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Abstract
This paper presents an extensible architecture that can 
be used to support the integration of biological data 
sets. Biological research frequently requires this kind of 
synthesis. However, the data models on which biologi-
cal data sets have been constructed are heterogeneous 
and diffi cult to use together. Our architecture uses the 
AutoMed data integration toolkit to store the schemas 
of data sources, together with the  transformation from 
these schemas into a global integrated schema.  
The transformation encompasses two parts; the incre-
mental construction of a global schema which unifi es the 
various data source schemas, and the identifi cation of 
semantically identical labels for entities. 
Entities in the unifi ed resource are integrated using PFS-
cape. This categorises the entities into clusters based on 
sequence similarity, allowing the use of family informa-
tion in the annotation of expression data and experimen-
tal target selection. 

1. Introduction

The integration of multiple large, diverse biological 
data sets is a daunting problem. There are three  major 
obstacles. The fi rst is the use of different identifi ers for 
the same entities, the second the diversity of data models 
underpinning the biological data and fi nally the require-
ment to keep an integrated resource current. 

Even within a single data source different identifi ers 
are in use for the same entity. For example the Gene On-
tology refers to the Mouse Genome database as MGI, 
MGD and ‘MGI (presumably a data entry error). Further-
more there is widespread use of inappropriate identifi ers 
such as NCBI GI numbers. GI numbers identify a  sub-
mission to GenBank. If the submission is changed in any 

way a new GI is issued. As many people may sequence 
the same gene or peptide there are many GI numbers for 
a single entity. The GI cannot be used to determine which 
sequences in GenBank are the same.

A vast range of different identifi ers exist for the same 
or similar biological entities, so even if two data sources 
are perfectly maintained they may well be impossible to 
map together based on the identifi ers in use if they have 
chosen a different  set of reference identifi ers to use. 

The integration of facts about biological entities pre-
sented here is based on sequence similarity. Not only 
does this approach avoid the problematic use of identi-
fi ers completely, the use of metadata about how entities 
are related allows us to mine the information available 
about each family and not be limited to individual bio-
logical entities.

Each source of data has its own structure that is a 
consequence of the domain (biological focus) of the re-
source and the structure in which it is stored. This hetero-
geneity of structure makes it extremely diffi cult to design 
a generalised interface to multiple data sources and to 
integrate the information within those data sources. To be 
able to present a unifi ed view of the facts in the various 
resources requires the provision of an abstract interface 
to the underlying data stores. 

Our architecture uses an AutoMed metadata reposi-
tory to specify how each particular data structure can be 
transformed into an abstract form.  AutoMed is a data 
transformation and integration framework which can be 
used for both virtual and materialised data integration 
(see http://www.doc.ic.ac.uk/automed for a list of tech-
nical reports and papers relating to AutoMed).  It has a 
low-level hypergraph-based data model (the HDM) as its 
internal data model, and provides facilities for defi ning 
higher-level data models, e.g. the relational data model, 
XML and fl at fi le formats, in terms of this lower-level 
HDM.  AutoMed provides transformation primitives that 
can be used to transform one schema into another, or to 
integrate a number of data source schemas into a global 
schema.  Schemas are incrementally transformed by ap-
plying to them a  sequence of primitive transformations 

†School of Computer Science and Information Systems, 
Birkbeck College, London
*Department of Biochemistry, 
University College London



�������

��������

����������

������

����

�������

����

������

����
������

������

������

���������

������

���������

������

���������

������

��������������

��������

�����������

��������

���

�����������

������

���������

�������

�������

����
������

���������

������

�

�

�

Figure 1. Overview of the System Architecture. 
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 each of which changes the current schema by add-

ing, deleting or renaming just one schema construct. 
Each add or delete transformation is accompanied by 
a query  specifying the extent of the new or deleted 
construct in terms of the rest of the constructs in the 
schema.  These queries make possible automatic query 
and data translation between schemas linked by trans-
formation pathways. 

AutoMed metadata has enough expressivity to de-
scribe the data cleansing, integration and transforma-
tion processes of a data warehouse and this metadata 
can be used in warehouse activities such as populating 
the warehouse, incrementally maintaining it after data 
source updates, and tracing the lineage of the data with-
in it [1] .

The architecture presented here is currently being 
applied in the construction of the BioMap data ware-
house (see http://www.biochem.ucl.ac.uk/bsm/biomap). 
This warehouse incorporates protein family, structure, 
function, and pathway/process data, together with gene 
expression and other experimental data. Data mining 
and associated visualisation tools are being developed 

within the BioMap project which exploit the integration 
of expression data and knowledge of  protein families 
and functions within the warehouse in order to support 
the analysis of co-expressed genes and to drive experi-
mental design (e.g. knowledge based target selection for 
structural genomics programs). BioMap data sources 
currently include the EBI Macromolecular Structure 
Database (EBI-MSD) (http://www.ebi.ac.uk/msd [2]), 
CATH (http://www.biochem.ucl.ac.uk/bsm/cath [3]), 
KEGG (http://www.genome.ad.jp/kegg/), InterPro 
(http://www.ebi.ac.uk/interpro/), Gene Ontology (http://
www.geneontology.org/) and 10 other resources.

2. The System Architecture

 Figure 1 shows the main components and processes 
of our data integration system. 

Each data source has its own schema (A). There are 
two kinds of source schema, which are processed in the 
same way but contain different kinds of information. A 
data source schema is a source of information about 
a subset of entities in the warehouse as a whole and 



describes facts about those entities. Examples of this 
type of source schema are CATH or KEGG. A cluster 
schema contains information about how entities in the 
data sources relate to each other and can be used to cre-
ate groups of entities that are logically related in some 
way (e.g. sequence similarity). These schemas will usu-
ally have information about all the entities in  the data 
sources. 

An ancillary schema for each source schema (B) is 
constructed from the original source (A). The ancillary 
schema provides a persistent store of the entities from 
each source schema providing a non-volatile identifi er  
for each entitiy. This provides the information needed to 
keep the rest of the warehouse in sync with the changing 
content of the sources. 

An AutoMed repository (C) stores metadata which 
describes the relationships between the entities within a 
specifi c source/ancillary schema. This metadata is used  
by a transformation tool (D) to transform the data in 
the source/ancillary schemas into the schema of the ab-
straction database (E) and store it there. This abstrac-
tion database is currently a relational database. Data can 
then be used to construct tailored views and data marts 
through which users can access the data.  The abstrac-
tion database also allows the comparison of entities be-
tween different versions of a source: once changes be-

tween between different versions of a source have been 
identifi ed, they can be applied to the data in the abstrac-
tion database. The changes can then be propagated from 
there to the views and data marts.  

3. Schemas, Data and Metadata

3.1 Source Schemas and Data

The individual data sources contain a diverse set 
of  topics, data structures, formatting conventions and 
sizes. The resources describe structural, functional, se-
quence and ontological information. At least one source 
schema also contains the data required for the sequence 
family based integration of the sources. 

The storage structures vary from conventional rela-

tional structures, XML, to various fl at fi le formats. In-
ternally each resource uses different formatting conven-
tions so semantically identical cross-references between 
databases may not match in a string comparison. For 
example the GO term ‘GO:12345’ could be stored as 
‘12345’. The resources can also be very large. The EBI 
Macro-Molecular Structures Database requires over 
150Gb of storage space.  

3.2 Ancillary Schema

In many cases the schema of the original data source 
does not provide a simple identifi er for each entity 
within the data set and a composite key is required to 
be able to reliably identify a specifi c entity. Without a 
reliable identifi er for entities in a data source, the identi-
fi cation of changes between versions of the data source 
is extremely diffi cult. The ancillary tables provide these 
stable identifi ers. Tables 1-3 show an example set of ta-
bles in the ancillary schema  for the KEGG Orthology. 
Table 1 contains the principal ‘Orthology’ entity along 
with a set of facts pertaining to the entity. Table 2 de-
fi nes the Gene entities that the orthology contains. Table 
3 contains cross references to entities from other data 
sources. 

Only the facts that pertain to entity identifi cation are 

Table 1. Orthology
ID Entry EC Number Symbol Name

1 K00001 1.1.1.1 adh alcohol dehydrogenase

2 K00002 1.1.1.2 adh alcohol dehydrogenase (NADP+)

3 K00003 1.1.1.3 thrA homoserine dehydrogenase

4 K00004 1.1.1.4 (R,R)-butanediol dehydrogenase

5 K00005 1.1.1.6 gldA glycerol dehydrogenase

Table 2. Gene
ID Entry Species Gene ID Symbol

1 K00001 STY STY1493 adhP

2 K00001 STY STY3830

3 K00001 STY STY1302 adh

4 K00001 SAM MW0568 adh1

5 K00001 SAM MW0123 adhE

Table 3. Cross References
ID Entry Xref DB XRef ID

1 K00001 EC 1.1.1.1

2 K00001 GO 0004022

3 K00001 GO 0004023

4 K00001 COG COG1012

5 K00001 COG COG1062

6 K00002 EC 1.1.1.2



included in the ancillary tables, namely internal and ex-
ternal identifi ers of entities and classifi cations of those 
entities. Remaining information about a specifi c entity 
can be obtained by querying the source directly. 

The ancillary schemas provide an additional benefi t 
as they present a simplifi ed subset and relational view 
of the source data. There is no technical reason that the 
abstraction could not be derived directly from the origi-
nal  source schema assuming that it provides persist-
ent identifi ers. However using these ancillary schemas 
eases the task of describing the relationships within the 
data source and the transformation of the facts into an 
abstract form. 

3.3 Metadata Repository

The metadata repository stores information about 
each of the above schemas and the relationships be-
tween them. This information is used by the transfor-
mation tool to transform the source/ancillary data into 
the form required by the abstraction schema, and also to 
identify changes between versions of a data source. 

Two types of information are required for the trans-
formation of the source data. The fi rst is a defi nition 
of the relationships between the entities within a data 
source. For example, tables 1-3 contain instances of 
the relationships shown in Figure 2.   We see that an 
Orthology entity consists of an Entry (KEGG identifi -
er), an EC number, a symbol, a set of Gene Entities and 
a set of cross references to external resources. The Gene 
Entities themselves have an Entry, a symbol, a gene ID 
and a species. The metadata repository describes this set 
of relationships and how they map onto the tables of the 

abstraction schema (see below).
The metadata repository also stores information on 

standardisation of identifi er formatting. For the abstrac-
tion database to be as useful as possible it must store 

identifi ers that are used in multiple resources in a stand-
ardised fashion. Using the example of a GO term as 
above; if the standardised form for a GO Term has been 
defi ned as the string ‘GO:’ followed by a string of digits 
then any GO Terms stored as a string of digits should 
have the ‘GO:’ string prepended. AutoMed is used to 
store a transformation from one format to the other  in 
the same way it stores the information required for the 
transformation of schema structures. 

3.4 Abstraction Schema

The abstraction schema consists of a table contain-
ing each fact, and one or more mapping tables that en-
capsulate the relationships between facts, as defi ned in 
the metadata repository.  

The fact table contains the source table for each fact 
(schema and table name) and the primary key for that 
table. This allows the precise identifi cation of a fact in 
the source table within the ancillary schema. Each fact 
is typed and the value of the fact and its type stored (af-
ter it has been correctly formatted based on the informa-
tion stored in the AutoMed repository).  The fact table is 
suffi cient to store all the facts from a source schema but 
does not allow you to correctly connect the facts into the 
networks as described by Figure 2. 

The connections between the facts form a graph that 
is described in  additional tables [4] and can be used 
to extract the related entities from the fact table. There 
is no inherent limitation to the type of mapping data 
stored. The mapping between the entities may be a sim-
ple binary graph describing parent-child relationship. 
Complex graph objects are also supported. More com-
plex graphs provide a basis to represent the emergent 
networks between the biological entities in the various 
data sources. 

4. Maintenance

A data warehouse must be kept up to date to be use-
ful. The abstraction database provides a persistent store 
of the entities within each resource in a standardised 
format.  When a resource is updated, the data from that 
source can be transformed into the form of  the abstrac-
tion schema, and can then be compared to the existing 
facts in the abstraction databasse. In this way, entities 
that have changed, been added, or been deleted can be 
identifi ed and updated in the abstraction database. Once 
the abstraction database has been brought up to date, 
the changes can then propagate to the various views and 
data marts derived from it.  

The abstraction database allows changes in the 
source schemas to be isolated from applications. This 
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Figure 2. Entity Relationship diagram for Enti-
ties in Tables 1-3.



method also allows the addition or subtraction of entire 
resources, for example a new biological database could 
be added and simply combined with the data already 
present within the abstraction database. Once such ad-
ditions, modifi cations or deletions have taken place, ap-
plications can be modifi ed as needed to take advantage 
of any extra data.  Such modifi cations will be simple as 
the abstraction schema upon which they are based will 
not have changed.

5. Integration

The abstraction of the facts from the individual re-
sources supports a standardised interface to the facts in 
each member data set. The standardisation of identifi ers 
allows an improvement in the integration of the data 
sets. However the overlap based on identifi ers is rela-
tively low, below 40% in some cases, even when the 
data sets are nominally describing the same entities. 

There are a variety of methods of classifying bio-
logical entities into sets and these methods can be used 
on the facts within the data warehouse. The facts con-
cerning individual entities within a set will not all de-
rive from precisely the same biological entity, but by 
choosing an appropriate algorithm to create the sets, the 
set will contain valuable information about biological 
entities that are similar (in some way) to each other. One 
such categorisation method is UniGene (http://www.
ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene). Our 
categorisation method is based on the PFScape proto-
col [5] which is in turn based on the TRIBE-MCL al-
gorithm [6]. 

The use of sequence families to identify clusters or 
groups of similar or related entities allows a signifi cant 
improvement in the possible annotation of the indi-
vidual members of a group. Sequences are assigned to 
clusters based on levels of sequence similarity (100% 
to <35%) with facts recorded in a data set also being 
assigned to these clusters. The approach supports the 
integration of multiple data sets at a level of similarity 
appropriate to the type of data being integrated. Protein 
structure is conserved at low levels of sequence simi-
larity compared to function and therefore clusters with 
lower levels of similarity can be used when structural 
annotation is desired rather than functional.

While the use of sequence families is described here, 
other methods of classifi cation could be used, these in-
clude structural and many other approaches. Whichever 
approach is chosen, the classifi cation of each entity is 
represented as a data set in the same manner as each 
of the other data sets. The classifi cation information is 
thereby included in the abstraction database which can 
then support queries to return sets of data relevant to 

particular categories of entities. 

6. Conclusions

At the present time the integration of biological data 
sets is extremely diffi cult. The problem is well recog-
nised within the community and a number of efforts 
have been initiated to help overcome the problems. Over 
the next few years the situation will improve  as various 
projects (e.g. UniProt - http://www.ebi.ac.uk/uniprot/) 
mature and more standard identifi ers increasingly be-
come available and are used in more data sources. 

Even with the increased use of standard identifi ers 
most of the problems of integrating biological, or any 
diverse group of data sets, will remain. The ability to 
abstract the data and treat many resources in a similar 
manner allows the construction of tools to keep the data 
on which applications depend up to date, while integrat-
ing the data in a fl exible and powerful manner. The use 
of family based data to annotate entities provides valu-
ble information  that would otherwise be missed. 

The solutions presented in this paper provide an 
extensible approach to providing an abstract interface 
to these diverse resources. This abstract interface can 
then be used to maintain a wide variety of applications, 
including data marts, specialised applications and web 
services. 
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