
Schema Evolution in Data Warehousing

Environments � a schema transformation�based

approach

Hao Fan� Alexandra Poulovassilis

School of Computer Science � Information Systems� Birkbeck College�
University of London� Malet Street� London WC�E �HX

fhao� apg�dcs�bbk�ac�uk

Abstract� In heterogeneous data warehousing environments� autono�
mous data sources are integrated into a materialised integrated database�
The schemas of the data sources and the integrated database may be ex�
pressed in di�erent modelling languages� It is possible for either the data
source schemas or the warehouse schema to evolve� This evolution may
include evolution of the schema� or evolution of the modelling language
in which the schema is expressed� or both� In such scenarios� it is impor�
tant for the integration framework to be evolvable� so that the previous
integration e�ort can be reused as much as possible� This paper describes
how the AutoMed heterogeneous data integration toolkit can be used to
handle the problem of schema evolution in heterogeneous data warehous�
ing environments� This problem has been addressed before for speci	c
data models� but AutoMed has the ability to cater for multiple data
models� and for changes to the data model�

� Introduction

With the increasing use of the Internet in distributed applications� data ware�
houses may integrate data from remote� heterogeneous� autonomous data sources�
The heterogeneity of these data sources has two aspects� heterogeneous data
expressed in di�erent data models� called model heterogeneity ����� and hetero�
geneous data within di�erent data schemas expressed in the same data model�
called schema heterogeneity ���� �	�� The common approach to handling model
heterogeneity is to use a single conceptual data model
CDM� for the data trans�
formation�integration� Each data source has a wrapper for translating its schema
and data into the CDM� The warehouse schema is derived from these CDM
schemas by means of view de
nitions� and is expressed in the same modelling
language as them� With this approach� since they are both high�level conceptual
data models� semantic mismatches may occur between the CDM and a source
data model� and there may be a loss of information between them� Moreover�
if a data source schema changes� it is not straightforward to evolve the view
de
nitions of the warehouse schema�

Lakshmanan et al ���� argue that a uniform framework for schema integra�
tion and schema evolution is both desirable and possible� and this is our view

�

also� They de
ne a higher�order logic language� SchemaSQL� which handles both
data integration and schema evolution in relational multi�database systems� In
contrast� our approach uses a simple set of schema transformation primitives�
augmented with a functional query language� both of which are uniformly ap�
plicable to multiple data models� Other previous work on schema evolution� e�g�
������ has also presented approaches in terms of just one data model�

AutoMed is a heterogeneous data transformation and integration system
which o�ers the capability to handle data integration across multiple data mod�
els�� In ��� we discussed how AutoMed metadata can be used to express the
schemas and the cleansing� transformation and integration processes in hetero�
geneous data warehouse environments� supporting both schema heterogeneity
and model heterogeneity� We discussed how this metadata can be used to pop�
ulate and incrementally maintain the warehouse� and any data marts derived
from it� and also to trace the lineage of data in the warehouse or the data marts�
It is clearly advantageous to be able to reuse this kind of metadata if a schema
evolves� In this paper we show how this can be achieved�

Earlier work ���� has shown how the AutoMed framework readily supports
schema evolution in virtual data integration scenarios� In this paper we address
the problem of schema evolution in materialised data integration scenarios� in�
cluding both evolution of a source schema and of the warehouse schema� and also
the impact on any data marts derived from the warehouse� This scenario is more
complex than with virtual data integration� since both schemas and materialised
data may be a�ected by an evolution�

The outline of the paper is as follows� Section � gives an overview of the
AutoMed framework� Section � describes how AutoMed transformations can
be used to express a schema evolution if either the schema changes� or the data
model changes� or both� Section � describes the actions that are taken in order to
evolve these transformations and the materialised data if the warehouse schema
or a local schema evolves� Section � discusses the bene
ts of our approach and
gives our concluding remarks�

� Overview of AutoMed

AutoMed supports a low�level hypergraph�based data model
HDM�� Higher�
level modelling languages are de
ned in terms of this HDM� For example� pre�
vious work has shown how relational� ER� OO ����� XML ����� �at�
le ��� and
multidimensional ��� data models can be so de
ned� An HDM schema consists of
a set of nodes� edges and constraints� and each modelling construct of a higher�
level modelling language is speci
ed as some combination of HDM nodes� edges
and constraints� For any modelling languageM speci
ed in this way
via the API
of AutoMed�s Model De
nitions Repository ����� data source wrappers translate
data source schemas expressed inM into their AutoMed representation� without
loss of information� AutoMed also provides a set of primitive schema transforma�
tions that can be applied to schema constructs expressed inM� In particular� for

� See http���www�doc�ic�ac�uk�automed�

�

every construct ofM there is an add and a delete primitive transformation which
add to�delete from a schema an instance of that construct� For those constructs
ofM which have textual names� there is also a rename primitive transformation�

In AutoMed� schemas are incrementally transformed by applying to them a
sequence of primitive transformations t�� � � � � tr� Each primitive transformation
adds� deletes or renames just one schema construct� Thus� intermediate schemas
may contain constructs of more than one modelling language�

Each add or delete transformation is accompanied by a query specifying the
extent of the new or deleted construct in terms of the rest of the constructs in
the schema� This query is expressed in a functional query language IQL
see Sec�
tion ����� Also available are contract and extend transformations which behave
in the same way as add and delete except that they indicate that their accompa�
nying query may only partially construct the extent of the new�removed schema
construct� Moreover� their query may just be the constant Void� indicating that
the extent of the new�removed construct cannot be derived even partially� in
which case the query can be omitted�

We term a sequence of primitive transformations from one schema S� to
another schema S� a transformation pathway from S� to S�� denoted S� � S��
All source� intermediate� and integrated schemas� and the pathways between
them� are stored in AutoMed�s Schemas � Transformations Repository ����

The queries present within transformations that add or delete schema con�
structs mean that each primitive transformation t has an automatically derivable
reverse transformation� t� In particular� each add�extend transformation is re�
versed by a delete�contract transformation with the same arguments� while each
rename transformation is reversed by swapping its two arguments� Thus� Au�
toMed is a both�as�view
BAV� data integration system� As discussed in �����
BAV subsumes the global�as�view
GAV� and local�as�view
LAV� approaches
����� since it is possible to extract a de
nition of each global schema construct as
a view over source schema constructs� and it is also possible to extract de
nitions
of source schema constructs as views over the global schema� We refer the reader
to ��� for details of AutoMed�s GAV and LAV view generation algorithms�

Figure � illustrates the general integration scenario with AutoMed� Each data
source is described by a local schema LSi� Each LSi is
rst conformed into a
schema CSi
which may or may not be expressed in the same modelling language
as LSi� by means of a transformation pathway Ti� Not all of the information
within a local schema LS i need be transferred into the global schema and this is
asserted by means of contract transformation steps within Ti� Conversely� there
may be information within the global schema which is not semantically derivable
from LSi� and this is asserted by the pathway from CSi to a �union�schema� USi
which consists of the necessary extend transformations��

All the union schemas US�� � � � � USn are syntactically identical and this is
asserted by creating a sequence of id transformations between each pair US i
and US i��� of the form id US i � c US i�� � c for each schema construct c� An
id transformation signi
es the semantic equivalence of syntactically identical

� If there are none� then this pathway is empty and CSi and USi are the same schema

�

constructs in di�erent schemas� The transformation pathways containing these
id transformations are automatically generated by the AutoMed software� An
arbitrary one of the US i
US in Figure �� can then be selected for further
transformation into the global schema GS
by the pathway Tu in Figure ��� The
extent of each construct c in a union schema USi is equal to the bag�union of
the extent of c in all union schemas US�� � � � � USn� That is� id is interpreted as
bag union by AutoMed�s view generation functionality�

In a virtual data integration scenario� there is no materialised data associated
with any of the schemas apart from the LSi� In a data warehousing scenario�
as illustrated in Figure �� we assume that CS�� � � � � CSn are fully materialised
and consist of the detailed data of the warehouse� This detailed data is further
augmented with the necessary summary views by the transformations in the
pathway Tu� and we assume that these summary views are materialised in the
database GD� It would also be possible to partially or fully materialise more of
the intermediate schemas in the network� or to not materialise CS�� � � � � CSn and
to fully materialise GS instead� Our techniques in this paper easily generalise to
these alternatives�

LS 1

LD 1

LS 2

LD 2

LS i

LD i

LS n

LD n

CS1 CS2 CSi CSn

CD1

G S

GD

T1 T2 Ti Tn

Tu

Local
Schem as and
Databases

Union
Schem as

The Global
Schem a and
Database

CD2 CDnCDi

US1 US2 US USn
id

Conform ed
Schem as and
Databases

.....

idid

Fig� �� Materialised Data Integration in AutoMed

For the purposes of this paper� we assume that all the LSi and LDi have
been extracted from the original data sources and the data in the LDi has
been cleansed� The data cleansing process can also be expressed using AutoMed
transformations � this is discussed in ��� and we do not consider it further here�
See also that paper for some examples of how AutoMed transformations can
express structural and representational changes to schemas and data�

We also assume here that there are no contract steps in the pathways Ti� i�e�
that all the information in each LSi will be transferred to CS i and hence to USi�
This implies no loss of �exibility as each LSi will be precisely that extract of the

�

original data source schema whose associated data is to be transferred into the
warehouse�

��� The IQL query language

IQL is a comprehensions�based functional query language�� Such languages sub�
sume query languages such as SQL and OQL in expressiveness ���� IQL supports
several primitive operators for manipulating lists� The list append operator� ���
concatenates two lists together� The distinct operator removes duplicates from
a list and the sort operator sorts a list� The �� operator takes two lists and sub�
tracts each member of the second list from the
rst e�g� ���������������������� �
������ The fold operator applies a given function f to each element of a list and
then �folds� a binary operator op into the resulting values� It is de
ned recursively
as follows� where �x�xs� denotes a list with head x and tail xs�

fold f op e �� � e

fold f op e �x�xs� � �f x� op �fold f op e xs�

Other IQL list manipulation operators are de
ned using fold together with
IQL�s set of built�in operators and its support of lambda abstractions� For ex�
ample� the IQL functions sum and count are equivalent to SQL�s SUM and
COUNT aggregation functions and are de
ned as

sum xs � fold �id� ��� 	 xs

count xs � fold �lambda x
�� ��� 	 xs

We also have
min xs � fold �id� lesser maxNum xs

max xs � fold �id� greater minNum xs

assuming constants maxNum and minNum and the following functions lesser and
greater�

greater � lambda x
lambda y
if �x � y� then x else y

lesser � lambda x
lambda y
if �x
 y� then x else y

The function flatmap applies a list�valued function f to each member of a list
xs and is de
ned in terms of fold�

flatmap f xs � fold f ���� �� xs

flatmap can in turn be used to de
ne selection� projection and join operators
and� more generally� comprehensions� For example� the following comprehen�
sion iterates through a list of students and returns those students who are not
members of sta��

�x � x
�

student��� not �member

staff�� x��

and it translates into�
flatmap �lambda x
if �not �member

staff�� x��

then �x� else ���

student��

Grouping operators are also de
nable in terms of fold� In particular� the opera�
tor group takes as an argument a list of pairs xs and groups them on their
rst
component� while gc aggFun xs groups a list of pairs xs on their
rst component
and then applies the aggregation function aggFun to the second component�

� We refer the reader to
�� for details of IQL�

�

There are several algebraic properties of IQL�s operators that we can use
in order to incrementally compute materialised data and to reason about IQL
expressions� speci
cally for the purposes of this paper in a schema�data evolu�
tion context
note that the algebraic properties of fold below apply to all the
operators de
ned in terms of fold��

a� e �� �� � �� �� e � e� e �� �� � e� �� �� e � ���

distinct �� � sort �� � ��

for any list�valued expression e� Since Void represents a construct for which
no data is obtainable from a data source� it has the semantics of the empty
list� and thus the above equivalences also hold if Void is substituted for ���

b� fold f op e �� � fold f op e Void � e� for any f� op� e

c� fold f op e �b� �� b�� � �fold f op e b�� op �fold f op e b��

for any f� op� e� b�� b�� Thus� we can always incrementally compute the
value of fold�based functions if collections expand�

d� fold f op e �b� �� b�� � �fold f op e b�� op� �fold f op e b��

provided there is an operator op� which is the inverse of op i�e� such that
�a op b� op� b � a for all a�b� For example� if op � � then op� � ��
and thus we can always incrementally compute the value of aggregation
functions such as count� sum and avg if collections contract� Note that this
is not possible for min and max since lesser and greater have no inverses�
Although IQL is list�based� if the ordering of elements within lists is ignored
then its operators are faithful to the expected bag semantics� and within
AutoMed we generally do assume bag semantics� Under this assumption�
�xs �� ys� �� ys � xs

for all xs�ys and thus we can incrementally compute the value of flatmap
and all its derivative operators if collections contract��

��� An Example

We will use schemas expressed in a simple relational data model and a simple
XML data model to illustrate our techniques� However� we stress that these
techniques are applicable to schemas de
ned in any data modelling language
that has been speci
ed within AutoMed�s Model De
nitions Repository�

In the simple relational model� there are two kinds of schema construct� Rel
and Att� The extent of a Rel construct hhRii is the projection of the relation R

onto its primary key attributes k�� ���� kn� The extent of each Att construct hhR� aii
where a is an attribute
key or non�key� of R is the projection of relation R onto
k�� ���� kn� a� For example� the schema of table MAtab in Figure � consists of a
Rel construct hhMAtabii� and four Att constructs hhMAtab�Deptii� hhMAtab�CIDii�
hhMAtab� SIDii� and hhMAtab�Markii� We refer the reader to ���� for an encoding
of a richer relational data model� including the modelling of constraints�

In the simple XML data model� there are three kinds of schema construct�
Element� Attribute and NestSet� The extent of an Element construct hheii consists

� The distinct operator can also be used to obtain set semantics� if needed�

�

of all the elements with tag e in the XML document� the extent of each Attribute
construct hhe� aii consists of all pairs of elements and attributes x� y such that
element x has tag e and has an attribute a with value y� and the extent of each
NestSet construct hhp� cii consists of all pairs of elements x� y such that element x
has tag p and has a child element y with tag c� We refer the reader to ���� for an
encoding of a richer model for XML data sources� called XMLDSS� which also
captures the ordering of children elements under parent elements and cardinality
constraints� That paper gives an algorithm for generating the XMLDSS schema
of an XML document� That paper also discusses a unique naming scheme for
Element constructs so as to handle instances of the same element tag occurring
at multiple positions in the XMLDSS tree�

Figure � illustrates the integration of three data sources LD� � LD� � and LD� �
which respectively store students� marks for three departments MA� IS and CS�

LD 1 :

M AC02

SID M ark

M AS01 82

M AS03 88

SID M ark

M AS01 77

M AS02 85

M AC01

M AC03

SID M ark

M AS02 76

M AS03 78

Dept CID SID CNam e M ark

IS ISC01 ISS01 M ath 76

...

CD2 : IStab
Dept CID SID M ark

M A M AC01 M AS01 77

...

CD1 : M Atab

<?XM L version='1.0?'>
- <root>
 - <course CID="ISC01" cnam e="M ath">
 <student SID="ISS01" m ark="76" />
 <student SID="ISS02" m ark="78" />
 </course>
 - <course CID="ISC02" cnam e="Program m ing">
 <student SID="ISS01" m ark="86" />
 <student SID="ISS02" m ark="85" />
 </course>
 </root>

LD 2 : IS

Dept CID SID SNam e M ark

CS CSC01 CSS01 Jack 95

...

CD3 : CStab

Sid SNam e CSC01 CSC02 CSC03

CSS01 Jack 95 82 75

CSS02 Tom 88 94 81

LD 3 : CSM arks

Dept CID Total Avg

M A M AC01 162 81

M A M AC02 170 85

...

CS CSC03 156 78

GD : CourseSum

Fig� �� An example integration

Database LD� for department MA has one table of students� marks for each
course� where the relation name is the course ID� Database LD� for department
IS is an XML
le containing information of course IDs� course names� student IDs
and students� marks� Database LD� for department CS has one table containing
one row per student� giving the student�s ID� name� and mark for the courses
CSC	�� CSC	� and CSC	�� CD�� CD�� and CD� are the materialised conformed
databases for each data source� Finally� the global database GD contains one
table CourseSum
Dept�CID�Total�Avg� which gives the total and average mark
for each course of each department� Note that the virtual union schema US

not shown� combines all the information from all the conformed schemas and
consists of a virtual table Details
Dept�CID�SID�CName�SName�Mark��

The following transformation pathways express the schema transformation
and integration processes in this example� Due to space limitations� we have not
given the remaining steps for deleting�contracting the constructs in the source
schema of each pathway
note that this �growing� and �shrinking� of schemas is
characteristic of AutoMed schema transformation pathways��

	

T� � LS� � CS�
addRel hhMAtabii ���MA���MAC����x��x�hhMAC��ii� �� ���MA���MAC����x��x�hhMAC��ii�

�����MA���MAC�	��x��x�hhMAC��ii�	
addAtt hhMAtab�Deptii ��k��k��k	�k����k��k��k	��hhMAtabii�	
addAtt hhMAtab�CIDii ��k��k��k	�k����k��k��k	��hhMAtabii�	
addAtt hhMAtab� SIDii ��k��k��k	�k	���k��k��k	��hhMAtabii�	
addAtt hhMAtab�Markii ���MA���MAC����k�x���k�x��hhMAC���Markii�

�����MA���MAC����k�x���k�x��hhMAC���Markii�
�����MA���MAC�	��k�x���k�x��hhMAC���Markii�	

delAtt hhMAC���Markii ��k	�x���k��k��k	�x��hhMAtab�Markii	 k�
�MAC����	
delAtt hhMAC��� SIDii ��k	�x���k��k��k	�x��hhMAtab� SIDii	 k�
�MAC����	
delRel hhMAC��ii ��k	���k��k��k	��hhMAtabii	 k�
�MAC����
���

The removal of the other two tables in LS� is similar�

T� � LS� � CS�
addRel hhIStabii ���IS��x�y���c�x��hhcourse� CIDii	 �s�y��hhstudent� SIDii�	
addAtt hhIStab�Deptii ��k��k��k	�k����k��k��k	��hhIStabii�	
addAtt hhIStab�CIDii ��k��k��k	�k����k��k��k	��hhIStabii�	
addAtt hhIStab� SIDii ��k��k��k	�k	���k��k��k	��hhIStabii�	
addAtt hhIStab�CNameii ���IS��x�y�n���c��x��hhcourse� CIDii	 �c��n��hhcourse� cnameii	 c�
c�	

�c	�s���hhcourse� studentii	 c	
c�	 �s��y��hhstudent� SIDii	 s�
s��	
addAtt hhIStab�Markii ���IS��x�y�m���c��x��hhcourse� CIDii	 �c��s���hhcourse� studentii	 c�
c�	

�s��y��hhstudent� SIDii	 s�
s�	 �s	�m��hhstudent�markii	 s	
s��	
���

T� � LS� � CS�
addRel hhCStabii ���CS��x�y��x���CSC�����CSC�����CSC�	��	 y�hhCSMarksii�	
addAtt hhCStab�Deptii ��k��k��k	�k����k��k��k	��hhCStabii�	
addAtt hhCStab�CIDii ��k��k��k	�k����k��k��k	��hhCStabii�	
addAtt hhCStab� SIDii ��k��k��k	�k	���k��k��k	��hhCStabii�	
addAtt hhCStab� SNameii ���CS��x�k�s��x���CSC�����CSC�����CSC�	��	 �k�s��hhCSMarks� SNameii�	
addAtt hhCStab�Markii ���CS���CSC����k�x���k�x��hhCSMarks�CSC��ii�

�����CS���CSC����k�x���k�x��hhCSMarks�CSC��ii�
�����CS���CSC�	��k�x���k�x��hhCSMarks�CSC��ii�	

���

Tu � US � GS
addRel hhCourseSumii distinct ��k��k	���k��k��k	��hhDetailsii�	
addAtt hhCourseSum�Deptii ��k��k��k����k��k���hhCourseSumii�	
addAtt hhCourseSum�CIDii ��k��k��k����k��k���hhCourseSumii�	
addAtt hhCourseSum�Totalii ��x�y�z�j��x�y��z��

gc sum ���k��k	��x���k��k��k	�x��hhDetails�Markii���	
addAtt hhCourseSum�Avgii ��x�y�z�j��x�y��z��

gc avg ���k��k	��x���k��k��k	�x��hhDetails�Markii���	
���

� Expressing Schema and Data Model Evolution

In a heterogeneous data warehousing environment� it is possible for either a
data source schema or the integrated database schema to evolve� This schema
evolution may be a change in the schema� or a change in the data model in
which the schema is expressed� or both� AutoMed transformations can be used
to express the schema evolution in all three cases�

a� Consider
rst a schema S expressed in a modelling languageM� We can ex�
press the evolution of S to Snew� also expressed inM� as a series of primitive
transformations that rename� add� extend� delete or contract constructs ofM�
For example� suppose that the relational schema LS� in the above example

�

evolves so its three tables become a single table with an extra column for
the course ID� This evolution is captured by a pathway which is identical to
the pathway LS� � CS� given above�
This kind of transformation that captures well�known equivalences between
schemas can be de
ned in AutoMed by means of a parametrised transforma�
tion template which is schema� and data�independent� When invoked with
speci
c schema constructs and their extents� a template generates the appro�
priate sequence of primitive transformations within the Schemas � Trans�
formations Repository � see ��� for details�

b� Consider now a schema S expressed in a modelling languageM which evolves
into an equivalent schema Snew expressed in a modelling languageMnew� We
can express this translation by a series of add steps that de
ne the constructs
of Snew inMnew in terms of the constructs of S inM� At this stage� we have
an intermediate schema that contains the constructs of both S and Snew�
We then specify a series of delete steps that remove the constructs ofM
the
queries within these transformations indicate that these are now redundant
constructs since they can be derived from the new constructs��
For example� suppose that XML schema LS� in the above example evolves
into an equivalent relational schema consisting of single table with one col�
umn per attribute of LS�� This evolution is captured by a pathway which is
identical to the pathway LS� � CS� given above�
Again� such generic inter�model translations between one data model and
another can be de
ned in AutoMed by means of transformation templates�

c� Considering
nally to an evolution which is both a change in the schema
and in the data model� this can be expressed by a combination of
a� and

b� above� either
a� followed by
b�� or
b� followed by
a�� or indeed by
interleaving the two processes�

� Handling Schema Evolution

In this section we consider how the general integration network illustrated in
Figure � is evolvable in the face of evolution of a local schema or the warehouse
schema� We have seen in the previous section how AutoMed transformations can
be used to express the schema evolution if either the schema or the data model
changes� or both� We can therefore treat schema and data model change in a
uniform way for the purposes of handling schema evolution� both are expressed
as a sequence of AutoMed primitive transformations� in the
rst case staying
within the original data model� and in the second case transforming the original
schema in the original data model into a new schema in a new data model�

In this section we describe the actions that are taken in order to evolve the
integration network of Figure � if the global schema GS evolves
Section ���� or
if a local schema LSi evolves
Section ����� Given an evolution pathway from a
schema S to a schema Snew� in both cases each successive primitive transforma�
tion within the pathway S � Snew is treated one at a time� Thus� we describe
in sections ��� and ��� the actions that are taken if S � Snew consists of just

��

one primitive transformation� If S � Snew is a composite transformation� then
it is handled as a sequence of primitive transformations� Our discussion below
assumes that the primitive transformation being handled is adding� removing
or renaming a construct of S that has an underlying data extent� We do not
discuss the addition or removal of constraints here as these do not impact on
the materialised data� and we make the assumption that any constraints in the
pathway S � Snew have been veri
ed as being valid�

��� Evolution of the global schema

Suppose the global schema GS evolves by means of a primitive transformation
t into GSnew � This is expressed by the step t being appended to the pathway
Tu of Figure �� The new global schema is GSnew and its associated extension is
GDnew � GS is now an intermediate schema in the extended pathway Tu� t and
it no longer has an extension associated with it� t may be a rename� add� extend�
delete or contract transformation� The following actions are taken in each case�

�� If t is rename c c�� then there is nothing further to do� GS is semantically
equivalent to GSnew and GDnew is identical to GD except that the extent
of c in GD is now the extent of c� in GDnew�

�� If t is add c q� then there is nothing further to do at the schema level� GS is
semantically equivalent to GSnew � However� the new construct c in GDnew

must now be populated� and this is achieved by evaluating the query q over
GD �

�� If t is extend c� then the new construct c in GDnew is populated by an empty
extent� This new construct may subsequently be populated by an expansion
in a data source
see Section �����

�� If t is delete c q or contract c� then the extent of c must be removed from GD

in order to createGDnew
it is assumed that this a legal deletion�contraction�
e�g if we wanted to delete�contract a table from a relational schema� then

rst the constraints and then the columns would be deleted�contracted and
lastly the table itself� such syntactic correctness of transformation pathways
is automatically veri
ed by AutoMed�� It may now be possible to simplify
the transformation network� in that if Tu contains a matching transformation
add c q or extend c� then both this and the new transformation t can be
removed from the pathway US � GSnew� This is purely an optimization �
it does not change the meaning of a pathway� nor its e�ect on view generation
and query�data translation� We refer the reader to ���� for details of the
algorithms that simplify AutoMed transformation pathways�

In cases � and � above� the new construct c will automatically be prop�
agated into the schema DMS of any data mart derived from GS � To prevent
this� a transformation contract c can be pre
xed to the pathway GS � DMS �
Alternatively� the new construct c can be propagated to DMS if so desired� and
materialised there� In cases � and � above� the change in GS and GD may
impact on the data marts derived from GS � and we discuss this in Section ����

��

��� Evolution of a local schema

Suppose a local schema LSi evolves by means of a primitive transformation t

into LSnewi � As discussed in Section �� there is automatically available a reverse
transformation t from LSnewi to LS i and hence a pathway t�Ti from LSnewi to
CS i� The new local schema is LSnewi and its associated extension is LDnew

i �
LSi is now just an intermediate schema in the extended pathway t�Ti and it no
longer has an associated extension�

tmay be a rename� add� delete� extend or contract transformation� In ��� below
we see what further actions are taken in each case for evolving the integration
network and the downstream materialised data as necessary�

We
rst introduce some necessary terminology� If p is a pathway S � S� and
c is a construct in S� we denote by descendants
c� p� the constructs of S� which
are directly or indirectly dependent on c� either because c itself appears in S�

or because a construct c� of S� is created by a transformation add c� q within p

where the query q directly or indirectly references c� The set descendants
c� p�
can be straight�forwardly computed by traversing p and inspecting the query
associated with each add transformation within in�

�� If t is rename c c�� then schema LSnewi is semantically equivalent to LS i� The
new transformation pathway Tnew

i � LSnewi �CS i is t�Ti � rename c� c�Ti�
The new local database LDnew

i is identical to LD i except that the extent of
c in LD i is now the extent of c� in LDnew

i �
�� If t is add c q� then LS i has evolved to contain a new construct c whose

extent is equivalent to the expression q over the other constructs of LS i�
The new transformation pathway Tnew

i �LSnewi �CS i is t�Ti � delete c q�Ti�
�� If t is delete c q� this means that LS i has evolved to not include a construct

c whose extent is derivable from the expression q over the other constructs
of LS i� and the new local database LDnew

i no longer contains an extent for
c� The new transformation pathway Tnew

i �LSnewi �CS i is t�Ti � add c q�Ti�

In the above three cases� schema LSnewi is semantically equivalent to LS i�
and nothing further needs to be done to any of the transformation pathways�
schemas or databases CD�� � � � � CDn and GD� This may not be the case if t is
a contract or extend transformation� which we consider next�

�� If t is extend c� then there will be a new construct available from LSnewi

that was not available before� That is� LSi has evolved to contain the new
construct c whose extent is not derivable from the other constructs of LSi �
If we left the transformation pathway Ti as it is� this would result in a
pathway Tnew

i � contract c�Ti from LSnewi to CSi � which would immediately
drop the new construct c from the integration network� That is� Tnew

i is
consistent but it does not utilize the new data�

However� recall that we said earlier that we assume no contract steps in the
pathways from local schemas to their union schemas� and that all the data in
LS i should be available to the integration network� In order to achieve this� there
are four cases to consider�

��

a� c appears in USi and has the same semantics as the newly added c in LSnewi �
Since c cannot be derived from the original LS i� there must be a transfor�
mation extend c� in CSi � USi�
We remove from Tnew

i the new contract c step and this matching extend c

step� This propagates c into CSi� and we populate its extent in the materi�
alised database CDi by replicating its extent from LDnew

i �

b� c does not appear in USi but it can be derived from USi by means of some

transformation T �
In this case� we remove from Tnew

i the
rst contract c step� so that c is now
present in CSi and in USi� We populate the extent of c in CDi by replicating
its extent from LDnew

i �
To repair the other pathways Tj � LSj � CSj and schemas USj for j �� i�
we append T to the end of each Tj � As a result� the new construct c now
appears in all the union schemas� To add the extent of this new construct to
each materialised database CDj for j �� i� we compute it from the extents
of the other constructs in CSj using the queries within successive add steps
in T �
We
nally append the necessary new id steps between pairs of union schemas
to assert the semantic equivalence of the construct c within them�

c� c does not appear in USi and cannot be derived from USi�
In this case� we again remove from Tnew

i the
rst contract c step so that c is
now present in schema CSi�
To repair the other pathways Tj � LSj � CSj and schemas USj for j �� i� we
append an extend c step to the end of each Tj � As a result� the new construct
c now appears in all the conformed schemas CS�� � � � � CSn�
The construct c may need further translation into the data model of the
union schemas and this is done by appending the necessary sequence� T � of
add
delete
rename steps to all the pathways LS� � CS�� � � � � LSn � CSn�
We compute the extent of c within the database CDi from its extent within
LDnew

i using the queries within successive add steps in T �
We
nally append the necessary new id steps between pairs of union schemas
to assert the semantic equivalence of the new construct
s� within them�

d� c appears in USi but has di�erent semantics to the newly added c in LSnewi �
In this case� we rename c in LSnewi to a new construct c�� The situation
reverts to adding a new construct c� to LSnewi � and one of
a��
c� above
applies�

We note that determining whether c can or cannot be derived from the
existing constructs of the union schemas in
a��
d� above requires domain or
expert human knowledge� Thereafter� the remaining actions are fully automatic�

In cases
a� and
b�� there is new data added to one or more of the con�
formed databases which needs to be propagated to GD� This is done by com�
puting descendants
c� Tu� and using the algebraic equivalences of Section ��� to
propagate changes in the extent of c to each of its descendant constructs gc in
GS� Using these equivalences� we can in most cases incrementally recompute the
extent of gc� If at any stage in Tu there is a transformation add c� q where no
equivalence can be applied� then we have to recompute the whole extent of c��

��

In cases
b� and
c�� there is a new schema construct c appearing in the USi�
This construct will automatically appear in the schema GS� If this is not desired�
a transformation contract c can be pre
xed to Tu�

�� If t is contract c� then the construct c in LS i will no longer be available
from LSnewi � That is� LS i has evolved so as to not include a construct c

whose extent is not derivable from the other constructs of LS i� The new
local database LDnew

i no longer contains an extent for c�

The new transformation pathway Tnew
i �LSnewi �CS i is t�Ti � extend c�Ti�

Since the extent of c is now Void� the materialised data in CDi and GD must
be modi
ed so as to remove any data derived from the old extent of c�

In order to repair CDi� we compute descendants
c� LSi�CSi�� For each
construct uc in descendants
c� LSi�CSi�� we compute its new extent and
replace its old extent in CDi by the new extent� Again� the algebraic prop�
erties of IQL queries discussed in Section ��� can be used to propagate the
new Void extent of construct c in LSnewi to each of its descendant constructs
uc in CSi� Using these equivalences� we can in most cases incrementally
recompute the extent of uc as we traverse the pathway Ti�

In order to repair GD� we similarly propagate changes in the extent of each
uc along the pathway Tu�

Finally� it may also be necessary to amend the transformation pathways
if there are one or more constructs in GD which now will always have an
empty extent as a result of this contraction of LSi� For any construct uc
in US whose extent has become empty� we examine all pathways T�� � � � �
Tn� If all these pathways contain an extend uc transformation� or if using
the equivalences of Section ��� we can deduce from them that the extent
of uc will always be empty� then we can su�x a contract gc step to Tu for
every gc in descendants
uc� Tu�� and then handle this case as paragraph �
in Section ����

��� Evolution of downstream Data Marts

We have discussed how evolutions to the global schema or to a source schema
are handled� One remaining question is how to handle the impact of a change to
the data warehouse schema� and possibly its data� on any data marts that have
been derived from it�

In ��� we discuss how it is possible to express the derivation of a data marts
from a data warehouse by means of an AutoMed transformation pathway� Such
a pathway GS � DMS expresses the relationship of a data mart schema DMS

to the warehouse schema GS� As such� this scenario can be regarded as a special
case of the general integration scenario of Figure �� where GS now plays the role
of the single source schema� databases CD�� � � � � CDn and GD collectively play
the role of the data associated with this source schema and DMS plays the role
of the global schema� Therefore� the same techniques as discussed in sections ���
and ��� can be applied�

��

� Concluding remarks

In this paper we have described how the AutoMed heterogeneous data integra�
tion toolkit can be used to handle the problem of schema evolution in hetero�
geneous data warehousing environments so that the previous transformation�
integration and data materialisation e�ort can be reused� Our algorithms are
mainly automatic� except for the aspects that require domain or expert human
knowledge regarding the semantics of new schema constructs�

We have shown how AutoMed transformations can be used to express schema
evolution within the same data model� or a change in the data model� or both�
whereas other schema evolution literature has focussed on just one data model�
Schema evolution within the relational data model has been discussed in pre�
vious work such as ���� ��� �	�� The approach in ��	� uses a
rst�order schema
in which all values in a schema of interest to a user are modelled as data� and
other schemas can be expressed as a query over this
rst�order schema� The
approach in ���� uses the notation of a �at scheme� and gives four operators
Unite� Fold� Unfold and Split to perform relational schema evolution us�
ing the SchemaSQL language� In contrast� with AutoMed the process of schema
evolution is expressed using a simple set of primitive schema transformations
augmented with a functional query language� both of which are applicable to
multiple data models�

Our approach is complementary to work on mapping composition� e�g� ����
���� in that in our case the new mappings are a composition of the original
transformation pathway and the transformation pathway which expresses the
schema evolution� Thus� the new mappings are� by de
nition� correct� There are
two aspects to our approach�
i� handling the transformation pathways and
ii�
handling the queries within them� In this paper we have in particular assumed
that the queries are expressed in IQL� However� the AutoMed toolkit allows any
query language syntax to be used within primitive transformations� and therefore
this aspect of our approach could be extended to other query languages�

Materialised data warehouse views need to be maintained when the data
sources change� and much previous work has addressed this problem at the data
level� However� as we have discussed in this paper� materialised data warehouse
views may also need to be modi
ed if there is an evolution of a data source
schema� Incremental maintenance of schema�restructuring views within the re�
lational data model is discussed in ����� whereas our approach can handle this
problem in a heterogeneous data warehousing environment with multiple data
models and changes in data models� Our previous work ��� has discussed how
AutoMed transformation pathways can also be used for incrementally maintain�
ing materialised views at the data level� For future work� we are implementing
our approach and evaluating it in the context of biological data warehousing�

References

�� J� Andany� M� L
eonard� and C� Palisser� Management of schema evolution in
databases� In Proc� VLDB���� pages �������� Morgan Kaufmann� �����

��

�� Z� Bellahsene� View mechanism for schema evolution in object�oriented DBMS� In
Proc� BNCOD���� LNCS ����� Springer� �����

�� B� Benatallah� A uni	ed framework for supporting dynamic schema evolution in
object databases� In Proc� ER���� LNCS �	
�� Springer� �����

�� M� Blaschka� C� Sapia� and G� H�o�ing� On schema evolution in multidimensional
databases� In Proc� DaWaK���� LNCS �	�	� Springer� �����

�� M� Boyd� S� Kittivoravitkul� C� Lazanitis� P�J� McBrien� and N� Rizopoulos� Au�
toMed� A BAV data integration system for heterogeneous data sources� In Proc�

CAiSE���� �����
�� P� Buneman et al� Comprehension syntax� SIGMOD Record� ������������ �����
�� H� Fan and A� Poulovassilis� Using AutoMed metadata in data warehousing envi�

ronments� In Proc� DOLAP���� pages ������ ACM Press� �����
�� E� Jasper� A� Poulovassilis� and L� Zamboulis� Processing IQL queries and migrat�

ing data in the AutoMed toolkit� Technical Report ��� Automed Project� �����
�� E� Jasper� N� Tong� P� McBrien� and A� Poulovassilis� View generation and optimi�

sation in the AutoMed data integration framework� In Proc� �th Baltic Conference
on Databases and Information Systems� �����

��� A� Koeller and E� A� Rundensteiner� Incremental maintenance of schema�
restructuring views� In Proc� EDBT��
� LNCS

�	� Springer� �����

��� L� V� S� Lakshmanan� F� Sadri� and I� N� Subramanian� On the logical foundations
of schema integration and evolution in heterogeneous database systems� In Proc�

DOOD���� LNCS 	��� Springer� �����
��� L� V� S� Lakshmanan� F� Sadri� and S� N� Subramanian� On e�ciently implement�

ing SchemaSQL on an SQL database system� In Proc� VLDB���� pages ��������
Morgan Kaufmann� �����

��� M� Lenzerini� Data integration� A theoretical perspective� In Proc� PODS��
� �����
��� Jayant Madhavan and Alon Y� Halevy� Composing mappings among data sources�

In Proc� VLDB���� Morgan Kaufmann� �����
��� P� McBrien and A� Poulovassilis� A uniform approach to inter�model transforma�

tions� In Proc� CAiSE���� LNCS ��
�� pages �������� Springer� �����
��� P� McBrien and A� Poulovassilis� Schema evolution in heterogeneous database

architectures� a schema transformation approach� In Proc� CAiSE��
� LNCS
����
pages �������� Springer� �����

��� P� McBrien and A� Poulovassilis� Data integration by bi�directional schema trans�
formation rules� In Proc� ICDE���� pages �������� �����

��� Ren
ee J� Miller� Using schematically heterogeneous structures� In Proc� ACM

SIGMOD���� pages �������� ACM Press� �����
��� N� Tong� Database schema transformation optimisation techniques for the Au�

toMed system� In Proc� BNCOD���� LNCS
	�
� Springer� �����
��� Yannis Velegrakis� Rene J� Miller� and Lucian Popa� Mapping adaptation under

evolving schemas� In Proc� VLDB���� Morgan Kaufmann� �����
��� L� Zamboulis� XML data integration by graph restrucring� In Proc� BNCOD����

LNCS ���
� Springer� �����

