
CHAPTER 3

Introduction to Predictive Modeling: From
Correlation to Supervised Segmentation

Fundamental concepts: Identifying informative attributes; Segmenting data by progres‐
sive attribute selection.
Exemplary techniques: Finding correlations; Attribute/variable selection; Tree induction.

The previous chapters discussed models and modeling at a high level. This chapter
delves into one of the main topics of data mining: predictive modeling. Following our
example of data mining for churn prediction from the first section, we will begin by
thinking of predictive modeling as supervised segmentation—how can we segment the
population into groups that differ from each other with respect to some quantity of
interest. In particular, how can we segment the population with respect to something
that we would like to predict or estimate. The target of this prediction can be something
we would like to avoid, such as which customers are likely to leave the company when
their contracts expire, which accounts have been defrauded, which potential customers
are likely not to pay off their account balances (write-offs, such as defaulting on one’s
phone bill or credit card balance), or which web pages contain objectionable content.
The target might instead be cast in a positive light, such as which consumers are most
likely to respond to an advertisement or special offer, or which web pages are most
appropriate for a search query.

In the process of discussing supervised segmentation, we introduce one of the funda‐
mental ideas of data mining: finding or selecting important, informative variables or
“attributes” of the entities described by the data. What exactly it means to be “informa‐
tive” varies among applications, but generally, information is a quantity that reduces
uncertainty about something. So, if an old pirate gives me information about where his
treasure is hidden that does not mean that I know for certain where it is, it only means
that my uncertainty about where the treasure is hidden is reduced. The better the in‐
formation, the more my uncertainty is reduced.

43

Now, recall the notion of “supervised” data mining from the previous chapter. A key to
supervised data mining is that we have some target quantity we would like to predict
or to otherwise understand better. Often this quantity is unknown or unknowable at
the time we would like to make a business decision, such as whether a customer will
churn soon after her contract expires, or which accounts have been defrauded. Having
a target variable crystalizes our notion of finding informative attributes: is there one or
more other variables that reduces our uncertainty about the value of the target? This
also gives a common analytics application of the general notion of correlation discussed
above: we would like to find knowable attributes that correlate with the target of interest
—that reduce our uncertainty in it. Just finding these correlated variables may provide
important insight into the business problem.

Finding informative attributes also is useful to help us deal with increasingly larger
databases and data streams. Datasets that are too large pose computational problems
for analytic techniques, especially when the analyst does not have access to high-
performance computers. One tried-and-true method for analyzing very large datasets
is first to select a subset of the data to analyze. Selecting informative attributes provides
an “intelligent” method for selecting an informative subset of the data. In addition,
attribute selection prior to data-driven modeling can increase the accuracy of the mod‐
eling, for reasons we will discuss in Chapter 5.

Finding informative attributes also is the basis for a widely used predictive modeling
technique called tree induction, which we will introduce toward the end of this chapter
as an application of this fundamental concept. Tree induction incorporates the idea of
supervised segmentation in an elegant manner, repeatedly selecting informative at‐
tributes. By the end of this chapter we will have achieved an understanding of: the basic
concepts of predictive modeling; the fundamental notion of finding informative
attributes, along with one particular, illustrative technique for doing so; the notion of
tree-structured models; and a basic understanding of the process for extracting tree-
structured models from a dataset—performing supervised segmentation.

Models, Induction, and Prediction
Generally speaking, a model is a simplified representation of reality created to serve a
purpose. It is simplified based on some assumptions about what is and is not important
for the specific purpose, or sometimes based on constraints on information or tracta‐
bility. For example, a map is a model of the physical world. It abstracts away a tremen‐
dous amount of information that the mapmaker deemed irrelevant for its purpose. It
preserves, and sometimes further simplifies, the relevant information. For example, a
road map keeps and highlights the roads, their basic topology, their relationships to
places one would want to travel, and other relevant information. Various professions
have well-known model types: an architectural blueprint, an engineering prototype, the

44 | Chapter 3: Introduction to Predictive Modeling: From Correlation to Supervised Segmentation

Figure 3-1. Data mining terminology for a supervised classification problem. The prob‐
lem is supervised because it has a target attribute and some “training” data where we
know the value for the target attribute. It is a classification (rather than regression)
problem because the target is a category (yes or no) rather than a number.

Black-Scholes model of option pricing, and so on. Each of these abstracts away details
that are not relevant to their main purpose and keeps those that are.

In data science, a predictive model is a formula for estimating the unknown value of
interest: the target. The formula could be mathematical, or it could be a logical statement
such as a rule. Often it is a hybrid of the two. Given our division of supervised data
mining into classification and regression, we will consider classification models (and
class-probability estimation models) and regression models.

Terminology: Prediction
In common usage, prediction means to forecast a future event. In data
science, prediction more generally means to estimate an unknown
value. This value could be something in the future (in common us‐
age, true prediction), but it could also be something in the present or
in the past. Indeed, since data mining usually deals with historical
data, models very often are built and tested using events from the past.
Predictive models for credit scoring estimate the likelihood that a
potential customer will default (become a write-off). Predictive mod‐
els for spam filtering estimate whether a given piece of email is spam.
Predictive models for fraud detection judge whether an account has

Models, Induction, and Prediction | 45

1. Descriptive modeling often is used to work toward a causal understanding of the data generating process
(why do people churn?).

been defrauded. The key is that the model is intended to be used to
estimate an unknown value.

This is in contrast to descriptive modeling, where the primary purpose of the model is
not to estimate a value but instead to gain insight into the underlying phenomenon or
process. A descriptive model of churn behavior would tell us what customers who churn
typically look like.1 A descriptive model must be judged in part on its intelligibility, and
a less accurate model may be preferred if it is easier to understand. A predictive model
may be judged solely on its predictive performance, although we will discuss why in‐
telligibility is nonetheless important. The difference between these model types is not
as strict as this may imply; some of the same techniques can be used for both, and usually
one model can serve both purposes (though sometimes poorly). Sometimes much of
the value of a predictive model is in the understanding gained from looking at it rather
than in the predictions it makes.

Before we discuss predictive modeling further, we must introduce some terminology.
Supervised learning is model creation where the model describes a relationship between
a set of selected variables (attributes or features) and a predefined variable called the
target variable. The model estimates the value of the target variable as a function (pos‐
sibly a probabilistic function) of the features. So, for our churn-prediction problem we
would like to build a model of the propensity to churn as a function of customer account
attributes, such as age, income, length with the company, number of calls to customer
service, overage charges, customer demographics, data usage, and others.

Figure 3-1 illustrates some of the terminology we introduce here, in an oversimplified
example problem of credit write-off prediction. An instance or example represents a
fact or a data point—in this case a historical customer who had been given credit. This
is also called a row in database or spreadsheet terminology. An instance is described by
a set of attributes (fields, columns, variables, or features). An instance is also sometimes
called a feature vector, because it can be represented as a fixed-length ordered collection
(vector) of feature values. Unless stated otherwise, we will assume that the values of all
the attributes (but not the target) are present in the data.

46 | Chapter 3: Introduction to Predictive Modeling: From Correlation to Supervised Segmentation

Many Names for the Same Things
The principles and techniques of data science historically have been studied in several
different fields, including machine learning, pattern recognition, statistics, databases,
and others. As a result there often are several different names for the same things. We
typically will refer to a dataset, whose form usually is the same as a table of a database
or a worksheet of a spreadsheet. A dataset contains a set of examples or instances. An
instance also is referred to as a row of a database table or sometimes a case in statistics.

The features (table columns) have many different names as well. Statisticians speak of
independent variables or predictors as the attributes supplied as input. In operations
research you may also hear explanatory variable. The target variable, whose values are
to be predicted, is commonly called the dependent variable in statistics. This terminology
may be somewhat confusing; the independent variables may not be independent of each
other (or anything else), and the dependent variable doesn’t always depend on all the
independent variables. For this reason we have avoided the dependent/independent
terminology in this book. Some experts consider the target variable to be included in
the set of features, some do not. The important thing is rather obvious: the target variable
is not used to predict itself. However, it may be that prior values for the target variable
are quite helpful to predict future values—so such prior values may be included as
features.

The creation of models from data is known as model induction. Induction is a term
from philosophy that refers to generalizing from specific cases to general rules (or laws,
or truths). Our models are general rules in a statistical sense (they usually do not hold
100% of the time; often not nearly), and the procedure that creates the model from the
data is called the induction algorithm or learner. Most inductive procedures have var‐
iants that induce models both for classification and for regression. We will discuss
mainly classification models because they tend to receive less attention in other treat‐
ments of statistics, and because they are relevant to many business problems (and thus
much work in data science focuses on classification).

Terminology: Induction and deduction
Induction can be contrasted with deduction. Deduction starts with
general rules and specific facts, and creates other specific facts from
them. The use of our models can be considered a procedure of (prob‐
abilistic) deduction. We will get to this shortly.

Models, Induction, and Prediction | 47

2. The predicted value can be estimated from the data in different ways, which we will get to. At this point we
can think of it roughly as an average of some sort from the training data that fall into the segment.

The input data for the induction algorithm, used for inducing the model, are called the
training data. As mentioned in Chapter 2, they are called labeled data because the value
for the target variable (the label) is known.

Let’s return to our example churn problem. Based on what we learned in Chapter 1 and
Chapter 2, we might decide that in the modeling stage we should build a “supervised
segmentation” model, which divides the sample into segments having (on average)
higher or lower tendency to leave the company after contract expiration. To think about
how this might be done, let’s now turn to one of our fundamental concepts: How can
we select one or more attributes/features/variables that will best divide the sample with
respect to our target variable of interest?

Supervised Segmentation
Recall that a predictive model focuses on estimating the value of some particular target
variable of interest. An intuitive way of thinking about extracting patterns from data in
a supervised manner is to try to segment the population into subgroups that have dif‐
ferent values for the target variable (and within the subgroup the instances have similar
values for the target variable). If the segmentation is done using values of variables that
will be known when the target is not, then these segments can be used to predict the
value of the target variable. Moreover, the segmentation may at the same time provide
a human-understandable set of segmentation patterns. One such segment expressed in
English might be: “Middle-aged professionals who reside in New York City on average
have a churn rate of 5%.” Specifically, the term “middle-aged professionals who reside
in New York City” is the definition of the segment (which references some particular
attributes) and “a churn rate of 5%” describes the predicted value of the target variable
for the segment.2

Often we are interested in applying data mining when we have many attributes, and are
not sure exactly what the segments should be. In our churn-prediction problem, who
is to say what are the best segments for predicting the propensity to churn? If there exist
in the data segments with significantly different (average) values for the target variable,
we would like to be able to extract them automatically.

This brings us to our fundamental concept: how can we judge whether a variable con‐
tains important information about the target variable? How much? We would like
automatically to get a selection of the more informative variables with respect to the
particular task at hand (namely, predicting the value of the target variable). Even better,
we might like to rank the variables by how good they are at predicting the value of the
target.

48 | Chapter 3: Introduction to Predictive Modeling: From Correlation to Supervised Segmentation

Figure 3-2. A set of people to be classified. The label over each head represents the value
of the target variable (write-off or not). Colors and shapes represent different predictor
attributes.

Consider just the selection of the single most informative attribute. Solving this problem
will introduce our first concrete data mining technique—simple, but easily extendable
to be very useful. In our example, what variable gives us the most information about
the future churn rate of the population? Being a professional? Age? Place of residence?
Income? Number of complaints to customer service? Amount of overage charges?

We now will look carefully into one useful way to select informative variables, and then
later will show how this technique can be used repeatedly to build a supervised seg‐
mentation. While very useful and illustrative, please keep in mind that direct, multi‐
variate supervised segmentation is just one application of this fundamental idea of
selecting informative variables. This notion should become one of your conceptual tools
when thinking about data science problems more generally. For example, as we go for‐
ward we will delve into other modeling approaches, ones that do not incorporate
variable selection directly. When the world presents you with very large sets of attributes,
it may be (extremely) useful to harken back to this early idea and to select a subset of
informative attributes. Doing so can substantially reduce the size of an unwieldy dataset,
and as we will see, often will improve the accuracy of the resultant model.

Selecting Informative Attributes
Given a large set of examples, how do we select an attribute to partition them in an
informative way? Let’s consider a binary (two class) classification problem, and think
about what we would like to get out of it. To be concrete, Figure 3-2 shows a simple
segmentation problem: twelve people represented as stick figures. There are two types
of heads: square and circular; and two types of bodies: rectangular and oval; and two of
the people have gray bodies while the rest are white.

These are the attributes we will use to describe the people. Above each person is the
binary target label, Yes or No, indicating (for example) whether the person becomes a
loan write-off. We could describe the data on these people as:

Supervised Segmentation | 49

• Attributes:
— head-shape: square, circular
— body-shape: rectangular, oval
— body-color: gray, white

• Target variable:
— write-off: Yes, No

So let’s ask ourselves: which of the attributes would be best to segment these people into
groups, in a way that will distinguish write-offs from non-write-offs? Technically, we
would like the resulting groups to be as pure as possible. By pure we mean homogeneous
with respect to the target variable. If every member of a group has the same value for
the target, then the group is pure. If there is at least one member of the group that has
a different value for the target variable than the rest of the group, then the group is
impure.

Unfortunately, in real data we seldom expect to find a variable that will make the seg‐
ments pure. However, if we can reduce the impurity substantially, then we can both
learn something about the data (and the corresponding population), and importantly
for this chapter, we can use the attribute in a predictive model—in our example, pre‐
dicting that members of one segment will have higher or lower write-off rates than those
in another segment. If we can do that, then we can for example offer credit to those with
the lower predicted write-off rates, or can offer different credit terms based on the
different predicted write-off rates.

Technically, there are several complications:

1. Attributes rarely split a group perfectly. Even if one subgroup happens to be pure,
the other may not. For example, in Figure 3-2, consider if the second person were
not there. Then body-color=gray would create a pure segment (write-off=no). How‐
ever, the other associated segment, body-color=white, still is not pure.

2. In the prior example, the condition body-color=gray only splits off one single data
point into the pure subset. Is this better than another split that does not produce
any pure subset, but reduces the impurity more broadly?

3. Not all attributes are binary; many attributes have three or more distinct values. We
must take into account that one attribute can split into two groups while another
might split into three groups, or seven. How do we compare these?

4. Some attributes take on numeric values (continuous or integer). Does it make sense
to make a segment for every numeric value? (No.) How should we think about
creating supervised segmentations using numeric attributes?

50 | Chapter 3: Introduction to Predictive Modeling: From Correlation to Supervised Segmentation

Fortunately, for classification problems we can address all the issues by creating a for‐
mula that evaluates how well each attribute splits a set of examples into segments, with
respect to a chosen target variable. Such a formula is based on a purity measure.

The most common splitting criterion is called information gain, and it is based on a
purity measure called entropy. Both concepts were invented by one of the pioneers of
information theory, Claude Shannon, in his seminal work in the field (Shannon, 1948).

Entropy is a measure of disorder that can be applied to a set, such as one of our individual
segments. Consider that we have a set of properties of members of the set, and each
member has one and only one of the properties. In supervised segmentation, the mem‐
ber properties will correspond to the values of the target variable. Disorder corresponds
to how mixed (impure) the segment is with respect to these properties of interest. So,
for example, a mixed up segment with lots of write-offs and lots of non-write-offs would
have high entropy.

More technically, entropy is defined as:

Equation 3-1. Entropy

entropy = - p1 log (p1) - p2 log (p2) -

Each pi is the probability (the relative percentage) of property i within the set, ranging
from pi = 1 when all members of the set have property i, and pi = 0 when no members
of the set have property i. The … simply indicates that there may be more than just two
properties (and for the technically minded, the logarithm is generally taken as base 2).

Since the entropy equation might not lend itself to intuitive understanding, Figure 3-3
shows a plot of the entropy of a set containing 10 instances of two classes, + and –. We
can see then that entropy measures the general disorder of the set, ranging from zero
at minimum disorder (the set has members all with the same, single property) to one
at maximal disorder (the properties are equally mixed). Since there are only two classes,
p+ = 1–p–. Starting with all negative instances at the lower left, p+ = 0, the set has minimal
disorder (it is pure) and the entropy is zero. If we start to switch class labels of elements
of the set from – to +, the entropy increases. Entropy is maximized at 1 when the instance
classes are balanced (five of each), and p+ = p– = 0.5. As more class labels are switched,
the + class starts to predominate and the entropy lowers again. When all instances are
positive, p+ = 1 and entropy is minimal again at zero.

As a concrete example, consider a set S of 10 people with seven of the non-write-off class
and three of the write-off class. So:

p(non-write-off) = 7 / 10 = 0.7
p(write-off) = 3 / 10 = 0.3

Supervised Segmentation | 51

Figure 3-3. Entropy of a two-class set as a function of p(+).

entropy(S) = - 0.7 × log2 (0.7) + 0.3 × log2 (0.3)
≈ - 0.7 × - 0.51 + 0.3 × - 1.74
≈ 0.88

Entropy is only part of the story. We would like to measure how informative an attribute
is with respect to our target: how much gain in information it gives us about the value
of the target variable. An attribute segments a set of instances into several subsets. En‐
tropy only tells us how impure one individual subset is. Fortunately, with entropy to
measure how disordered any set is, we can define information gain (IG) to measure how
much an attribute improves (decreases) entropy over the whole segmentation it creates.
Strictly speaking, information gain measures the change in entropy due to any amount
of new information being added; here, in the context of supervised segmentation, we
consider the information gained by splitting the set on all values of a single attribute.
Let’s say the attribute we split on has k different values. Let’s call the original set of
examples the parent set, and the result of splitting on the attribute values the k chil‐
dren sets. Thus, information gain is a function of both a parent set and of the children

52 | Chapter 3: Introduction to Predictive Modeling: From Correlation to Supervised Segmentation

resulting from some partitioning of the parent set—how much information has this
attribute provided? That depends on how much purer the children are than the parent.
Stated in the context of predictive modeling, if we were to know the value of this at‐
tribute, how much would it increase our knowledge of the value of the target variable?

Specifically, the definition of information gain (IG) is:

Equation 3-2. Information gain

IG(parent , children) = entropy(parent) -
p(c1) × entropy(c1) + p(c2) × entropy(c2) +

Notably, the entropy for each child (ci) is weighted by the proportion of instances be‐
longing to that child, p(ci). This addresses directly our concern from above that splitting
off a single example, and noticing that that set is pure, may not be as good as splitting
the parent set into two nice large, relatively pure subsets, even if neither is pure.

As an example, consider the split in Figure 3-4. This is a two-class problem (• and).
Examining the figure, the children sets certainly seem “purer” than the parent set. The
parent set has 30 instances consisting of 16 dots and 14 stars, so:

entropy(parent) = - p(•) × log2 p(•) + p() × log2 p()
≈ - 0.53 × - 0.9 + 0.47 × - 1.1
≈ 0.99 (very impure)

The entropy of the left child is:

entropy(Balance < 50K) = - p(•) × log2 p(•) + p() × log2 p()
≈ - 0.92 × (- 0.12) + 0.08 × (- 3.7)
≈ 0.39

The entropy of the right child is:

entropy(Balance ≥ 50K) = - p(•) × log2 p(•) + p() × log2 p()
≈ - 0.24 × (- 2.1) + 0.76 × (- 0.39)
≈ 0.79

Using Equation 3-2, the information gain of this split is:

Supervised Segmentation | 53

IG = entropy(parent) - p(Balance < 50K) × entropy(Balance < 50K)
+ p(Balance ≥ 50K) × entropy(Balance ≥ 50K)

≈ 0.99 - 0.43 × 0.39 + 0.57 × 0.79
≈ 0.37

So this split reduces entropy substantially. In predictive modeling terms, the attribute
provides a lot of information on the value of the target.

Figure 3-4. Splitting the “write-off” sample into two segments, based on splitting the
Balance attribute (account balance) at 50K.

As a second example, consider another candidate split shown in Figure 3-5. This is the
same parent set as in Figure 3-4, but instead we consider splitting on the attribute
Residence with three values: OWN, RENT, and OTHER. Without showing the detailed
calculations:

54 | Chapter 3: Introduction to Predictive Modeling: From Correlation to Supervised Segmentation

entropy(parent) ≈ 0.99
entropy(Residence=OWN) ≈ 0.54
entropy(Residence=RENT) ≈ 0.97

entropy(Residence=OTHER) ≈ 0.98
IG ≈ 0.13

Figure 3-5. A classification tree split on the three-valued Residence attribute.

The Residence variable does have a positive information gain, but it is lower than that
of Balance. Intuitively, this is because, while the one child Residence=OWN has con‐
siderably reduced entropy, the other values RENT and OTHER produce children that
are no more pure than the parent. Thus, based on these data, the Residence variable is
less informative than Balance.

Looking back at our concerns from above about creating supervised segmentation for
classification problems, information gain addresses them all. It does not require absolute

Supervised Segmentation | 55

3. Technically, there remains a concern with attributes with very many values, as splitting on them may result
in large information gain, but not be predictive. This problem (“overfitting”) is the subject of Chapter 5.

purity. It can be applied to any number of child subsets. It takes into account the relative
sizes of the children, giving more weight to larger subsets.3

Numeric variables
We have not discussed what exactly to do if the attribute is numer‐
ic. Numeric variables can be “discretized” by choosing a split point
(or many split points) and then treating the result as a categorical
attribute. For example, Income could be divided into two or more
ranges. Information gain can be applied to evaluate the segmenta‐
tion created by this discretization of the numeric attribute. We still
are left with the question of how to choose the split point(s) for the
numeric attribute. Conceptually, we can try all reasonable split points,
and choose the one that gives the highest information gain.

Finally, what about supervised segmentations for regression problems—problems with
a numeric target variable? Looking at reducing the impurity of the child subsets still
makes intuitive sense, but information gain is not the right measure, because entropy-
based information gain is based on the distribution of the properties in the segmentation.
Instead, we would want a measure of the purity of the numeric (target) values in the
subsets.

We will not go through a derivation here, but the fundamental idea is important: a
natural measure of impurity for numeric values is variance. If the set has all the same
values for the numeric target variable, then the set is pure and the variance is zero. If
the numeric target values in the set are very different, then the set will have high variance.
We can create a similar notion to information gain by looking at reductions in variance
between parent and children. The process proceeds in direct analogy to the derivation
for information gain above. To create the best segmentation given a numeric target, we
might choose the one that produces the best weighted average variance reduction. In
essence, we again would be finding variables that have the best correlation with the
target, or alternatively, are most predictive of the target.

Example: Attribute Selection with Information Gain
Now we are ready to apply our first concrete data mining technique. For a dataset with
instances described by attributes and a target variable, we can determine which attribute
is the most informative with respect to estimating the value of the target variable. (We
will delve into this more deeply below.) We also can rank a set of attributes by their
informativeness, in particular by their information gain. This can be used simply to

56 | Chapter 3: Introduction to Predictive Modeling: From Correlation to Supervised Segmentation

4. See this UC Irvine Machine Learning Repository page.

understand the data better. It can be used to help predict the target. Or it can be used
to reduce the size of the data to be analyzed, by selecting a subset of attributes in cases
where we can not or do not want to process the entire dataset.

To illustrate the use of information gain, we introduce a simple but realistic dataset taken
from the machine learning dataset repository at the University of California at Irvine.4

It is a dataset describing edible and poisonous mushrooms taken from The Audubon
Society Field Guide to North American Mushrooms. From the description:

This dataset includes descriptions of hypothetical samples corresponding to 23 species
of gilled mushrooms in the Agaricus and Lepiota Family (pp. 500–525). Each species is
identified as definitely edible, definitely poisonous, or of unknown edibility and not rec‐
ommended. This latter class was combined with the poisonous one. The Guide clearly
states that there is no simple rule for determining the edibility of a mushroom; no rule
like “leaflets three, let it be” for Poisonous Oak and Ivy.

Each data example (instance) is one mushroom sample, described in terms of its ob‐
servable attributes (the features). The twenty-odd attributes and the values for each are
listed in Table 3-1. For a given example, each attribute takes on a single discrete value
(e.g., gill-color=black). We use 5,644 examples from the dataset, comprising 2,156 poi‐
sonous and 3,488 edible mushrooms.

This is a classification problem because we have a target variable, called edible?, with
two values yes (edible) and no (poisonous), specifying our two classes. Each of the rows
in the training set has a value for this target variable. We will use information gain to
answer the question: “Which single attribute is the most useful for distinguishing edible
(edible?=Yes) mushrooms from poisonous (edible?=No) ones?” This is a basic attribute
selection problem. In much larger problems we could imagine selecting the best ten or
fifty attributes out of several hundred or thousand, and often you want do this if you
suspect there are far too many attributes for your mining problem, or that many are not
useful. Here, for simplicity, we will find the single best attribute instead of the top ten.

Table 3-1. The attributes of the Mushroom dataset
Attribute name Possible values

CAP-SHAPE bell, conical, convex, flat, knobbed, sunken

CAP-SURFACE fibrous, grooves, scaly, smooth

CAP-COLOR brown, buff, cinnamon, gray, green, pink, purple, red,

white, yellow

BRUISES? yes, no

ODOR almond, anise, creosote, fishy, foul, musty, none,

pungent, spicy

GILL-ATTACHMENT attached, descending, free, notched

Supervised Segmentation | 57

Attribute name Possible values

GILL-SPACING close, crowded, distant

GILL-SIZE broad, narrow

GILL-COLOR black, brown, buff, chocolate, gray, green, orange, pink,

purple, red, white, yellow

STALK-SHAPE enlarging, tapering

STALK-ROOT bulbous, club, cup, equal, rhizomorphs, rooted, missing

STALK-SURFACE-ABOVE-RING fibrous, scaly, silky, smooth

STALK-SURFACE-BELOW-RING fibrous, scaly, silky, smooth

STALK-COLOR-ABOVE-RING brown, buff, cinnamon, gray, orange, pink, red, white,

yellow

STALK-COLOR-BELOW-RING brown, buff, cinnamon, gray, orange, pink, red, white,

yellow

VEIL-TYPE partial, universal

VEIL-COLOR brown, orange, white, yellow

RING-NUMBER none, one, two

RING-TYPE cobwebby, evanescent, flaring, large, none, pendant, sheath

ing, zone

SPORE-PRINT-COLOR black, brown, buff, chocolate, green, orange, purple, white,

yellow

POPULATION abundant, clustered, numerous, scattered, several, solitary

HABITAT grasses, leaves, meadows, paths, urban, waste, woods

EDIBLE? (Target variable) yes, no

Since we now have a way to measure information gain this is straightforward: we are
asking for the single attribute that gives the highest information gain.

To do this, we calculate the information gain achieved by splitting on each attribute.
The information gain from Equation 3-2 is defined on a parent and a set of children.
The parent in each case is the whole dataset. First we need entropy(parent), the entropy
of the whole dataset. If the two classes were perfectly balanced in the dataset it would
have an entropy of 1. This dataset is slightly unbalanced (more edible than poisonous
mushrooms are represented) and its entropy is 0.96.

To illustrate entropy reduction graphically, we’ll show a number of entropy graphs for
the mushroom domain (Figure 3-6 through Figure 3-8). Each graph is a two-
dimensional description of the entire dataset’s entropy as it is divided in various ways
by different attributes. On the x axis is the proportion of the dataset (0 to 1), and on the
y axis is the entropy (also 0 to 1) of a given piece of the data. The amount of shaded area
in each graph represents the amount of entropy in the dataset when it is divided by some

58 | Chapter 3: Introduction to Predictive Modeling: From Correlation to Supervised Segmentation

chosen attribute (or not divided, in the case of Figure 3-6). Our goal of having the lowest
entropy corresponds to having as little shaded area as possible.

The first chart, Figure 3-6, shows the entropy of the entire dataset. In such a chart, the
highest possible entropy corresponds to the entire area being shaded; the lowest possible
entropy corresponds to the entire area being white. Such a chart is useful for visualizing
information gain from different partitions of a dataset, because any partition can be
shown simply as slices of the graph (with widths corresponding to the proportion of
the dataset), each with its own entropy. The weighted sum of entropies in the informa‐
tion gain calculation will be depicted simply by the total amount of shaded area.

Figure 3-6. Entropy chart for the entire Mushroom dataset. The entropy for the entire
dataset is 0.96, so 96% of the area is shaded.

Supervised Segmentation | 59

Figure 3-7. Entropy chart for the Mushroom dataset as split by GILL-COLOR. The
amount of shading corresponds to the total (weighted sum) entropy, with each bar cor‐
responding to the entropy of one of the attribute’s values, and the width of the bar cor‐
responding to the prevalence of that value in the data.

For our entire dataset, the global entropy is 0.96, so Figure 3-6 shows a large shaded
area below the line y = 0.96. We can think of this as our starting entropy—any infor‐
mative attribute should produce a new graph with less shaded area. Now we show the
entropy charts of three sample attributes. Each value of an attribute occurs in the dataset
with a different frequency, so each attribute splits the set in a different way.

Figure 3-7 shows the dataset split apart by the attribute GILL-COLOR, whose values
are coded as y (yellow), u (purple), n (brown), and so on. The width of each attribute
represents what proportion of the dataset has that value, and the height is its entropy.
We can see that GILL-COLOR reduces the entropy somewhat; the shaded area in
Figure 3-7 is considerably less than the area in Figure 3-6.

60 | Chapter 3: Introduction to Predictive Modeling: From Correlation to Supervised Segmentation

5. This assumes odor can be measured accurately, of course. If your sense of smell is poor you may not want to
bet your life on it. Frankly, you probably wouldn’t want to bet your life on the results of mining data from a
field guide. Nevertheless, it makes a nice example.

Figure 3-8. Entropy chart for the Mushroom dataset as split by SPORE-PRINT-
COLOR. The amount of shading corresponds to the total (weighted sum) entropy, with
each bar corresponding to the entropy of one of the attribute’s values, and the width of
the bar corresponding to the prevalence of that value in the data.

Similarly, Figure 3-8 shows how SPORE-PRINT-COLOR decreases uncertainty (en‐
tropy). A few of the values, such as h (chocolate), specify the target value perfectly and
thus produce zero-entropy bars. But notice that they don’t account for very much of the
population, only about 30%.

Figure 3-9 shows the graph produced by ODOR. Many of the values, such as a (al
mond), c (creosote), and m (musty) produce zero-entropy partitions; only n (no odor)
has a considerable entropy (about 20%). In fact, ODOR has the highest information
gain of any attribute in the Mushroom dataset. It can reduce the dataset’s total entropy
to about 0.1, which gives it an information gain of 0.96 – 0.1 = 0.86. What is this saying?
Many odors are completely characteristic of poisonous or edible mushrooms, so odor
is a very informative attribute to check when considering mushroom edibility.5 If you’re

Supervised Segmentation | 61

going to build a model to determine the mushroom edibility using only a single feature,
you should choose its odor. If you were going to build a more complex model you might
start with the attribute ODOR before considering adding others. In fact, this is exactly
the topic of the next section.

Figure 3-9. Entropy chart for the Mushroom dataset as split by ODOR. The amount of
shading corresponds to the total (weighted sum) entropy, with each bar corresponding
to the entropy of one of the attribute’s values, and the width of the bar corresponding to
the prevalence of that value in the data.

Supervised Segmentation with Tree-Structured Models
We have now introduced one of the fundamental ideas of data mining: finding infor‐
mative attributes from the data. Let’s continue on the topic of creating a supervised
segmentation, because as important as it is, attribute selection alone does not seem to
be sufficient. If we select the single variable that gives the most information gain, we
create a very simple segmentation. If we select multiple attributes each giving some
information gain, it’s not clear how to put them together. Recall from earlier that we
would like to create segments that use multiple attributes, such as “Middle-aged pro‐
fessionals who reside in New York City on average have a churn rate of 5%.” We now

62 | Chapter 3: Introduction to Predictive Modeling: From Correlation to Supervised Segmentation

introduce an elegant application of the ideas we’ve developed for selecting important
attributes, to produce a multivariate (multiple attribute) supervised segmentation.

Consider a segmentation of the data to take the form of a “tree,” such as that shown in
Figure 3-10. In the figure, the tree is upside down with the root at the top. The tree is
made up of nodes, interior nodes and terminal nodes, and branches emanating from
the interior nodes. Each interior node in the tree contains a test of an attribute, with
each branch from the node representing a distinct value of the attribute. Following the
branches from the root node down (in the direction of the arrows), each path eventually
terminates at a terminal node, or leaf. The tree creates a segmentation of the data: every
data point will correspond to one and only one path in the tree, and thereby to one and
only one leaf. In other words, each leaf corresponds to a segment, and the attributes and
values along the path give the characteristics of the segment. So the rightmost path in
the tree in Figure 3-10 corresponds to the segment “Older, unemployed people with
high balances.” The tree is a supervised segmentation, because each leaf contains a value
for the target variable. Since we are talking about classification, here each leaf contains
a classification for its segment. Such a tree is called a classification tree or more loosely
a decision tree.

Classification trees often are used as predictive models—“tree structured models.” In
use, when presented with an example for which we do not know its classification, we
can predict its classification by finding the corresponding segment and using the class
value at the leaf. Mechanically, one would start at the root node and descend through
the interior nodes, choosing branches based on the specific attribute values in the ex‐
ample. The nonleaf nodes are often referred to as “decision nodes,” because when de‐
scending through the tree, at each node one uses the values of the attribute to make a
decision about which branch to follow. Following these branches ultimately leads to a
final decision about what class to predict: eventually a terminal node is reached, which
gives a class prediction. In a tree, no two parents share descendants and there are no
cycles; the branches always “point downwards” so that every example always ends up at
a leaf node with some specific class determination.

Consider how we would use the classification tree in Figure 3-10 to classify an example
of the person named Claudio from Figure 3-1. The values of Claudio’s attributes are
Balance=115K, Employed=No, and Age=40. We begin at the root node that tests Em‐
ployed. Since the value is No we take the right branch. The next test is Balance. The value
of Balance is 115K, which is greater than 50K so we take a right branch again to a node
that tests Age. The value is 40 so we take the left branch. This brings us to a leaf node
specifying class=Not Write-off, representing a prediction that Claudio will not default.
Another way of saying this is that we have classified Claudio into a segment defined by
(Employed=No, Balance=115K, Age<45) whose classification is Not Write -off.

Supervised Segmentation | 63

Figure 3-10. A simple classification tree.

Classification trees are one sort of tree-structured model. As we will see later, in business
applications often we want to predict the probability of membership in the class (e.g.,
the probability of churn or the probability of write-off), rather than the class itself. In
this case, the leaves of the probability estimation tree would contain these probabilities
rather than a simple value. If the target variable is numeric, the leaves of the regression
tree contain numeric values. However, the basic idea is the same for all.

Trees provide a model that can represent exactly the sort of supervised segmentation
we often want, and we know how to use such a model to predict values for new cases
(in “use”). However, we still have not addressed how to create such a model from the
data. We turn to that now.

There are many techniques to induce a supervised segmentation from a dataset. One of
the most popular is to create a tree-structured model (tree induction). These techniques
are popular because tree models are easy to understand, and because the induction
procedures are elegant (simple to describe) and easy to use. They are robust to many
common data problems and are relatively efficient. Most data mining packages include
some type of tree induction technique.

How do we create a classification tree from data? Combining the ideas introduced above,
the goal of the tree is to provide a supervised segmentation—more specifically, to par‐
tition the instances, based on their attributes, into subgroups that have similar values

64 | Chapter 3: Introduction to Predictive Modeling: From Correlation to Supervised Segmentation

Figure 3-11. First partitioning: splitting on body shape (rectangular versus oval).

for their target variables. We would like for each “leaf ” segment to contain instances
that tend to belong to the same class.

To illustrate the process of classification tree induction, consider the very simple ex‐
ample set shown previously in Figure 3-2.

Tree induction takes a divide-and-conquer approach, starting with the whole dataset
and applying variable selection to try to create the “purest” subgroups possible using
the attributes. In the example, one way is to separate people based on their body type:
rectangular versus oval. This creates the two groups shown in Figure 3-11. How good
is this partitioning? The rectangular-body people on the left are mostly Yes, with a single
No person, so it is mostly pure. The oval-body group on the right has mostly No people,
but two Yes people. This step is simply a direct application of the attribute selection
ideas presented above. Let’s consider this “split” to be the one that yields the largest
information gain.

Looking at Figure 3-11, we can now see the elegance of tree induction, and why it
resonates well with so many people. The left and right subgroups are simply smaller
versions of the problem with which we initially were faced! We can simply take each
data subset and recursively apply attribute selection to find the best attribute to partition
it. So in our example, we recursively consider the oval-body group (Figure 3-12). To
split this group again we now consider another attribute: head shape. This splits the
group in two on the right side of the figure. How good is this partitioning? Each new
group has a single target label: four (square heads) of No, and two (round heads) of

Supervised Segmentation | 65

Figure 3-13. Third partitioning: the rectangular body people subgrouped by body color.

Yes. These groups are “maximally pure” with respect to class labels and there is no need
to split them further.

Figure 3-12. Second partitioning: the oval body people sub-grouped by head type.

66 | Chapter 3: Introduction to Predictive Modeling: From Correlation to Supervised Segmentation

We still have not done anything with the rectangular body group on the left side of
Figure 3-11, so let’s consider how to split them. There are five Yes people and one No
person. There are two attributes we could split upon: head shape (square or round), and
body color (white or gray). Either of these would work, so we arbitrarily choose body
color. This produces the groupings in Figure 3-13. These are pure groups (all of one
type) so we are finished. The classification tree corresponding to these groupings is
shown in Figure 3-14.

In summary, the procedure of classification tree induction is a recursive process of
divide and conquer, where the goal at each step is to select an attribute to partition the
current group into subgroups that are as pure as possible with respect to the target
variable. We perform this partitioning recursively, splitting further and further until we
are done. We choose the attributes to split upon by testing all of them and selecting
whichever yields the purest subgroups. When are we done? (In other words, when do
we stop recursing?) It should be clear that we would stop when the nodes are pure, or
when we run out of variables to split on. But we may want to stop earlier; we will return
to this question in Chapter 5.

Visualizing Segmentations
Continuing with the metaphor of predictive model building as supervised segmentation,
it is instructive to visualize exactly how a classification tree partitions the instance space.
The instance space is simply the space described by the data features. A common form
of instance space visualization is a scatterplot on some pair of features, used to compare
one variable against another to detect correlations and relationships.

Though data may contain dozens or hundreds of variables, it is only really possible to
visualize segmentations in two or three dimensions at once. Still, visualizing models in
instance space in a few dimensions is useful for understanding the different types of
models because it provides insights that apply to higher dimensional spaces as well. It
may be difficult to compare very different families of models just by examining their
form (e.g., a mathematical formula versus a set of rules) or the algorithms that generate
them. Often it is easier to compare them based on how they partition the instance space.

For example, Figure 3-15 shows a simple classification tree next to a two-dimensional
graph of the instance space: Balance on the x axis and Age on the y axis. The root node
of the classification tree tests Balance against a threshold of 50K. In the graph, this
corresponds to a vertical line at 50K on the x axis splitting the plane into Balance<50K
and Balance≥50K. At the left of this line lie the instances whose Balance values are less
than 50K; there are 13 examples of class Write-off (black dot) and 2 examples of class
non-Write-off (plus sign) in this region.

On the right branch out of the root node are instances with Balance≥50K. The next
node in the classification tree tests the Age attribute against the threshold 45. In the

Visualizing Segmentations | 67

Figure 3-14. The classification tree resulting from the splits done in Figure 3-11 to
Figure 3-13.

68 | Chapter 3: Introduction to Predictive Modeling: From Correlation to Supervised Segmentation

graph this corresponds to the horizontal dotted line at Age=45. It appears only on the
right side of the graph because this partition only applies to examples with Balance≥50.
The Age decision node assigns to its left branch instances with Age<45, corresponding
to the lower right segment of the graph, representing: (Balance≥50K AND Age<45).

Notice that each internal (decision) node corresponds to a split of the instance space.
Each leaf node corresponds to an unsplit region of the space (a segment of the popu‐
lation). Whenever we follow a path in the tree out of a decision node we are restricting
attention to one of the two (or more) subregions defined by the split. As we descend
through a classification tree we consider progressively more focused subregions of the
instance space.

Decision lines and hyperplanes
The lines separating the regions are known as decision lines (in two
dimensions) or more generally decision surfaces or decision bound‐
aries. Each node of a classification tree tests a single variable against a
fixed value so the decision boundary corresponding to it will always
be perpendicular to the axis representing this variable. In two dimen‐
sions, the line will be either horizontal or vertical. If the data had three
variables the instance space would be three-dimensional and each
boundary surface imposed by a classification tree would be a two-
dimensional plane. In higher dimensions, since each node of a classi‐
fication tree tests one variable it may be thought of as “fixing” that one
dimension of a decision boundary; therefore, for a problem of n vari‐
ables, each node of a classification tree imposes an (n–1)-
dimensional “hyperplane” decision boundary on the instance space.
You will often see the term hyperplane used in data mining literature
to refer to the general separating surface, whatever it may be. Don’t be
intimidated by this terminology. You can always just think of it as a
generalization of a line or a plane.
Other decision surfaces are possible, as we shall see later.

Visualizing Segmentations | 69

Figure 3-15. A classification tree and the partitions it imposes in instance space. The
black dots correspond to instances of the class Write-off, the plus signs correspond to
instances of class non-Write-off. The shading shows how the tree leaves correspond to
segments of the population in instance space.

70 | Chapter 3: Introduction to Predictive Modeling: From Correlation to Supervised Segmentation

Trees as Sets of Rules
Before moving on from the interpretation of classification trees, we should mention
their interpretation as logical statements. Consider again the tree shown at the top of
Figure 3-15. You classify a new unseen instance by starting at the root node and following
the attribute tests downward until you reach a leaf node, which specifies the instance’s
predicted class. If we trace down a single path from the root node to a leaf, collecting
the conditions as we go, we generate a rule. Each rule consists of the attribute tests along
the path connected with AND. Starting at the root node and choosing the left branches
of the tree, we get the rule:

IF (Balance < 50K) AND (Age < 50) THEN Class=Write-off

We can do this for every possible path to a leaf node. From this tree we get three more
rules:

IF (Balance < 50K) AND (Age ≥ 50) THEN Class=No Write-off
IF (Balance ≥ 50K) AND (Age < 45) THEN Class=Write-off
IF (Balance ≥ 50K) AND (Age < 45) THEN Class=No Write-off

The classification tree is equivalent to this rule set. If these rules look repetitive, that’s
because they are: the tree gathers common rule prefixes together toward the top of the
tree. Every classification tree can be expressed as a set of rules this way. Whether the
tree or the rule set is more intelligible is a matter of opinion; in this simple example,
both are fairly easy to understand. As the model becomes larger, some people will prefer
the tree or the rule set.

Probability Estimation
In many decision-making problems, we would like a more informative prediction than
just a classification. For example, in our churn-prediction problem, rather than simply
predicting whether a person will leave the company within 90 days of contract expira‐
tion, we would much rather have an estimate of the probability that he will leave the
company within that time. Such estimates can be used for many purposes. We will
discuss some of these in detail in later chapters, but briefly: you might then rank pros‐
pects by their probability of leaving, and then allocate a limited incentive budget to the
highest probability instances. Alternatively, you may want to allocate your incentive
budget to the instances with the highest expected loss, for which you’ll need (an estimate
of) the probability of churn. Once you have such probability estimates you can use them
in a more sophisticated decision-making process than these simple examples, as we’ll
describe in later chapters.

Trees as Sets of Rules | 71

6. We often deal with binary classification problems, such as write-off or not, or churn or not. In these cases it
is typical just to report the probability of membership in one chosen class p(c), because the other is just 1 – p(c).

7. Often these are still called classification trees, even if the decision maker intends to use the probability esti‐
mates rather than the simple classifications.

There is another, even more insidious problem with models that give simple classifica‐
tions, rather than estimates of class membership probability. Consider the problem of
estimating credit default. Under normal circumstances, for just about any segment of
the population to which we would be considering giving credit, the probability of write-
off will be very small—far less than 0.5. In this case, when we build a model to estimate
the classification (write-off or not), we’d have to say that for each segment, the members
are likely not to default—and they will all get the same classification (not write-off). For
example, in a naively built tree model every leaf will be labeled “not write-off.” This turns
out to be a frustrating experience for new data miners: after all that work, the model
really just says that no one is likely to default? This does not mean that the model is
useless. It may be that the different segments indeed have very different probabilities of
write-off, they just all are less than 0.5. If instead we use these probabilities for assigning
credit, we may be able reduce our risk substantially.

So, in the context of supervised segmentation, we would like each segment (leaf of a tree
model) to be assigned an estimate of the probability of membership in the different
classes. Figure 3-15 more generally shows a “probability estimation tree” model for our
simple write-off prediction example, giving not only a prediction of the class but also
the estimate of the probability of membership in the class.6

Fortunately, the tree induction ideas we have discussed so far can easily produce prob‐
ability estimation trees instead of simple classification trees.7 Recall that the tree induc‐
tion procedure subdivides the instance space into regions of class purity (low entropy).
If we are satisfied to assign the same class probability to every member of the segment
corresponding to a tree leaf, we can use instance counts at each leaf to compute a class
probability estimate. For example, if a leaf contains n positive instances and m negative
instances, the probability of any new instance being positive may be estimated as n/(n
+m). This is called a frequency-based estimate of class membership probability.

At this point you may spot a problem with estimating class membership probabilities
this way: we may be overly optimistic about the probability of class membership for
segments with very small numbers of instances. At the extreme, if a leaf happens to have
only a single instance, should we be willing to say that there is a 100% probability that
members of that segment will have the class that this one instance happens to have?

72 | Chapter 3: Introduction to Predictive Modeling: From Correlation to Supervised Segmentation

This phenomenon is one example of a fundamental issue in data science (“overfitting”),
to which we devote a chapter later in the book. For completeness, let’s quickly discuss
one easy way to address this problem of small samples for tree-based class probability
estimation. Instead of simply computing the frequency, we would often use a “smooth‐
ed” version of the frequency-based estimate, known as the Laplace correction, the pur‐
pose of which is to moderate the influence of leaves with only a few instances. The
equation for binary class probability estimation becomes:

p(c) =
n + 1

n + m + 2

where n is the number of examples in the leaf belonging to class c, and m is the number
of examples not belonging to class c.

Let’s walk through an example with and without the Laplace correction. A leaf node
with two positive instances and no negative instances would produce the same
frequency-based estimate (p = 1) as a leaf node with 20 positive instances and no neg‐
atives. However, the first leaf node has much less evidence and may be extreme only
due to there being so few instances. Its estimate should be tempered by this considera‐
tion. The Laplace equation smooths its estimate down to p = 0.75 to reflect this uncer‐
tainty; the Laplace correction has much less effect on the leaf with 20 instances (p ≈
0.95). As the number of instances increases, the Laplace equation converges to the
frequency-based estimate. Figure 3-16 shows the effect of Laplace correction on several
class ratios as the number of instances increases (2/3, 4/5, and 1/1). For each ratio the
solid horizontal line shows the uncorrected (constant) estimate, while the
corresponding dashed line shows the estimate with the Laplace correction applied. The
uncorrected line is the asymptote of the Laplace correction as the number of instances
goes to infinity.

Example: Addressing the Churn Problem with Tree
Induction
Now that we have a basic data mining technique for predictive modeling, let’s consider
the churn problem again. How could we use tree induction to help solve it?

For this example, we have a historical data set of 20,000 customers. At the point of
collecting the data, each customer either had stayed with the company or had left
(churned). Each customer is described by the variables listed in Table 3-2.

Example: Addressing the Churn Problem with Tree Induction | 73

Figure 3-16. The effect of Laplace smoothing on probability estimation for several in‐
stance ratios.

Table 3-2. Attributes for the cellular phone churn-prediction problem
Variable Explanation

COLLEGE Is the customer college educated?

INCOME Annual income

OVERAGE Average overcharges per month

LEFTOVER Average number of leftover minutes per month

HOUSE Estimated value of dwelling (from census tract)

HANDSET_PRICE Cost of phone

LONG_CALLS_PER_MONTH Average number of long calls (15 mins or over) per month

AVERAGE_CALL_DURATION Average duration of a call

REPORTED_SATISFACTION Reported level of satisfaction

REPORTED_USAGE_LEVEL Self-reported usage level

LEAVE (Target variable) Did the customer stay or leave (churn)?

74 | Chapter 3: Introduction to Predictive Modeling: From Correlation to Supervised Segmentation

8. Note that the information gains for the attributes in this churn data set are much smaller than those shown
previously for the mushroom data set.

These variables comprise basic demographic and usage information available from the
customer’s application and account. We want to use these data with our tree induction
technique to predict which new customers are going to churn.

Before starting to build a classification tree with these variables, it is worth asking, How
good are each of these variables individually? For this we measure the information gain
of each attribute, as discussed earlier. Specifically, we apply Equation 3-2 to each variable
independently over the entire set of instances, to see what each gains us.

The results are in Figure 3-17, with a table listing the exact values. As you can see, the
first three variables—the house value, the number of leftover minutes, and the number
of long calls per month—have a higher information gain than the rest.8 Perhaps sur‐
prisingly, neither the amount the phone is used nor the reported degree of satisfaction
seems, in and of itself, to be very predictive of churning.

Applying a classification tree algorithm to the data, we get the tree shown in
Figure 3-18. The highest information gain feature (HOUSE) according to Figure 3-17
is at the root of the tree. This is to be expected since it will always be chosen first. The
second best feature, OVERAGE, also appears high in the tree. However, the order in
which features are chosen for the tree doesn’t exactly correspond to their ranking in
Figure 3-17. Why is this?

The answer is that the table ranks each feature by how good it is independently, evaluated
separately on the entire population of instances. Nodes in a classification tree depend
on the instances above them in the tree. Therefore, except for the root node, features in
a classification tree are not evaluated on the entire set of instances. The information
gain of a feature depends on the set of instances against which it is evaluated, so the
ranking of features for some internal node may not be the same as the global ranking.

We have not yet discussed how we decide to stop building the tree. The dataset has
20,000 examples yet the tree clearly doesn’t have 20,000 leaf nodes. Can’t we just keep
selecting more attributes to split upon, building the tree downwards until we’ve ex‐
hausted the data? The answer is yes, we can, but we should stop long before the model
becomes that complex. This issue ties in closely with model generality and overfitting,
whose discussion we defer to Chapter 5.

Example: Addressing the Churn Problem with Tree Induction | 75

Figure 3-17. Churn attributes from Table 3-2 ranked by information gain.

76 | Chapter 3: Introduction to Predictive Modeling: From Correlation to Supervised Segmentation

Figure 3-18. Classification tree learned from the cellular phone churn data.

Consider a final issue with this dataset. After building a tree model from the data, we
measured its accuracy against the data to see how good of a model it is. Specifically, we
used a training set consisting half of people who churned and the other half who did
not; after learning a classification tree from this, we applied the tree to the dataset to see
how many of the examples it could classify correctly. The tree achieved 73% accuracy
on its decisions. This raises two questions:

1. First, do you trust this number? If we applied the tree to another sample of 20,000
people from the same dataset, do you think we’d still get about 73% accuracy?

2. If you do trust the number, does it mean this model is good? In other words, is a
model with 73% accuracy worth using?

Example: Addressing the Churn Problem with Tree Induction | 77

We will revisit these questions in Chapter 7 and Chapter 8, which delve into issues of
model evaluation.

Summary
In this chapter, we introduced basic concepts of predictive modeling, one of the main
tasks of data science, in which a model is built that can estimate the value of a target
variable for a new unseen example. In the process, we introduced one of data science’s
fundamental notions: finding and selecting informative attributes. Selecting informa‐
tive attributes can be a useful data mining procedure in and of itself. Given a large
collection of data, we now can find those variables that correlate with or give us infor‐
mation about another variable of interest. For example, if we gather historical data on
which customers have or have not left the company (churned) shortly after their con‐
tracts expire, attribute selection can find demographic or account-oriented variables
that provide information about the likelihood of customers churning. One basic meas‐
ure of attribute information is called information gain, which is based on a purity meas‐
ure called entropy; another is variance reduction.

Selecting informative attributes forms the basis of a common modeling technique called
tree induction. Tree induction recursively finds informative attributes for subsets of the
data. In so doing it segments the space of instances into similar regions. The partitioning
is “supervised” in that it tries to find segments that give increasingly precise information
about the quantity to be predicted, the target. The resulting tree-structured model par‐
titions the space of all possible instances into a set of segments with different predicted
values for the target. For example, when the target is a binary “class” variable such as
churn versus not churn, or write-off versus not write-off, each leaf of the tree corre‐
sponds to a population segment with a different estimated probability of class
membership.

As an exercise, think about what would be different in building a tree-
structured model for regression rather than for classification. What
would need to be changed from what you’ve learned about classifica‐
tion tree induction?

Historically, tree induction has been a very popular data mining procedure because it
is easy to understand, easy to implement, and computationally inexpensive. Research
on tree induction goes back at least to the 1950s and 1960s. Some of the earliest popular
tree induction systems include CHAID (Chi-squared Automatic Interaction Detection)
(Kass, 1980) and CART (Classification and Regression Trees) (Breiman, Friedman,
Olshen, & Stone, 1984), which are still widely used. C4.5 and C5.0 are also very popular
tree induction algorithms, which have a notable lineage (Quinlan, 1986, 1993). J48 is a
reimplementation of C4.5 in the Weka package (Witten & Frank, 2000; Hall et al., 2001).

78 | Chapter 3: Introduction to Predictive Modeling: From Correlation to Supervised Segmentation

In practice, tree-structured models work remarkably well, though they may not be the
most accurate model one can produce from a particular data set. In many cases, espe‐
cially early in the application of data mining, it is important that models be understood
and explained easily. This can be useful not just for the data science team but for com‐
municating results to stakeholders not knowledgeable about data mining.

Summary | 79

