Math concepts for Data Science

AP

From datasets to matrices

Motivations

Activity tables show how users *map* their choices or, viceversa, how available products *map* onto their adopters.

Titanic
Casablanca
Star Wars
Alatrix
Matrix Joe $1 \t1 \t1 \t0 \t0$ 3 3 3 0 0 Jim John 4 4 4 0 0 Jack 5 5 5 0 0 Jill $0 0 0 4 4$ $0 \t0 \t0 \t5 \t5$ Jenny $0 \t0 \t0 \t2 \t2$ Jane

Figure 11.6: Ratings of movies by users

Running example from Ch. 11, p. 430 of [MMDS](http://mmds.org/).

From tables to matrices

$$
A_{7\times5} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 0 & 0 & 2 & 2 \end{pmatrix}
$$

. . .

In Lin. Algebra the matrix *"forgets"* the labels for rows/cols., e.g., Joe/1st row, The Matrix/1st col., Alien/2nd col. etc.

1-hot encondings

1st col. indicates that Joe watched the film

8th col indicates that The Matrix was the film watched

the final col. is views (or ratings) from the original table: 18 reviews overall.

$B_{18\times 13} = \left \begin{array}{cccc} 1 & 0 & 0 & \ddots \\ 1 & 0 & 0 & \ddots \\ 1 & 0 & 0 & \ddots \end{array} \right $					
				$\begin{array}{ccccc} 1 & 0 & \ddots & 1 \\ 0 & 1 & \ddots & 1 \end{array}$	
					\bullet $\ddot{}$

 $U \cdot F \cdot \mathbf{r}$ (where \cdot means concatenation)

Data Science as Linear Algebra

Linear equations

Q: given a user's declared appreciation of Science fiction, how could it be imputed to the films they have reviewed?

. . .

A system of linear equations:

$$
a_{i_1}x_1 + a_{i_2}x_2 + \dots a_{i_n}x_n = b_i
$$

. . .

 A **x** = **b**

(we use **r** instead of **b** to remember that those are *ratings*)

. . .

Interpretation: how each film contributed to determine this user's appreciation for the Sci-Fi genre.

Data Science as Geometry

In Mathematics

a matrix represents a linear transformation, a particular type of *mapping,* between two (linear) spaces.

It is just one of the possible representations of a mapping -it depends on a choice for the bases for source and target spaces.

. . .

Now we can apply the full machinery of Linear Algebra/Geometry and see what happens.

We apply linear maps (in particular, eigenvalues and eigenvectors) to matrices that *do not represent geometric transformations,* but rather some kind of relationship between entities (e.g., users and films).

datapoints are vectors

A user experience is represented by a vector: user's ratings for each film. E.g.,

 $joe = 1, 1, 1, 0, 0>$

jill = <0, 0, 0, 4, 4>

These are *row vectors* while normally vectors are columns. The transpose *T* operator inverts row and colums: \mathbf{joe}^T is a column vector.

$$
\mathbf{joe}^T = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}
$$

$$
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
$$

$$
A^T = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}
$$

Q: Can the given users' experiences be combined to yield a specific point **r** that represents a rating of how much each user likes Sci-Fi?

$$
\mathbf{r} = \langle 6, 9, 10, .5, 1 \rangle^T
$$

. . .

. . .

Independent vectors

Geometry sees vectors (user experiences) as axes of a reference system that *spans* a space of possible ratings.

That is possible only if at least n vectors are independent from each other.

That is automatically the case for the axes of a Cartesian diagram, or for any set of *orthogonal* vectors.

Dependent vectors

Two vectors are dependent when one is simply a multiple of the other: their direction is the same but for *stretching* or *compression.*

Dependent v. should be detected and, if possible, excluded.

Non-independence example: I only watch Jason Bourne films at my friend's

 $U = \{Alb, Ale\}, F = \{The-B-id, The-B-ultimatum, ...\}$

$$
A_{Bourne} = \begin{pmatrix} 4 & 4 & 4 & 0 & 2 \\ 2 & 2 & 2 & 0 & 1 \end{pmatrix}
$$

The two rows are dependent! Ale depends on Alb for watching Jason Bourne films.

Test: can you find two numbers x_1 and x_2 s.t. $x_1 \cdot \mathbf{alb}^T + x_2 \cdot \mathbf{ale}^T = \mathbf{0}$? $(here \cdot means multiplication)$. . . Simplest solution: $x_1 = 1$ and $x_2 = -2.$

Background: [determinant](https://en.wikipedia.org/wiki/Determinant#Applications)

The determinant understand the matrix as an area

if the determinant of A is zero, $|A| = 0$, then

- column vectors are not independent;
- *A* does not have a unique inverse matrix, so
- **it is not amenable to further processing.**

. . .

Matrix rank

The *Rank* of a matrix A is the dimension of the vector space generated by its columns. It corresponds to

- 1. the maximum number of linearly-independent columns
- 2. the dimension of the space spanned by the rows

We consider data matrices with independent columns, ie., $rank(A_{m \times n}) = n$.

Matrix inversion, I

The identity matrix I (or U) is the unit matrix: $I \cdot I = I$.

$$
I=\begin{pmatrix} 1 & 0 & \dots & \\ 0 & 1 & & \\ \vdots & & \ddots & \end{pmatrix}
$$

. . .

import numpy as np myI = np.eye(n)

creates the square identity matrix of size n.

Matrix inversion, II

Given A, find its (left) inverse A^{-1} s.t.

 $A^{-1} \cdot A = I$

. . .

$$
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
$$

. . .

$$
A^{-1} = \begin{pmatrix} -2 & 1\\ 1.5 & -0.5 \end{pmatrix}
$$

Matrix inversion is a delicate process:

- The inverse may not exist, or be non-unique.
- it might have numerical issues, so $A^{-1} \cdot A$ only $\approx I$.

print(Ainverse.dot(A))

```
[[1.00000000e+00 0.00000000e+00]
[1.11022302e-16 1.00000000e+00]]
```
Inversion is only defined for square matrices, so if A is not square we then use the square matrix $A' = A^T \cdot A$

$$
\mathbf{A} = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \\ A_{3,1} & A_{3,2} \end{bmatrix} \Rightarrow \mathbf{A}^{\top} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \end{bmatrix}
$$

{ $\text{height} = "50\%" \text{ width} = "50\%" }$

import numpy as np $a = np.array([11, 12], [21, 22], [31, 32]])$ $at2 = a.transpose()$

Computing

Numpy

Numpy extends Python to numerical computation.

To handle large data it creates view rather copies of arrays/matrices.

```
import numpy as np
a = np.array([[11, 12], [21, 22], [31, 32]])
# changeable array
at2 = a.transpose()a[0][0] = 111print(a)
print(at2)
```
Alternative transposition:

```
\begin{bmatrix} \mathbf{A}_{1, \bullet} & A_{1, 2} \\ A_{2, 1} & A_{2, \bullet} \\ A_{3, 1} & A_{3, 2} \end{bmatrix} \Rightarrow \mathbf{A}^{\mathsf{T}} = \left[ \begin{array}{ccc} A_{1, 1} & A_{2, 1} & A_{3, 1} \\ A_{1, 2} & A_{2, 2} & A_{3, 2} \end{array} \right]
```
import numpy as np

 $a = np.array([11, 12], [21, 22], [31, 32]])$

```
# tuples, not lists, and only once
at = zip(*a)
```
for row in at: print(row)

Matrix multiplication

 $A.dot(B) == A @ B # matrix multiplication$ A.dot(B) $!= A * B # element-wise product$

@ generalises to *tensors:* three-dimensional matrices.

```
m = np.array([4, 4, 4, 0, 2], [2, 2, 2, 0, 1]])mt = m.transpose()
mprime = m.dot(mt)
print(mprime.shape)
```
Here (the Jason Bourne ex.) rows are *not* independent. This is revealed by $|M'| = 0$

```
print(np.linalg.det(mprime))
```
0.0

Matrix inversion and checking for errors in the results

```
i = np.\text{eye}(2)if (np.linalg.det(mprime)):
mprime_inv = np.linalg.inv(mprime)
mprime_dot_mprime_inv = mprime.dot(mprime_inv)
# handles inf and tiny vals
print(np.allclose(mprime_dot_mprime_inv, i))
```
prints true if mprime_dot_mprime_inv is element-wise equal to i within a *[tolerance.](https://numpy.org/doc/stable/reference/generated/numpy.allclose.html)*