
Personalisation Services for Self

e-Learning Networks

Kevin KEENOY a, Vassilis CHRISTOPHIDES b, George PAPAMARKOS a,

Alexandra POULOVASSILIS a, Dimitris KOTZINOSb, Philippe RIGAUX c, Nicolas

SPYRATOS c,, and Peter WOOD a
a School of Computer Science and Information Systems, Birkbeck, University of London

b Institute of Computer Science, Foundation for Research and Technology - Hellas
c Laboratoire de Recherche en Informatique, Universite Paris-Sud

Abstract. This chapter describes personalisation services for self e-learning

networks. A self e-learning network consists of web-based learning objects that
have been made available to the network by its users, along with metadata

descriptions of these learning objects and of the network’s users. The proposed

personalisation facilities include: querying learning object descriptions to return
results tailored towards users’ individual goals and preferences; the ability to

define views over the learning object metadata; facilities for defining new

composite learning objects and automatically deriving their descriptions; and
facilities for subscribing to personalised event and change notification services.

The personalisation facilities are realised using a combination of Semantic Web

technologies including RDF/S, RQL, RVL, and RDF ECA rules.

Keywords. E-Learning, personalisation, metadata management, Semantic Web

1. Introduction

Life-long learning and the knowledge economy have brought about the need to support

diverse communities of learners throughout their lifetimes. These learners are

geographically distributed and may have heterogeneous educational backgrounds and

learning needs. In the most general case, learners organise themselves into

communities according to their own criteria, such as having common interests. We

envisage a self e-learning network (SeLeNe) as existing to support a specific

community of providers and learners. Learning communities can occur in an

educational institution, in a workplace, or on the web.

The SeLeNe EU FP5 [1] project ran from November 2002 to January 2004 and

investigated the feasibility and design of tools to support learning communities by

matching learners’ needs with educational resources potentially available on the Web.

Our proposed personalisation services relied on the availability of semantic metadata

describing educational material and learners, and included services for the discovery,

sharing, and collaborative creation of learning objects (LOs), aiming to facilitate

syndicated and personalised access to such resources.

LOs capture any chunk of learning resource regardless of its form, granularity and

functionality. By definition, LOs encapsulate both learning content and appropriate

descriptive information (i.e. metadata). LOs aim to provide self-describing learning

material that once developed can subsequently be exchanged, retrieved and reused.

LOs are uniquely identified via their Uniform Resource Identifier (URI) [2] while their

metadata are submitted to the SeLeNe with which they are registered.

The key factor for supporting large scale interoperability, portability and

reusability of LOs is the quality of the semantic description of LOs i.e., its metadata

specification. The LO metadata and the schemas to which these conform form the

SeLeNe LO information space (see Figure 1). Users need to be able to query the LO

information space in order to locate LOs appropriate for their specific learning or

teaching needs, and also need to be able to define personalised views over this

potentially large number of heterogeneous resources.

Figure 1. Overview of the SeLeNe Information Space

Following the open tradition of the Web, LOs may be physically stored in the web

site of an organisation (educational or corporate) or in the web pages of individual

users. A SeLeNe will not manage the LOs themselves, but will instead facilitate access

to them by managing their metadata descriptions. In order to enable effective search for

LOs in a SeLeNe, we assume that LO descriptions conform to e-learning standards

such as IEEE/LOM (Learning Object Metadata) [3], and also employ topic-specific

taxonomies of scientific domains such as ACM/CCS (Computing Classification

System) [4] or taxonomies of detailed learning objectives. LO schemas and

descriptions are represented in the Resource Description Framework/Schema Language

(RDF/S) [5], which offers appropriate modelling primitives for the SeLeNe information

space.

Figure 1 illustrates the main concepts and properties of the RDFS schemas we

employed in the SeLeNe project to capture the semantics of existing e-learning

standards. The information content of a LO can be described using attributes such as

title, language, format, etc., or one or more terms from a topic-specific taxonomy like

ACM/CCS, e.g. a LO about C++ could have a withSubject property referencing the

ACM/CCS classification D.3.2.11, which is the taxonomic path representing

Software.ProgrammingLanguages.LanguageClassifications.ObjectOrientedLanguages.

Learning

Object

Program ComponentCourse Module Lesson

ISA

Contributor
contributedBy

Name

Role

Organization

Learning
Topics

Taxonomy
withSubject

partOf
relatedTo

hasPrerequisite

LanguageTitle Format

Context Level Time

Learning
Objectives
Taxonomy

withGoal

Learning

Object

Program ComponentCourse Module Lesson

ISA

Contributor
contributedBy

Name

Role

Organization

Learning
Topics

Taxonomy
withSubject

partOf
relatedTo

hasPrerequisite

LanguageTitle Format

Context Level Time

Learning
Objectives
Taxonomy

withGoal

Application services

User Registration LO Registration
Trails and

Adaptation

Management Services

Collaboration

Event and Change Notification Service
View and Query

Services

Update Service Syndication Service

Presentation Services

Access Services

 Locate Service Information Service Sign-On Service
Communication

Service

Taxonomies

of LO Topics and

Objectives

LO

Schemas and

Descriptions

User Profile

Schemas and

Descriptions
 {RDF/S

Figure 2. SeLeNe Service Architecture

The schema also allows description of the granularity of a LO (e.g., Course,

Lesson), its relationships with other LOs (e.g., hasPrerequisite, partOf), and its

relationships with other classes of resource (e.g., contributedBy). A taxonomy such as

Bloom’s Taxonomy of Educational Objectives, combined with a topics taxonomy, can

be used to describe the desired learning outcomes of a LO. For example, a LO

withGoal Application.Use (from Bloom’s taxonomy) [6] and withSubject D.3.2.11

(from ACM/CCS) is thereby described as having the educational objective “to be able

to use an Object-Oriented language”.

The diversity and heterogeneity of the learning communities we envisage using

SeLeNes means that no single architectural design is suitable to support all of them.

We thus defined a service-based architecture that can be deployed in a peer-to-peer,

mediation-based or centralised fashion (which is a special case of peer-to-peer); so the

deployment option best addressing the needs of any particular learning community can

be chosen. We envisage each SeLeNe network as consisting of a number of peers, each

of which will support some subset of the full set of SeLeNe services. Figure 2

illustrates the architecture of a SeLeNe. The facilities that are the focus of this chapter

are provided by the User Registration, LO Registration, Trails and Adaptation, Event

and Change Notification, and View services. We refer the reader to [7] for further

discussion of the architecture and other services.

The users of a SeLeNe will include instructors, learners and providers of LOs – a

single person could play each of these roles at different times. New users will be able to

join a SeLeNe by contacting any peer of the SeLeNe that provides the User

Registration service. When registering, users will supply information about themselves

and their educational objectives in using this SeLeNe. This information is stored in

their personal profile.

Providers of LOs will maintain control of the content they create and will be free

to use any tools they wish to create their LO content before registering it. We call such

LOs, created externally to SeLeNe, atomic LOs. Users will also be able to register new

composite LOs – LOs that have been created as assemblies of LOs already registered

with the SeLeNe, for example a course LO which has been created by assembling

several module LOs. The SeLeNe will be able to automatically derive the taxonomical

description of a composite LO from the taxonomical descriptions of its constituent LOs.

The LO registration process and automatic derivation of taxonomical descriptions are

discussed in Section 2.

The SeLeNe will provide facilities for defining personalised views over the LO

information space, which we discuss in Section 3. The SeLeNe will also provide

browsing and searching facilities over the LO information space, which return results

tailored towards users’ individual goals and preferences. This is discussed in Section 4.

A user may wish to be notified of changes made to a LO’s description. SeLeNe can

provide automatic change detection and notification facilities by comparing the new

and old descriptions of a LO. More generally, SeLeNe can support personalised

notification services depending on users’ profiles. Provision of such facilities is

discussed in Section 5. Finally, our conclusions are presented in Section 6.

2. Registration of LOs

Registration of a LO with a SeLeNe consists of providing a metadata description

including the URI of the LO. Here we focus on the taxonomical part of a LO’s

description.

A taxonomy (T, ≼) consists of a set of terms T together with a subsumption

relation ≼ between terms. It can be represented as a graph, where the nodes are the

terms and there is an arrow from term s to term t iff s subsumes t. Figure 3 shows a

taxonomy, which is used by all examples in this section.

A taxonomical description is a set of terms from a taxonomy. For example, if a LO

contains the Quicksort algorithm written in Java then the terms QuickSort and

Java can be chosen by the LO’s provider to describe its content. We call the set of

terms {QuickSort,Java} the publisher taxonomical description (PTD) of the LO.

An important feature of the registration process will be the ability to automatically

infer a taxonomical description for a composite LO o, from the taxonomical

descriptions of the LOs o1,…, on it has been assembled from. This description, which

‘summarises’ the taxonomical descriptions of the parts of o, is called the implied

taxonomical description (ITD) of o.

Figure 3. An example Taxonomy showing a set of terms that could be used when describing the topics of
LOs in the area of computer programming. The arrows show the subsumption relationship that exists

between the terms, for example the terms MergeSort, QuickSort and BubbleSort are subsumed by the term

Sort, and Sort is subsumed by Algorithms.

A SeLeNe will automatically derive the taxonomical description D of a composite

LO from its PTD augmented by its ITD, removing any redundant terms (i.e., terms that

are subsumed by other terms). Consider LOs o1,…, o4 with the following taxonomical

descriptions:

D(o1) = {QuickSort,Java}; D(o2) = {BubbleSort};

D(o3) = {BubbleSort, C++}; D(o4) = {C++}.

Intuitively, the ITD of a composite LO o expresses what its parts have in common – a

composite LO o composed from o1 and o2 will have the ITD {Sort}. Intuitively,

both o1 and o2 concern sorting algorithms, and the fact that one of them is written in

Java is considered to be irrelevant as far as the composite LO is concerned. Thus, the

term Java is not reflected in o’s ITD as it is not something that both parts share.

However, this does not mean a loss of information: if a user searches the SeLeNe for

objects related to Java, o1 will be in the answer set and o will not.

The ITD of a composite LO retains what its parts have in common, while

subsuming the taxonomical descriptions of each part. Consider the composite LO o΄

with parts o1 and o3 – in this case the common part would be {Sort,OOL}. This

result for the ITD should be interpreted as meaning that each part of o΄ concerns both

sorting and object-oriented languages.

Note that a LO may generate different ITDs depending on what its ‘companion’

parts are. Consider the composite LO o΄΄ with parts o1 and o4.The ITD of o΄΄ is {OOL}

– o1 is part of each of the composite LOs o, o΄ and o΄΄, but each time with a different

‘companion’ part. It is interesting to note that, depending on the companion part, either

the ‘sort-aspect’ of o1 or its ‘OOL-aspect’, or both, appear in the ITD.

One may wonder why the PTD of a composite LO is not sufficient and why we

need to augment it by its ITD. The answer is that the provider of a composite LO o

Programming

ProgrammingStyleLanguages Algorithms

OOL Sort

C++ Java

JavaBeansJSP

MergeSort QuickSort BubbleSort

Programming

ProgrammingStyleLanguages Algorithms

OOL Sort

C++ Java

JavaBeansJSP

MergeSort QuickSort BubbleSort

may not describe the parts of o in the same way as the providers of these parts have

done. For example, suppose that the two LOs, o1 and o3, have been created by two

different providers, with the PTDs as above. Assume now that a third provider

considers these LOs as examples of good programming style, and decides to use them

as parts of the new composite LO o΄. The provider of o΄ provides the PTD

{ProgrammingStyle}. Although this PTD might be accurate for the provider’s

own purposes, the LO o still can serve to teach, or learn, Java and sorting algorithms.

This information will certainly be of interest to users searching for LOs containing

material on Java and sorting algorithms. Therefore, the PTD

{ProgrammingStyle} is augmented by the ITD {OOL, Sort} to obtain

{ProgrammingStyle,OOL,Sort} as the overall taxonomical description for o΄.

The ITD of a composite LO o composed of parts o1,…, on with descriptions

D1,…, Dn is computed by a simple algorithm, which takes the Cartesian product of

D1,…, Dn, computes the least upper bound of each n-tuple and then ‘reduces’ the

resulting set of terms by removing all but the minimal terms according to the

subsumption relation ≼. The overall taxonomical description of a LO o is computed by

another simple algorithm: if o is atomic then its taxonomical description is just its PTD.

Otherwise its taxonomical description is recursively computed from its PTD and the

taxonomical descriptions of its constituent parts. Readers are referred to [8] for more

details of both algorithms.

3. Declarative Queries and Views

One of the novel features of SeLeNe is its ability to exploit the available semantic

relationships (see Figure 1) defined among the RDF/S classes of LOs in order to

implement conceptual navigation and retrieval. We believe that the semantic

relationships of LOs play a crucial role especially in peer-to-peer learning

environments, where users have the ability to freely insert or modify LOs and their

descriptions while at the same time they are striving for a contextual access to learning

material available to a SeLeNe.

Finding LOs and exploring their semantic relationships relies on the RDF/S Query

Language (RQL) [10], a declarative language for browsing and querying RDF/S

schemas and descriptions. For instance, consider the following RQL query, which

retrieves all Courses about Object Oriented Languages (OOL) that have been

contributedBy someone having a name attribute:

SELECT Y, X, W

FROM{Y;ns1:Course}ns1:contributedBy{X}.ns1:name{W},ns2:OOL{Y}

USING NAMESPACE ns1=&www.ieee.org/lom.rdfs#

 ns2=&www.acm.org/class/1998ccs.rdfs#

An RQL FROM clause consists of path expressions, which provide a navigation through

schemas and description bases and bind the introduced variables. The first RQL path

expression

{Y;ns1:Course}ns1:contributedBy{X}.ns1:name{W}

will match instances of class Course and their associated contributedBy properties,

which link them to some instance of Contributor and its name value. For each such

match, we get a binding that maps Y to the Course resource, X to the Contributor and

W to the name value. The second path expression

ns2:OOL{Y}

is evaluated for each binding of Y, and filters Course instances by checking whether

they are classified under the topic OOL. Note that in this query several schemas are

used, identified by the corresponding namespaces n1 and n2 defined in the USING

NAMESPACE clause.

Using RQL, more complex scenarios of conceptual navigation and retrieval can be

implemented using appropriate Graphical User Interfaces (GUI). In particular, RQL

queries can be automatically generated from the browsing actions of learners both at

the level of LO schemas and their descriptions in the SeLeNe information space [11].

For example, starting from a Course a learner can navigate through the prerequisite

relationship and retrieve LOs belonging to the target course(s). Alternatively, a learner

can choose to visit a Lecture, where (s)he can discover whether another Lecture or a

Module of a Course is required to fully understand the content of this lecture.

Additionaly, (s)he can also find out whether this Lecture is required for any

Assignments that (s)he has to fulfill in order to successfully assimilate Course material.

In this context, we can consider prerequisite and requires as “strong” relationships,

literally forcing a learner to follow a specific learning path while partOf and SeeAlso

are rather “weaker” relationships suggesting a path but not forcing learners to follow it.

These are few examples of query-based personalization techniques, which are

based on the RDF/S schemas employed to semantically describe LOs. However,

despite our efforts for a modular, extensible and intuitive RDF/S schema design, the

SeLeNe information space one has to master still remains incredibly rich. Hence, LOs’

providers may encounter difficulties when querying or updating LOs’ descriptions due

to a misleading or even erroneous understanding of the LOs’ semantics. Moreover,

LOs’ consumers may also need to consider LO descriptions according to their

educational level and current subject of study rather than the RDF/S schemas employed

to register LOs in a SeLeNe. For these reasons, we need additional support to specify

and visualise appropriate semantic views of LO descriptions and schemas. The RDF/S

View Language (RVL) [9] provides this ability by introducing virtual RDF/S schemas

and descriptions on top of the SeLeNe information space.

To illustrate the RVL functionality we will consider a simple virtual schema

(view) for instructors, which represents only OOL course material and its authors. This

schema can be specified by a set of RVL statements whose output is an RDF/S virtual

schema and resource descriptions. In RDF/S the uniqueness of (meta) schema labels

and the ability to describe resources using labels from several schemas is ensured by

the XML namespace facility. In our example this RVL statement defines a unique

namespace:

CREATE NAMESPACE myview=&http://www.selene.org/LO.rdf#

The following RVL statement specifies the virtual classes Author and OOLCourse

and the virtual properties creates and name:

VIEW rdfs:Class("OOLCourse"),rdfs:Class("Author"),

 rdf:Property("creates", Author, OOLCourse),

 rdf:Property("name", Author, xsd:string);

where rdfs:Class and rdf:Property are two core metaclasses provided in the default

RDF/S namespaces. As in RQL, the USING NAMESPACE clause declares the

namespaces used in view statements. The following statement ‘populates’ the virtual

classes and properties defined in the view:

VIEW OOLCourse(Y),Author(X),creates(X,Y),name(X,W)

FROM {Y;ns1:Course}ns1:contributedBy{X;ns1:Author}.

 ns1:name{W}, ns2:OOL{Y}

USING NAMESPACE ns1=&www.ieee.org/lom.rdfs#

 ns2=&www.acm.org/class/1998ccs.rdfs#

It is worth mentioning that although the input of both RQL and RVL in the FROM

clause is an RDF/S graph, only the latter produces virtual schemas and resource

descriptions rather than the simple variable bindings returned by the former. This

functionality is ensured by the VIEW clause, where appropriate population functions

are used, taking as parameters the variable bindings produced by the FROM clause (and

optionally a WHERE clause). For instance, the virtual class OOLCourse is populated

with instances (bound to variable Y) of the base class Course, also classified under the

topic OOL. The virtual class Author is populated with instances (bound to variable X)

of the base class Contributor, which are the range values of the property contributedBy

applied to Course resources. In other words, Author is populated with all the

contributors who have created an OOL course. Virtual properties are populated with

pairs of resources (e.g., creates is populated with authors having created OOL

courses) or resource-value pairs (e.g., name is populated with the names of OOL

course authors).

One of the most significant features of RVL is its ability to create virtual schemas

by simply populating the two core RDF/S metaclasses Class (e.g., with schema classes

Author and OOLCourse) and Property (e.g., with schema properties creates and

name). A SeLeNe user could then easily formulate queries on the view (using a user-

friendly graphical interface), such as the following RQL query retrieving the OOL

courses created by the author named “Christophides”:

SELECT Y

FROM {X}myview:creates{Y}, {X}myview:name{Z}

WHERE Z = "Christophides"

USING NAMESPACE myview=&http://www.selene.org/LO.rdf#

A concrete implementation of the personalization techniques presented in this

section is available at the Online Curriculum Portal of the Computer Science

Department of the Univeristy of Crete [12].

4. Trails and Query Adaptation

Personalisation of query results relies on the personal profile, which is an RDF

description of the user conforming to a number of RDFS schemas, created when a user

registers with a SeLeNe. Figure 4 shows a simplified version of SeLeNe’s personal

profile schema.

Figure 4. SeLeNe’s Personal Profile Schema

To avoid proposing yet another schema for demographic and other information

that is already adequately catered for by existing profile schemes, we included elements

from the IEEE LTSC’s Personal and Private Information (PAPI) Standard [13] and the

IMS Learner Information Package (LIP) [14], extending the data model with our own

elements where existing specifications fail to be expressive enough.

The shortcomings of existing learner profile specifications were generally in the

recording of competencies, learning goals and preferred learning styles, and we

developed RDF schemas that allow the expression of all three of these. For

competencies and learning goals, we adopted the same topic and learning objectives

taxonomies as those used for learning object descriptions, (i.e. the taxonomies shown in

Figure 1). Other customised sections of the SeLeNe profile are related to the active

functionality of SeLeNe – a history of user activity (accesses to LOs) is included,

which allows the profile to adapt to take account of the user’s behaviour over time, for

example by automatically updating the information in it by means of Event-Condition-

Action rules (see Section 5). The learner also has a messages property with a

Notifications class as its target. This can store personal notifications (of new users and

new or updated LOs) for the user.

Although the underlying query mechanism in SeLeNe is RQL, we envisage that

users will generally search for LOs using simple keyword-based queries (possibly

augmented with attribute information). Search results will then be personalised by

filtering and ranking the LOs returned according to the information contained in the

user’s personal profile.

Filtering will take place before a query is evaluated: all keyword-based queries

submitted to the SeLeNe will be routed through the Trails and Adaptation service,

which will construct corresponding personalised queries. The user’s original query will

then be re-formulated and/or annotated to reflect elements of their personal profile. For

example, if the profile records that the user only speaks English, all searches they enter

can be augmented with the annotation lang:en, ensuring that all returned LOs will be in

English. The augmented keyword query will then be translated into an appropriate

RQL query and executed by the Query service. The reader is referred to [15] for the

full SeLeNe profile schema and for discussion of the translation of keyword-based

queries into structured queries in SeLeNe.

The next step is to rank the filtered set of LO descriptions in order of relevance to

the user. Relevance of a LO to the user will be judged by matching the LO’s metadata

description against the combination of the personal profile and the original query. The

information contained in the SeLeNe personal profile allows the following factors to be

taken into consideration when judging relevance, and a combination of weighted scores

for each of these factors can be used to provide an overall relevance score for each

candidate LO:

 relevance of the LO to the query (judged using techniques such as those described

in [16], [17]);

 whether the user has the prerequisite knowledge and experience to be able to

tackle the LO;

 how well the learning objectives of the LO match the user’s learning goals;

 if the user’s learning styles are those catered for by the LO; if the user is likely to

prefer it for other reasons (e.g., it is by a preferred provider);

 how well the LO caters for the user’s accessibility requirements;

 the user’s most recent activity (as contained in the history section of their profile).

The different sections of the personal profile can be matched in a focussed way

against relevant sections of the LO descriptions. For one LO to be more relevant to the

user than another it must meet more of the user’s different preferences, or match

preferences to a greater degree. For example, if the user has OOL as one of their

goal_topic’s then a LO including OOL in its taxonomical description will score well on

relevance to the user. If the LO description additionally includes the information that it

caters for one of the user’s learning styles then it will be considered a better match

again. The best algorithm and weightings to use for this ranking needs to be determined

empirically, and may well need to be adaptive.

Once a personalised ranking of the remaining LOs has been generated, the search

results will then be returned to the user. SeLeNe can give the user the option of having

their query results presented not as a simple list of individual LOs, but rather as a list of

trails of LOs, where a trail is a suggested sequence of interaction with the LOs [18].

We have defined an RDF representation of trails whereby they are defined as a sub-

class of the RDF Sequence (a sequence of LOs) with two associated properties, name

and annotation, that provide additional information about the pedagogic use of the trail.

These trails will be automatically generated. Algorithms for the automatic

generation of trails in hypertext systems already exist [19], but in SeLeNe’s case the

links between LOs are not explicit hyperlinks – links will be derived from information

contained in the LO descriptions about the semantic relationships between LOs. For

example, by inspecting the LOM:Relation fields in a collection of LO descriptions (in

this case a set of results), trails of LOs with early LOs in the trail being prerequisites

for later LOs can easily be derived and annotated with the term “prerequisites”.

5. Event and Change Notification

Many applications on the web need to be reactive i.e., to be able to detect the

occurrence of specific events or changes in information content, and to respond by

automatically executing the appropriate application logic. Event-condition-action

(ECA) rules are one way to implement this kind of functionality. An ECA rule has the

general syntax: on event if condition do actions. The event part specifies when the

rule is triggered. The condition part is a query that determines if the information space

is in a particular state, in which case the rule fires. The action part states the actions to

be performed if the rule fires. These actions may in turn cause further events to occur,

which may in turn cause more ECA rules to fire.

There are several advantages in using ECA rules to implement this kind of

functionality: management of an application’s reactive functionality within a single

rule base; analysis and optimisation techniques for ECA rules that cannot be applied if

the same functionality is expressed directly in application code; and provision of a

generic mechanism that can abstract a wide variety of reactive behaviours.

Motivated by these advantages of ECA rules, we proposed providing SeLeNe’s

reactive functionality by means of ECA rules over RDF/S metadata. This reactive

functionality includes features such as automatic propagation of changes in the

description of one resource to the descriptions of other, related resources (e.g.,

propagation of changes in the taxonomical description of a LO to the taxonomical

description of any composite LOs depending on it, or updating a user’s personal profile

based on changes in their history of accesses to LOs), automatic notification to users of

the registration of new LOs of interest to them and of changes in the description of

resources of interest to them.

SeLeNe peers that support the Event and Change Notification service will have

installed an ECA Engine consisting of three main components: an Event Detector,

Condition Evaluator and Action Scheduler. The Event Detector determines which rules

have been triggered by the most recent update to the local description base, by invoking

the Query service to evaluate the event queries of rules that may have been triggered.

The Condition Evaluator then calls the Query service to determine which of the

triggered rules should fire. The Action Scheduler generates from the action parts of

these rules a list of updates, which are then passed to the Update service for execution.

Our RDF ECA rule language, RDFTL [20], is implemented over FORTH’s

RDFSuite query and update API [21]. In RDFTL, the event part of a rule is an

expression of one of the following three forms:

(i) (INSERT | DELETE) e [AS INSTANCE OF class]

This detects insertions or deletions of resources described by the expression e, which is

a path expression evaluating to a set of nodes, optionally followed by a clause AS

INSTANCE OF class. The rule is triggered if the set of nodes returned by e

includes any new node (in the case of an insertion) or any deleted node (in the case of a

deletion) that is an instance of the class, if specified. A system-defined variable

$delta is available for use within the condition and actions parts of the rule, and its

set of instantiations is the set of new or deleted nodes that have triggered the rule.

(ii) (INSERT | DELETE) triple

This detects insertions or deletions of arcs specified by triple, which has the form

(source, arc_name, target). The wildcard ‘_’ is allowed in the place of any of a triple’s

components. The rule is triggered if an arc labelled arc_name from the source node to

the target node is inserted/deleted. The variable $delta has as its set of instantiations

the triples which have triggered the rule. The individual components of one of these

triples can be referenced by $delta.source, $delta.arc_name, $delta.target.

(iii) UPDATE upd_triple

This detects updates of arcs, where upd_triple has the form (source, arc_name, old 

new). Here, old is the target node of arc arc_name from the source node before the

update, and new is its target node after the update. Again, the wildcard ‘_’ is allowed in

the place of any of these components. The rule is triggered if an arc labelled arc_name

from source changes its target from old to new. The variable $delta has as its set of

instantiations the triples which have triggered the rule. The individual components of

one of these triples can be obtained by $delta.source, $delta.arc_name,

$delta.old_target, $delta.new_target.

The condition part of a rule is a query consisting of conjunctions, disjunctions and

negations of path expressions. The actions part of a rule is a sequence of one or more

actions. Actions can INSERT or DELETE a resource – specified by its URI – and

INSERT, DELETE or UPDATE an arc. The actions language has the following form for

each one of these cases:

INSERT e AS INSTANCE OF class

DELETE e [AS INSTANCE OF class]

for inserting or deleting a resource;

(INSERT | DELETE) triple (',' triple)*

for inserting or deleting the specified arcs(s); and

UPDATE upd_triple (',' upd_triple)*

for updating arcs by changing their target node. Wildcards are allowed in place of some

of the components of triples, with the obvious semantics. We give two examples of

RDFTL rules below, which refer to the LO schema illustrated in Figure 1 and the

personal profile schema illustrated in Figure 4.

Firstly, if a LO is inserted whose subject (OOL, say) is the same as one of user

128’s goal topics, then the following rule adds a new arc linking the newly inserted LO

into the new_LOs collection in user 128’s personal messages:

ON INSERT resource() AS INSTANCE OF LearningObject

IF $delta/target(rdf:type)

 = resource(http://www.dcs.bbk.ac.uk/users/128)

 /target(ims-lip:goal)

 /target(ims-lip:goaldescription)

 /target(selene:goaltopic)

DO LET $new_los :=

 resource(http://www.dcs.bbk.ac.uk/users/128)

 /target(selene:messages)/target(selene:new_LOs)

 IN INSERT ($new_los,seq++,$delta);;

Here, the event part checks if a new resource belonging to the Learning

Object class has been inserted. The condition part checks if the inserted LO has a

subject which is the same as one of user 128’s goal topics. The LET clause defines the

variable $new_los to be user 128’s collection of new LOs. Finally, the INSERT

clause inserts a new arc from $new_los to the newly inserted LO (the syntax seq++

indicates an increment in the collection’s element count).

As a second example, if any property of a LO whose subject is the same as one of

user 128’s goal topics is updated, then the following rule adds a new arc linking user

128’s updated_LOs collection to the modified LO:

ON UPDATE (resource()AS INSTANCE OF LearningObject,_,_->_)

IF $delta/target(rdf:type)

 = resource(http://www.dcs.bbk.ac.uk/users/128)

 /target(ims-lip:goal)

 /target(ims-lip:goaldescription)

 /target(selene:goaltopic)

DO LET $updated_los :=

 resource(http://www.dcs.bbk.ac.uk/users/128)

 /target(selene:messages)

 /target(selene:updated_LOs)

 IN INSERT ($updated_los,seq++,$delta);;

We refer the reader to [20,22] for an overview of related work in ECA rule

languages, the syntax and semantics of RDFTL, conservative tests for determining the

termination and confluence of sets of RDFTL rules, and architecture, implementation

and performance details.

6. Concluding Remarks

This chapter has described several techniques for providing personalisation services in

self e-learning networks. Our use of RDF/S for representing the descriptions of

educational material and users within a SeLeNe has allowed us to reuse and extend as

necessary a number of existing metadata standards for learning objects and learners. It

has also allowed us to adopt a uniform approach to manipulating information about

learning objects and learners in the RQL, RVL and RDFTL languages, and a uniform

approach underpinning the SeLeNe personalisation services.

The novel aspects of the SeLeNe project compared with other peer-to-peer, RDF-

based systems for supporting e-learning (e.g. UNIVERSAL, Edutella, Elena1) included:

 the use of Semantic Web technologies to support the collaborative creation and

semi-automatic description of new composite LOs, which does not seem to be

addressed specifically by any other system and which gives users flexibility in the

generation of learning resources tailored to their needs;

 declarative views over combined RDFS/RDF descriptions (i.e. over both the LO

descriptions and their schemas) that ensure compositionality of queries with

views and mappings, giving users the power to narrow their view of a rich

information space to see only the parts of relevance to them;

 personalised event and change notification services, operating at the level of LO

or user RDF/S descriptions, allowing users to be kept up-to-date with relevant

changes and additions to a SeLeNe as it evolves;

 automatic generation of trails of LOs from their descriptions assists users in

planning individual learning paths.

Many open issues still remain. As the SeLeNe project was a feasibility study, the

complete architecture designed in the project and illustrated in Figure 2 was not

implemented, and therefore it was not possible to undertake a usability evaluation. The

facilities described in Sections 2, 3 and 5 were fully implemented and those in Section

4 partially implemented. The algorithms for personalised ranking of query results

remain to be empirically evaluated. This evaluation would need to include a study of

the comparative usefulness, for personalisation purposes, of the different cognitive

models included in our taxonomy of learning and cognitive styles.

There is still no standard query or update language for RDF, although we believe

that the RQL, RVL and RDFTL languages we have developed provide sound and

expressive foundations for the development of such standards, and also for

development of optimisation techniques for query, update and view languages over

RDF. Whatever standards eventually emerge for such RDF languages, if ECA rules

are to be supported on RDF repositories then the event sub-language for RDF ECA

rules needs to be designed so that it matches up with the actions sub-language. In

general, the ability to analyse and optimise ECA rules needs to be balanced against

their complexity and expressiveness. Another important open area is combining ECA

rules with transactions and consistency maintenance in RDF repositories.

Finally, in implementing a system such as this, the design of user interfaces

enabling easy and intuitive access to SeLeNe’s advanced personalisation services is

crucial – end-users will need to be shielded from the complexities of RDF and the RQL,

RVL and ECA languages, and also from the complex taxonomies of topics,

competencies and goals in use by the system.

1 http://www.ist-universal.org, http://edutella.jxta.org,
 http://www.elena-project.org

References

[1] The European Commission: CORDIS FP5web. See http://cordis.europa.eu/fp5/ (2002)

[2] Berners-Lee, T., Fielding, R., Masinter, L.: Request for Comments 2396: Uniform Resource Identifiers

(URI) Generic Syntax. See http://www.ietf.org/rfc/rfc2396.txt (1998)

[3] IEEE: Draft Standard For Learning Object Metadata. See

http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf (2002)

[4] Association for Computing Machinery: The ACM Computing Classification System (1998 Version).

See http://www.acm.org/class/1998/ (1998)

[5] Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema. W3C

Recommendation 10 February 2004. See www.w3.org/TR/rdf-schema (2004)

[6] Bloom, B. S., Krathwohl D. R. (Eds.): Taxonomy of educational objectives: The classification of

educational goals: Handbook I, cognitive domain. Longman, New York. (1956)

[7] Samaras, G., Karenos, K., Christodoulou, E.: A Grid service framework for Self e-Learning Networks.

See http://www.dcs.bbk.ac.uk/selene/reports/Del3.pdf (2003)

[8] Rigaux, P., Spyratos, N.: Generation and syndication of learning object metadata.

See http://www.dcs.bbk.ac.uk/selene/reports/Del4.1-2.2.pdf (2004)

[9] Magkanaraki, A., Tannen, V., Christophides, V., Plexousakis, D.: Viewing the Semantic Web Through
RVL Lenses. In: Web Semantics: Science, Services and Agents on the World Wide Web, Vol. 1(4),

2004, pp. 359-375
[10] Karvounarakis, G., Magkanaraki, A., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M., Tolle,

K.: RQL: A Functional Query Language for RDF. In: The Functional Approach to Data Management:

Modelling, Analyzing and Integrating Heterogeneous Data, P.M.D.Gray, L.Kerschberg, P.J.H.King,
A.Poulovassilis (Eds.), LNCS Series, Springer-Verlag, (2004)

[11] Athanasis, N., Christophides, V., Kotzinos D.: Generating On the Fly Queries for the Semantic Web:

The ICS-FORTH Graphical RQL Interface (GRQL). In: Proceedings of the Third International
Semantic Web Conference, Hiroshima, Japan, November 7-11, 2004. (2004)

[12] Kotzinos, D., Pediaditaki, S., Apostolidis, A., Athanasis, N., Christophides, V.: Online Curriculum on

the Semantic Web: The CSD-UoC Portal for Peer-to-peer e-learning. In: Proceedings of the 14th

International World Wide Web Conference (WWW'05), Chiba, Japan, May 10-14, 2005. (2005)

[13] LTSC Learner Model Working Group of the IEEE: IEEE P1484.2/D7, 2000-11-28 Draft Standard for

Learning Technology - Public and Private Information (PAPI) for Learners (PAPI Learner). IEEE,
(2000)

[14] Smythe, C., Tansey, F., Robson, R.: IMS Learner Information Package Information Model

Specification. See http://www.imsproject.org/profiles/lipinfo01.html (2001)
[15] Keenoy, K., Levene, M., Peterson, D.: Personalisation and trails in Self e-Learning Networks. See

http://www.dcs.bbk.ac.uk/selene/reports/Del4.2-1.4.pdf (2003)

[16] Anyanwu, K., Sheth, A. P.: Rho queries: enabling querying for semantic associations on the semantic

web. In: Proceedings of the Twelfth International World Wide Web Conference, WWW2003, pages

690-699, Budapest, Hungary, May 2003. ACM, (2003)
[17] Stojanovic, N., Studer, R., Stojanovic, L.: An approach for the ranking of query results in the Semantic

Web. In: Proceedings of ISWC 2003, Sanibel Island, Florida, USA, October 2003. LNCS 2870,

Springer (2003)
[18] Peterson, D., Levene, M.: Trail Records and Navigational Learning. London Review of Education, 1,

pp 207-216, (2003)

[19] Wheeldon, R., Levene, M.: The Best Trail algorithm for assisted navigation of web sites. In:
Proceedings of the 1st Latin American Web Congress (LA-WEB'03), Santiago, Chile (2003)

[20] Papamarkos, G., Poulovassilis, A., Wood, P.: Event-Condition-Action rules on RDF metadata in P2P

environments. Computer Networks 50(10), pp 1513-1532 (2006)
 [21] Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The ICS-FORTH

RDFSuite: Managing Voluminous RDF Description Bases. In: Proceedings of the 2nd International

Workshop on the Semantic Web (SemWeb 2001) (2001)
[22] Papamarkos, G., Event-Condition-Action Rule Languages over Semi-Structured Data, PhD Thesis,

University of London (2007).

