mathbf{x}

Solution: a regressand (dependent) value y that complements \mathbf{x}

Measure: error over the collection
2. (was 1) Classification and class probability

Instance:

- a collection (dataset) of datapoints from \mathbf{X}
- a classification system $C=\left\{c_{1}, c_{2}, \ldots c_{k}\right\}$

Solution: classification function $\gamma: \mathbf{X} \rightarrow C$
Measure: misclassification
[PF] "classification predicts whether something will happen, whereas regr. predicts how much something will happen."

Figure 2: Type I and II errors

3. Similarity

Identify similar individuals based on data known about them.

Instance:

- a collection (dataset) of datapoints from \mathbf{X}, e.g., \mathbb{R}^{n}
- (distance functions for some of the dimensions)

Solution: similarity function $\sigma: \mathbf{X} \rightarrow \mathbb{R}$
[Measure: error]
4. Clustering (segmentation)
group individuals in a population together by their similarity (but not driven by any specific purpose)

Figure 3: Ch. 2

Instance:

- a collection (dataset) \mathbf{D} of datapoints from \mathbf{X}, e.g., \mathbb{R}^{n}
- a relational structure on \mathbf{X} (a graph)
- a small integer k

Solution: a partition of \mathbf{D} into $\mathcal{C}_{\infty}, \ldots \mathcal{C}_{\|}$
Measure: network modularity Q: proportion of the relational structure that respects the clusters.

Detection version: k is part of the output.
See an example research work (from yours truly)
5. Co-occurence (frequent itemset mining)
similarity of objects based on their appearing together in transactions.

Instance:

- a collection (dataset) \mathbf{T} of itemsets (subsets of \mathbf{X}) or sequences
- a theshold τ

Solution: All frequent patterns: subsets that appear in \mathbf{T} above τ

Detection version: τ is part of the output.

Market-basket analysis, (some) recommendation systems
6. Profiling (behaviour description)

Instance:

- a user description \mathbf{u} drawn from a \mathbf{D} collection
- a stimulus $a \in \mathbf{A}$
- a set of possible responses \mathbf{R}

Solution: a functional reaction of \mathbf{u} to \mathbf{a}, i.e., $\rho: \mathbf{U} \times \mathbf{A} \rightarrow \mathbf{R}$

Application: anomaly/fraud detection.
Example research work on Social media profiling

7. Link prediction

Instance: a dynamical graph (network) G , i.e., a sequence
$<V, E>$,
$<V, E^{\prime}=E+\{(u, v)\}>$,
$<V, E^{\prime \prime}=E^{\prime}+\{(r, s)\}>\ldots$

Question: what is the next link to be created?
What YouTube video will you watch next?
Alternatives: predict the strength of the new link; link deletion.
8. Data reduction

Instance:

- a collection (dataset) \mathbf{D} of datapoints from \mathbf{X}, e.g., \mathbb{R}^{m}
- [a distinct independent variable x_{i}]

Solution: a projection of \mathbf{D} onto $\mathbb{R}^{n}, n<m$
Measure: error in the estimation of x_{i}
Example: genre identification in consumer behaviour analysis
9. Causal modelling

Instance:

- a collection (dataset) \mathbf{D} of datapoints from \mathbf{X}, e.g., \mathbb{R}^{m}
- a distinct dependent variable x_{i}

Solution: a variable x_{j} of \mathbf{D} that controls x_{i}
Measure: effectiveness of x_{j} tuning to tune x_{i} in turn.

Example: Exactly What food causes you to put on weight?
Controlled clinical trials, A/B testing.

[Un]Supervision

Supervised Data Science

- obtain a dataset of examples, inc. the "target" dimension, called label
- split it in training and test data
- run a. on the test data, find a putative solution
- test the quality/pred. power against test data

Regression involves a numeric target while classification involves a categorical/binary one

Supervised

1: Regression
2: Classification
9: Causal Modelling

Could be either

3: Similarity matching,
7: link prediction,
8: data reduction
(mostly) unsupervised
4: Clustering
5: co-occurrence grouping
6: profiling

