Eigenpairs

DSTA

Eigenpairs

Study materials

I. Goodfellow, Y. Bengio and A. Courville:
Deep Learning, MIT Press, 2016.
J. Lescovec, A. Rajaraman, J. Ullmann:
Mining of Massive datasets, MIT Press, 2016.
The material covered here is presented in the excerpts available for download.

Spectral Analysis

Eigenpairs

If, given a matrix A we find a real λ and a vector **e** s.t.

 $A\mathbf{e} = \lambda \mathbf{e}$

then λ and **e** will be an eigenpair of A.

. . .

In principle, if A has rank n there should be n such pairs.

. . .

In practice, eigenpairs

• are always *costly* to find.

- they might have $\lambda = 0$: no information, or
- λ might not be a real number: no interpretation.

Conditions for good eigen-

A square matrix A is called *positive semidefinite* when for any \mathbf{x} we have

 $\mathbf{x}^T A \mathbf{x} \ge 0$

In such case its eigenvalues are non-negative: $\lambda_i \ge 0$.

Underlying idea, I

In Geometry, applying a matrix to a vector, $A\mathbf{x}$, creates all sorts of alteration to the space, e.g,

- rotation
- deformation

Eigenvectors, i.e., solutions to $A\mathbf{e} = \lambda \mathbf{e}$

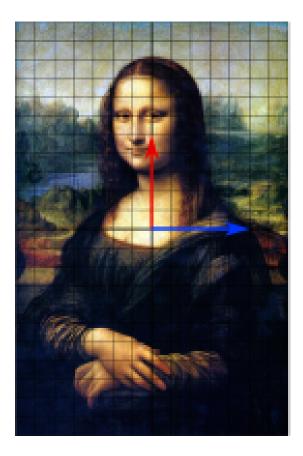
describe the direction along which matrix A operates an expansion

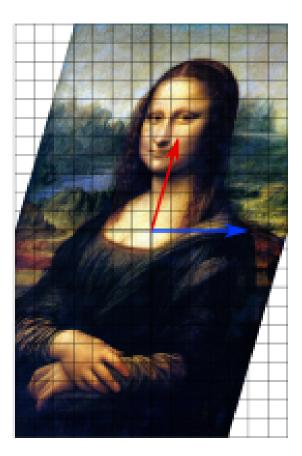
Example: shear mapping

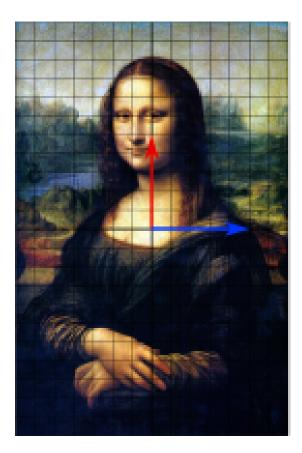
A = [[1, .27], [0, 1]]

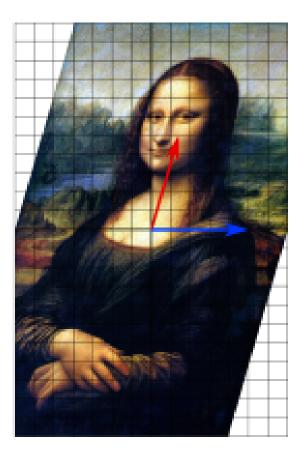
deforms a vector by increading the first dimension by a quantity proportional to the value of the second dimension:

$$\begin{bmatrix} x \\ y \end{bmatrix} \longrightarrow \begin{bmatrix} x + \frac{3}{11}y \\ y \end{bmatrix}$$









The blue line is unchanged:

- an $[x, 0]^T$ eigenvector
- corresponding to $\lambda = 1$

Activity matrices, I

Under certains conditions:

-the eigenpairs exists,

-e-values are real, non-negative numbers (0 is ok), and

-e-vectors are orthogonal with each other:

. . .

User-activity matrices normally meet those conditions!

Activity matrices, II

If an activity matrix has good eigenpairs,

. . .

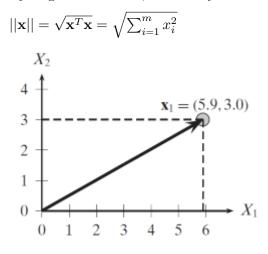
each e-vector represents a *direction*

we interpret those directions as *topics* that hidden (latent) within the data. e-values *expand* one's affiliation to a specific *topic*.

Norms and distances

Euclidean norm

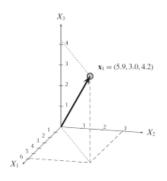
Pythagora's theorem, essentially.



. . .

Generalisation:

 $||\mathbf{x}||_p = (|x_1|^p + |x_1|^p + \dots |x_m|^p)^{\frac{1}{p}} = (\sum_{i=1}^m |x_i|^p)^{\frac{1}{p}}$



. . .

The Frobenius norm $||\cdot||_F$ extends $||\cdot||_2$ to matrices:

$$\begin{split} ||\mathbf{A}||_F &= \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} \\ \text{Also used in practice:} \\ ||\mathbf{x}||_0 &= \# \text{ of non-zero scalar values in } \mathbf{x} \\ ||\mathbf{x}||_\infty &= max\{|x_i|\} \end{split}$$

Normalization

The unit or normalized vector of ${\bf x}$

$$\mathbf{u} = \frac{\mathbf{x}}{||\mathbf{x}||} = (\frac{1}{||\mathbf{x}||})\mathbf{x}$$

- has the same direction of the original
- its norm is constructed to be 1.

Computing Eigenpairs

With Maths

$$M\mathbf{e} = \lambda \mathbf{e}$$

. . .

Handbook solution: solve the equivalent system

$$(M - \lambda \mathbf{I})\mathbf{e} = \mathbf{0}$$

. . .

Either of the two factors should be 0. Hence, a non-zero vector \mathbf{e} is associated to a solution of

$$|M - \lambda \mathbf{I}| = 0$$

$$|M - \lambda \mathbf{I}| = 0$$

In Numerical Analysis many methods are available.

Their general algorithmic structure:

-find the λ s that make $|\dots| = 0$, then

-for each λ find its associated vector ${\bf e}.$

With Computer Science

At the scale of the Web, few methods will still work! Ideas:

- 1. find the e-vectors first, with an iterated method.
- 2. interleave iteration with control on the expansion in value

until an approximate fix point: $x_{l+1} \approx x_l$.

Now, eliminate the contribution of the first eigenpair:

$$M^* = M - \lambda_1' \mathbf{x}_1 \mathbf{x}_1^T$$

(since \mathbf{x}_1 is a column vector, $\mathbf{x}_1^T \mathbf{x}_1$ will be a scalar: its norm. Vice versa, $\mathbf{x}_1 \mathbf{x}_1^T$ will be a matrix)

. . .

Now, we repeat the iteration on M^* to find the second eigenpair.

Times are in $\Theta(dn^2)$.

For better scalability, we will cover Pagerank later.

Eigenpairs in Python

E-pairs with Numpy

```
import numpy as np
# this is the specific submodule
from numpy import linalg as la
# create a 'blank' matrix
m = np.zeros([7, 5])
m = [[1, 1, 1, 0, 0],
    [3, 3, 3, 0, 0],
    [4, 4, 4, 0, 0],
    [5, 5, 5, 0, 0],
    [0, 0, 0, 4, 4],
    [0, 0, 0, 5, 5],
    [0, 0, 0, 2, 2]
]
```

```
def find_eigenpairs(mat):
    """Test the quality of Numpy eigenpairs"""
    n = len(mat)
    # is it squared?
    m = len(mat[0])
    if n==m:
        eig_vals, eig_vects = la.eig(mat)
    else:
        # force to be squared
        eig_vals, eig_vects = la.eig(mat@mat.T)
    # they come in ascending order, take the last one on the right
    dominant_eig = abs(eig_vals[-1])
    return dominant_eig
```

Older versions:

E-values come normalized: $\sqrt{\lambda_1^2 + \dots \lambda_n^2} = 1$; hence we later multiply them by $\frac{1}{\sqrt{n}}$

- # lambda_1 = find_eigenpairs(m)
- # lambda_1