CHAPTER 1 Data Mining and Analysis

Data mining is the process of discovering insightful, interesting, and novel patterns, as well as descriptive, understandable, and predictive models from large-scale data. We begin this chapter by looking at basic properties of data modeled as a data matrix. We emphasize the geometric and algebraic views, as well as the probabilistic interpretation of data. We then discuss the main data mining tasks, which span exploratory data analysis, frequent pattern mining, clustering, and classification, laying out the roadmap for the book.

1.1 DATA MATRIX

Data can often be represented or abstracted as an $n \times d$ data matrix, with n rows and d columns, where rows correspond to entities in the dataset, and columns represent attributes or properties of interest. Each row in the data matrix records the observed attribute values for a given entity. The $n \times d$ data matrix is given as

$$\mathbf{D} = \begin{pmatrix} X_1 & X_2 & \cdots & X_d \\ \mathbf{X}_1 & x_{11} & x_{12} & \cdots & x_{1d} \\ \mathbf{X}_2 & x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{X}_n & x_{n1} & x_{n2} & \cdots & x_{nd} \end{pmatrix}$$

where \mathbf{x}_i denotes the *i*th row, which is a *d*-tuple given as

$$\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{id})$$

and X_j denotes the *j*th column, which is an *n*-tuple given as

$$X_j = (x_{1j}, x_{2j}, \ldots, x_{nj})$$

Depending on the application domain, rows may also be referred to as *entities*, *instances*, *examples*, *records*, *transactions*, *objects*, *points*, *feature-vectors*, *tuples*, and so on. Likewise, columns may also be called *attributes*, *properties*, *features*, *dimensions*, *variables*, *fields*, and so on. The number of instances *n* is referred to as the *size* of

(Sepal length	Sepal width	Petal length	Petal width	Class
	X_1	X_2	X ₃	X_4	X_5
x ₁	5.9	3.0	4.2	1.5	Iris-versicolor
x ₂	6.9	3.1	4.9	1.5	Iris-versicolor
X 3	6.6	2.9	4.6	1.3	Iris-versicolor
x ₄	4.6	3.2	1.4	0.2	Iris-setosa
x ₅	6.0	2.2	4.0	1.0	Iris-versicolor
x ₆	4.7	3.2	1.3	0.2	Iris-setosa
x ₇	6.5	3.0	5.8	2.2	Iris-virginica
x ₈	5.8	2.7	5.1	1.9	Iris-virginica
:	÷	÷	÷	÷	:
x ₁₄₉	7.7	3.8	6.7	2.2	Iris-virginica
\mathbf{x}_{150}	5.1	3.4	1.5	0.2	Iris-setosa /

Table 1.1. Extract from the Iris dataset

the data, whereas the number of attributes *d* is called the *dimensionality* of the data. The analysis of a single attribute is referred to as *univariate analysis*, whereas the simultaneous analysis of two attributes is called *bivariate analysis* and the simultaneous analysis of more than two attributes is called *multivariate analysis*.

Example 1.1. Table 1.1 shows an extract of the Iris dataset; the complete data forms a 150×5 data matrix. Each entity is an Iris flower, and the attributes include sepal length, sepal width, petal length, and petal width in centimeters, and the type or class of the Iris flower. The first row is given as the 5-tuple

$$\mathbf{x}_1 = (5.9, 3.0, 4.2, 1.5, \text{Iris-versicolor})$$

Not all datasets are in the form of a data matrix. For instance, more complex datasets can be in the form of sequences (e.g., DNA and protein sequences), text, time-series, images, audio, video, and so on, which may need special techniques for analysis. However, in many cases even if the raw data is not a data matrix it can usually be transformed into that form via feature extraction. For example, given a database of images, we can create a data matrix in which rows represent images and columns correspond to image features such as color, texture, and so on. Sometimes, certain attributes may have special semantics associated with them requiring special treatment. For instance, temporal or spatial attributes are often treated differently. It is also worth noting that traditional data analysis assumes that each entity or instance is independent. However, given the interconnected nature of the world we live in, this assumption may not always hold. Instances may be connected to other instances via various kinds of relationships, giving rise to a *data graph*, where a node represents an entity and an edge represents the relationship between two entities.

1.2 ATTRIBUTES

Attributes may be classified into two main types depending on their domain, that is, depending on the types of values they take on.

Numeric Attributes

A numeric attribute is one that has a real-valued or integer-valued domain. For example, Age with $domain(Age) = \mathbb{N}$, where \mathbb{N} denotes the set of natural numbers (non-negative integers), is numeric, and so is petal length in Table 1.1, with $domain(petal length) = \mathbb{R}^+$ (the set of all positive real numbers). Numeric attributes that take on a finite or countably infinite set of values are called *discrete*, whereas those that can take on any real value are called *continuous*. As a special case of discrete, if an attribute has as its domain the set $\{0, 1\}$, it is called a *binary* attribute. Numeric attributes can be classified further into two types:

- Interval-scaled: For these kinds of attributes only differences (addition or subtraction) make sense. For example, attribute temperature measured in °C or °F is interval-scaled. If it is 20 °C on one day and 10 °C on the following day, it is meaningful to talk about a temperature drop of 10 °C, but it is not meaningful to say that it is twice as cold as the previous day.
- *Ratio-scaled*: Here one can compute both differences as well as ratios between values. For example, for attribute Age, we can say that someone who is 20 years old is twice as old as someone who is 10 years old.

Categorical Attributes

A *categorical* attribute is one that has a set-valued domain composed of a set of symbols. For example, Sex and Education could be categorical attributes with their domains given as

 $domain(Sex) = \{M, F\}$ $domain(Education) = \{HighSchool, BS, MS, PhD\}$

Categorical attributes may be of two types:

- Nominal: The attribute values in the domain are unordered, and thus only equality comparisons are meaningful. That is, we can check only whether the value of the attribute for two given instances is the same or not. For example, Sex is a nominal attribute. Also class in Table 1.1 is a nominal attribute with domain(class) = {iris-setosa, iris-versicolor, iris-virginica}.
- *Ordinal*: The attribute values are ordered, and thus both equality comparisons (is one value equal to another?) and inequality comparisons (is one value less than or greater than another?) are allowed, though it may not be possible to quantify the difference between values. For example, Education is an ordinal attribute because its domain values are ordered by increasing educational qualification.

1.3 DATA: ALGEBRAIC AND GEOMETRIC VIEW

If the *d* attributes or dimensions in the data matrix \mathbf{D} are all numeric, then each row can be considered as a *d*-dimensional point:

$$\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{id}) \in \mathbb{R}^d$$

or equivalently, each row may be considered as a *d*-dimensional column vector (all vectors are assumed to be column vectors by default):

$$\mathbf{x}_{i} = \begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{id} \end{pmatrix} = \begin{pmatrix} x_{i1} & x_{i2} & \cdots & x_{id} \end{pmatrix}^{T} \in \mathbb{R}^{d}$$

where T is the *matrix transpose* operator.

The *d*-dimensional Cartesian coordinate space is specified via the *d* unit vectors, called the standard basis vectors, along each of the axes. The *j*th standard basis vector \mathbf{e}_j is the *d*-dimensional unit vector whose *j*th component is 1 and the rest of the components are 0

$$\mathbf{e}_i = (0, \dots, 1_i, \dots, 0)^T$$

Any other vector in \mathbb{R}^d can be written as *linear combination* of the standard basis vectors. For example, each of the points \mathbf{x}_i can be written as the linear combination

$$\mathbf{x}_i = x_{i1}\mathbf{e}_1 + x_{i2}\mathbf{e}_2 + \dots + x_{id}\mathbf{e}_d = \sum_{j=1}^d x_{ij}\mathbf{e}_j$$

where the scalar value x_{ij} is the coordinate value along the *j*th axis or attribute.

Example 1.2. Consider the Iris data in Table 1.1. If we *project* the entire data onto the first two attributes, then each row can be considered as a point or a vector in 2-dimensional space. For example, the projection of the 5-tuple $\mathbf{x}_1 = (5.9, 3.0, 4.2, 1.5, \text{Iris-versicolor})$ on the first two attributes is shown in Figure 1.1a. Figure 1.2 shows the scatterplot of all the n = 150 points in the 2-dimensional space spanned by the first two attributes. Likewise, Figure 1.1b shows \mathbf{x}_1 as a point and vector in 3-dimensional space, by projecting the data onto the first three attributes. The point (5.9, 3.0, 4.2) can be seen as specifying the coefficients in the linear combination of the standard basis vectors in \mathbb{R}^3 :

$$\mathbf{x}_1 = 5.9\mathbf{e}_1 + 3.0\mathbf{e}_2 + 4.2\mathbf{e}_3 = 5.9 \begin{pmatrix} 1\\0\\0 \end{pmatrix} + 3.0 \begin{pmatrix} 0\\1\\0 \end{pmatrix} + 4.2 \begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} 5.9\\3.0\\4.2 \end{pmatrix}$$

Figure 1.1. Row \mathbf{x}_1 as a point and vector in (a) \mathbb{R}^2 and (b) \mathbb{R}^3 .

Figure 1.2. Scatterplot: sepal length versus sepal width. The solid circle shows the mean point.

Each numeric column or attribute can also be treated as a vector in an *n*-dimensional space \mathbb{R}^n :

$$X_j = \begin{pmatrix} x_{1j} \\ x_{2j} \\ \vdots \\ x_{nj} \end{pmatrix}$$

If all attributes are numeric, then the data matrix **D** is in fact an $n \times d$ matrix, also written as **D** $\in \mathbb{R}^{n \times d}$, given as

$$\mathbf{D} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{pmatrix} = \begin{pmatrix} -\mathbf{x}_1^T - \\ -\mathbf{x}_2^T - \\ \vdots \\ -\mathbf{x}_n^T - \end{pmatrix} = \begin{pmatrix} | & | & | \\ X_1 & X_2 & \cdots & X_d \\ | & | & | \end{pmatrix}$$

As we can see, we can consider the entire dataset as an $n \times d$ matrix, or equivalently as a set of *n* row vectors $\mathbf{x}_i^T \in \mathbb{R}^d$ or as a set of *d* column vectors $X_i \in \mathbb{R}^n$.

1.3.1 Distance and Angle

Treating data instances and attributes as vectors, and the entire dataset as a matrix, enables one to apply both geometric and algebraic methods to aid in the data mining and analysis tasks.

Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^m$ be two *m*-dimensional vectors given as

$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} \qquad \qquad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Dot Product

The *dot product* between **a** and **b** is defined as the scalar value

$$\mathbf{a}^{T}\mathbf{b} = \begin{pmatrix} a_{1} & a_{2} & \cdots & a_{m} \end{pmatrix} \times \begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{pmatrix}$$
$$= a_{1}b_{1} + a_{2}b_{2} + \cdots + a_{m}b_{m}$$
$$= \sum_{i=1}^{m} a_{i}b_{i}$$

Length

The *Euclidean norm* or *length* of a vector $\mathbf{a} \in \mathbb{R}^m$ is defined as

$$\|\mathbf{a}\| = \sqrt{\mathbf{a}^T \mathbf{a}} = \sqrt{a_1^2 + a_2^2 + \dots + a_m^2} = \sqrt{\sum_{i=1}^m a_i^2}$$

The *unit vector* in the direction of **a** is given as

$$\mathbf{u} = \frac{\mathbf{a}}{\|\mathbf{a}\|} = \left(\frac{1}{\|\mathbf{a}\|}\right)\mathbf{a}$$

By definition **u** has length $||\mathbf{u}|| = 1$, and it is also called a *normalized* vector, which can be used in lieu of **a** in some analysis tasks.

The Euclidean norm is a special case of a general class of norms, known as L_p -norm, defined as

$$\|\mathbf{a}\|_{p} = \left(|a_{1}|^{p} + |a_{2}|^{p} + \dots + |a_{m}|^{p}\right)^{\frac{1}{p}} = \left(\sum_{i=1}^{m} |a_{i}|^{p}\right)^{\frac{1}{p}}$$

for any $p \neq 0$. Thus, the Euclidean norm corresponds to the case when p = 2.

Distance

From the Euclidean norm we can define the *Euclidean distance* between **a** and **b**, as follows

$$\delta(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\| = \sqrt{(\mathbf{a} - \mathbf{b})^T (\mathbf{a} - \mathbf{b})} = \sqrt{\sum_{i=1}^m (a_i - b_i)^2}$$
(1.1)

Thus, the length of a vector is simply its distance from the zero vector **0**, all of whose elements are 0, that is, $\|\mathbf{a}\| = \|\mathbf{a} - \mathbf{0}\| = \delta(\mathbf{a}, \mathbf{0})$.

From the general L_p -norm we can define the corresponding L_p -distance function, given as follows

$$\delta_p(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\|_p \tag{1.2}$$

If p is unspecified, as in Eq. (1.1), it is assumed to be p = 2 by default.

Angle

The cosine of the smallest angle between vectors **a** and **b**, also called the *cosine similarity*, is given as

$$\cos\theta = \frac{\mathbf{a}^T \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} = \left(\frac{\mathbf{a}}{\|\mathbf{a}\|}\right)^T \left(\frac{\mathbf{b}}{\|\mathbf{b}\|}\right)$$
(1.3)

Thus, the cosine of the angle between **a** and **b** is given as the dot product of the unit vectors $\frac{\mathbf{a}}{\|\mathbf{a}\|}$ and $\frac{\mathbf{b}}{\|\mathbf{b}\|}$.

The Cauchy–Schwartz inequality states that for any vectors **a** and **b** in \mathbb{R}^m

$$|\mathbf{a}^T\mathbf{b}| \le \|\mathbf{a}\| \cdot \|\mathbf{b}\|$$

It follows immediately from the Cauchy-Schwartz inequality that

$$-1 \le \cos\theta \le 1$$

Figure 1.3. Distance and angle. Unit vectors are shown in gray.

Because the smallest angle $\theta \in [0^\circ, 180^\circ]$ and because $\cos \theta \in [-1, 1]$, the cosine similarity value ranges from +1, corresponding to an angle of 0° , to -1, corresponding to an angle of 180° (or π radians).

Orthogonality

Two vectors **a** and **b** are said to be *orthogonal* if and only if $\mathbf{a}^T \mathbf{b} = 0$, which in turn implies that $\cos \theta = 0$, that is, the angle between them is 90° or $\frac{\pi}{2}$ radians. In this case, we say that they have no similarity.

Example 1.3 (Distance and Angle). Figure 1.3 shows the two vectors

$$\mathbf{a} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$

Using Eq. (1.1), the Euclidean distance between them is given as

$$\delta(\mathbf{a}, \mathbf{b}) = \sqrt{(5-1)^2 + (3-4)^2} = \sqrt{16+1} = \sqrt{17} = 4.12$$

The distance can also be computed as the magnitude of the vector:

$$\mathbf{a} - \mathbf{b} = \begin{pmatrix} 5\\3 \end{pmatrix} - \begin{pmatrix} 1\\4 \end{pmatrix} = \begin{pmatrix} 4\\-1 \end{pmatrix}$$

because $\|\mathbf{a} - \mathbf{b}\| = \sqrt{4^2 + (-1)^2} = \sqrt{17} = 4.12.$

The unit vector in the direction of **a** is given as

$$\mathbf{u}_{a} = \frac{\mathbf{a}}{\|\mathbf{a}\|} = \frac{1}{\sqrt{5^{2} + 3^{2}}} \begin{pmatrix} 5\\ 3 \end{pmatrix} = \frac{1}{\sqrt{34}} \begin{pmatrix} 5\\ 3 \end{pmatrix} = \begin{pmatrix} 0.86\\ 0.51 \end{pmatrix}$$

The unit vector in the direction of **b** can be computed similarly:

$$\mathbf{u}_b = \begin{pmatrix} 0.24\\ 0.97 \end{pmatrix}$$

These unit vectors are also shown in gray in Figure 1.3.

By Eq. (1.3) the cosine of the angle between **a** and **b** is given as

$$\cos\theta = \frac{\binom{5}{3}^{T}\binom{1}{4}}{\sqrt{5^2 + 3^2}\sqrt{1^2 + 4^2}} = \frac{17}{\sqrt{34 \times 17}} = \frac{1}{\sqrt{2}}$$

We can get the angle by computing the inverse of the cosine:

$$\theta = \cos^{-1}\left(1/\sqrt{2}\right) = 45^\circ$$

Let us consider the L_p -norm for **a** with p = 3; we get

$$\|\mathbf{a}\|_3 = (5^3 + 3^3)^{1/3} = (153)^{1/3} = 5.34$$

The distance between **a** and **b** using Eq. (1.2) for the L_p -norm with p = 3 is given as

$$\|\mathbf{a} - \mathbf{b}\|_3 = \|(4, -1)^T\|_3 = (4^3 + (-1)^3)^{1/3} = (63)^{1/3} = 3.98$$

1.3.2 Mean and Total Variance

Mean

The *mean* of the data matrix \mathbf{D} is the vector obtained as the average of all the points:

$$mean(\mathbf{D}) = \boldsymbol{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

Total Variance

The *total variance* of the data matrix \mathbf{D} is the average squared distance of each point from the mean:

$$var(\mathbf{D}) = \frac{1}{n} \sum_{i=1}^{n} \delta(\mathbf{x}_{i}, \boldsymbol{\mu})^{2} = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \boldsymbol{\mu}\|^{2}$$
(1.4)

Simplifying Eq. (1.4) we obtain

$$var(\mathbf{D}) = \frac{1}{n} \sum_{i=1}^{n} \left(\|\mathbf{x}_{i}\|^{2} - 2\mathbf{x}_{i}^{T}\boldsymbol{\mu} + \|\boldsymbol{\mu}\|^{2} \right)$$
$$= \frac{1}{n} \left(\sum_{i=1}^{n} \|\mathbf{x}_{i}\|^{2} - 2n\boldsymbol{\mu}^{T} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \right) + n \|\boldsymbol{\mu}\|^{2} \right)$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} \|\mathbf{x}_{i}\|^{2} - 2n\boldsymbol{\mu}^{T}\boldsymbol{\mu} + n\|\boldsymbol{\mu}\|^{2} \right)$$
$$= \frac{1}{n} \left(\sum_{i=1}^{n} \|\mathbf{x}_{i}\|^{2} \right) - \|\boldsymbol{\mu}\|^{2}$$

The total variance is thus the difference between the average of the squared magnitude of the data points and the squared magnitude of the mean (average of the points).

Centered Data Matrix

Often we need to center the data matrix by making the mean coincide with the origin of the data space. The *centered data matrix* is obtained by subtracting the mean from all the points:

$$\mathbf{Z} = \mathbf{D} - \mathbf{1} \cdot \boldsymbol{\mu}^{T} = \begin{pmatrix} \mathbf{x}_{1}^{T} \\ \mathbf{x}_{2}^{T} \\ \vdots \\ \mathbf{x}_{n}^{T} \end{pmatrix} - \begin{pmatrix} \boldsymbol{\mu}^{T} \\ \boldsymbol{\mu}^{T} \\ \vdots \\ \boldsymbol{\mu}^{T} \end{pmatrix} = \begin{pmatrix} \mathbf{x}_{1}^{T} - \boldsymbol{\mu}^{T} \\ \mathbf{x}_{2}^{T} - \boldsymbol{\mu}^{T} \\ \vdots \\ \mathbf{x}_{n}^{T} - \boldsymbol{\mu}^{T} \end{pmatrix} = \begin{pmatrix} \mathbf{z}_{1}^{T} \\ \mathbf{z}_{2}^{T} \\ \vdots \\ \mathbf{z}_{n}^{T} \end{pmatrix}$$
(1.5)

where $\mathbf{z}_i = \mathbf{x}_i - \boldsymbol{\mu}$ represents the centered point corresponding to \mathbf{x}_i , and $\mathbf{1} \in \mathbb{R}^n$ is the *n*-dimensional vector all of whose elements have value 1. The mean of the centered data matrix \mathbf{Z} is $\mathbf{0} \in \mathbb{R}^d$, because we have subtracted the mean $\boldsymbol{\mu}$ from all the points \mathbf{x}_i .

1.3.3 Orthogonal Projection

Often in data mining we need to project a point or vector onto another vector, for example, to obtain a new point after a change of the basis vectors. Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^m$ be two *m*-dimensional vectors. An *orthogonal decomposition* of the vector **b** in the direction

Figure 1.4. Orthogonal projection.

of another vector **a**, illustrated in Figure 1.4, is given as

$$\mathbf{b} = \mathbf{b}_{\parallel} + \mathbf{b}_{\perp} = \mathbf{p} + \mathbf{r} \tag{1.6}$$

where $\mathbf{p} = \mathbf{b}_{\parallel}$ is parallel to \mathbf{a} , and $\mathbf{r} = \mathbf{b}_{\perp}$ is perpendicular or orthogonal to \mathbf{a} . The vector \mathbf{p} is called the *orthogonal projection* or simply projection of \mathbf{b} on the vector \mathbf{a} . Note that the point $\mathbf{p} \in \mathbb{R}^m$ is the point closest to \mathbf{b} on the line passing through \mathbf{a} . Thus, the magnitude of the vector $\mathbf{r} = \mathbf{b} - \mathbf{p}$ gives the *perpendicular distance* between \mathbf{b} and \mathbf{a} , which is often interpreted as the residual or error vector between the points \mathbf{b} and \mathbf{p} .

We can derive an expression for **p** by noting that $\mathbf{p} = c\mathbf{a}$ for some scalar *c*, as **p** is parallel to **a**. Thus, $\mathbf{r} = \mathbf{b} - \mathbf{p} = \mathbf{b} - c\mathbf{a}$. Because **p** and **r** are orthogonal, we have

$$\mathbf{p}^T \mathbf{r} = (c\mathbf{a})^T (\mathbf{b} - c\mathbf{a}) = c\mathbf{a}^T \mathbf{b} - c^2 \mathbf{a}^T \mathbf{a} = 0$$

which implies that

$$c = \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}}$$

Therefore, the projection of **b** on **a** is given as

$$\mathbf{p} = \mathbf{b}_{\parallel} = c\mathbf{a} = \left(\frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}}\right)\mathbf{a}$$
(1.7)

Example 1.4. Restricting the Iris dataset to the first two dimensions, sepal length and sepal width, the mean point is given as

$$mean(\mathbf{D}) = \begin{pmatrix} 5.843\\ 3.054 \end{pmatrix}$$

which is shown as the black circle in Figure 1.2. The corresponding centered data is shown in Figure 1.5, and the total variance is $var(\mathbf{D}) = 0.868$ (centering does not change this value).

Figure 1.5 shows the projection of each point onto the line ℓ , which is the line that maximizes the separation between the class iris-setosa (squares) from the other two classes, namely iris-versicolor (circles) and iris-virginica (triangles). The

line ℓ is given as the set of all the points $(x_1, x_2)^T$ satisfying the constraint $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =$

 $c\begin{pmatrix} -2.15\\ 2.75 \end{pmatrix}$ for all scalars $c \in \mathbb{R}$.

1.3.4 Linear Independence and Dimensionality

Given the data matrix

$$\mathbf{D} = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \end{pmatrix}^T = \begin{pmatrix} X_1 & X_2 & \cdots & X_d \end{pmatrix}$$

we are often interested in the linear combinations of the rows (points) or the columns (attributes). For instance, different linear combinations of the original d attributes yield new derived attributes, which play a key role in feature extraction and dimensionality reduction.

Given any set of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in an *m*-dimensional vector space \mathbb{R}^m , their *linear combination* is given as

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_k\mathbf{v}_k$$

where $c_i \in \mathbb{R}$ are scalar values. The set of all possible linear combinations of the *k* vectors is called the *span*, denoted as $span(\mathbf{v}_1, \dots, \mathbf{v}_k)$, which is itself a vector space being a *subspace* of \mathbb{R}^m . If $span(\mathbf{v}_1, \dots, \mathbf{v}_k) = \mathbb{R}^m$, then we say that $\mathbf{v}_1, \dots, \mathbf{v}_k$ is a *spanning set* for \mathbb{R}^m .

Row and Column Space

There are several interesting vector spaces associated with the data matrix **D**, two of which are the column space and row space of **D**. The *column space* of **D**, denoted $col(\mathbf{D})$, is the set of all linear combinations of the *d* attributes $X_i \in \mathbb{R}^n$, that is,

$$col(\mathbf{D}) = span(X_1, X_2, \ldots, X_d)$$

By definition $col(\mathbf{D})$ is a subspace of \mathbb{R}^n . The row space of \mathbf{D} , denoted $row(\mathbf{D})$, is the set of all linear combinations of the *n* points $\mathbf{x}_i \in \mathbb{R}^d$, that is,

$$row(\mathbf{D}) = span(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$$

By definition $row(\mathbf{D})$ is a subspace of \mathbb{R}^d . Note also that the row space of \mathbf{D} is the column space of \mathbf{D}^T :

$$row(\mathbf{D}) = col(\mathbf{D}^T)$$

Linear Independence

We say that the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ are *linearly dependent* if at least one vector can be written as a linear combination of the others. Alternatively, the *k* vectors are linearly dependent if there are scalars c_1, c_2, \dots, c_k , at least one of which is not zero, such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_k\mathbf{v}_k=\mathbf{0}$$

On the other hand, $\mathbf{v}_1, \dots, \mathbf{v}_k$ are *linearly independent* if and only if

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k = \mathbf{0}$$
 implies $c_1 = c_2 = \dots = c_k = 0$

Simply put, a set of vectors is linearly independent if none of them can be written as a linear combination of the other vectors in the set.

Dimension and Rank

Let *S* be a subspace of \mathbb{R}^m . A *basis* for *S* is a set of vectors in *S*, say $\mathbf{v}_1, \ldots, \mathbf{v}_k$, that are linearly independent and they span *S*, that is, $span(\mathbf{v}_1, \ldots, \mathbf{v}_k) = S$. In fact, a basis is a minimal spanning set. If the vectors in the basis are pairwise orthogonal, they are said to form an *orthogonal basis* for *S*. If, in addition, they are also normalized to be unit vectors, then they make up an *orthonormal basis* for *S*. For instance, the *standard basis* for \mathbb{R}^m is an orthonormal basis consisting of the vectors

$$\mathbf{e}_1 = \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix} \qquad \mathbf{e}_2 = \begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix} \qquad \cdots \qquad \mathbf{e}_m = \begin{pmatrix} 0\\0\\\vdots\\1 \end{pmatrix}$$

Any two bases for *S* must have the same number of vectors, and the number of vectors in a basis for *S* is called the *dimension* of *S*, denoted as dim(S). Because *S* is a subspace of \mathbb{R}^m , we must have $dim(S) \le m$.

It is a remarkable fact that, for any matrix, the dimension of its row and column space is the same, and this dimension is also called the *rank* of the matrix. For the data matrix $\mathbf{D} \in \mathbb{R}^{n \times d}$, we have $rank(\mathbf{D}) \leq \min(n, d)$, which follows from the fact that the column space can have dimension at most d, and the row space can have dimension at most n. Thus, even though the data points are ostensibly in a d dimensional attribute space (the *extrinsic dimensionality*), if $rank(\mathbf{D}) < d$, then the data points reside in a lower dimensional subspace of \mathbb{R}^d , and in this case $rank(\mathbf{D})$ gives an indication about the *intrinsic* dimensionality of the data. In fact, with dimensionality reduction methods it is often possible to approximate $\mathbf{D} \in \mathbb{R}^{n \times d}$ with a derived data matrix $\mathbf{D}' \in \mathbb{R}^{n \times k}$, which has much lower dimensionality, that is, $k \ll d$. In this case k may reflect the "true" intrinsic dimensionality of the data.

Example 1.5. The line ℓ in Figure 1.5 is given as $\ell = span((-2.15 \ 2.75)^T)$, with $dim(\ell) = 1$. After normalization, we obtain the orthonormal basis for ℓ as the unit vector

$$\frac{1}{\sqrt{12.19}} \begin{pmatrix} -2.15\\ 2.75 \end{pmatrix} = \begin{pmatrix} -0.615\\ 0.788 \end{pmatrix}$$