Investigations on path indexing for graph
databases

Jonathan M. Sumrall’, George H. L. Fletcher?, Alexandra Poulovassilis®, Johan
Svensson', Magnus Vejlstrup!, Chris Vest!, and Jim Webber!

! Neo Technology
{max.sumrall, johan, magnus.vejlstrup, chris.vest,
jim.webber}@neotechnology.com
2 Eindhoven University of Technology
g.h.1l.fletcher@tue.nl
3 Birkbeck, University of London
ap@dcs.bbk.ac.uk

Abstract. Graph databases have become an increasingly popular choice
for the management of the massive network data sets arising in many
contemporary applications. We investigate the effectiveness of path in-
dexing for accelerating query processing in graph database systems, using
as an exemplar the widely used open-source Neo4j graph database. We
present a novel path index design which supports efficient ordered access
to paths in a graph dataset. Our index is fully persistent and designed
for external memory storage and retrieval. We also describe a compres-
sion scheme that exploits the limited differences between consecutive
keys in the index, as well as a workload-driven approach to indexing.
We demonstrate empirically the speed-ups achieved by our implemen-
tation, showing that the path index yields query run-times from 2x up
to 8000x faster than Neo4j. Empirical evaluation also shows that our
scheme leads to smaller indexes than using general-purpose LZ4 com-
pression. The complete stand-alone implementation of our index, as well
as supporting tooling such as a bulk-loader, are provided as open source
for further research and development.

1 Introduction

Massive graph-structured data collections are increasingly common in modern
application scenarios such as social networks and linked open data. Consequently,
there has been a flurry of development of graph database systems to support
scalable analytics on massive graphs. The selection and manipulation of paths
forms the core of querying graph datasets. However, the feasibility of a path-
centric approach to indexing massive graphs is an open problem and, to date, no
study has been performed on the benefits of path indexing for processing graph
queries in industry-strength database systems.

The study of path indexing has a long history, with a rich variety of strategies
developed in the context of object and XML databases [1,8] and more recently

2 J. M. Sumrall et al.

in the indexing in graph data [9]. For a detailed discussion of past and recent
research on indexing graph-structured data, we refer the reader to [7]. To our
knowledge, the novel approach to path indexing that we present in this paper
has not been studied or applied in the context of any actively supported graph
database system.

Contributions. We introduce a novel path-oriented index and highlight its
benefits for accelerating graph query processing, focusing on the processing of
path queries. Our index implementation, based on the venerable BT tree data
structure, has been custom-built from scratch specifically to be based in external
memory. The complete index implementation, as well as supporting tooling such
as a bulk-loader, are available open source for further research and development.*

We show that use of our index yields, on average, orders of magnitude faster
query processing times compared with Neo4j®, a popular open-source native
graph database which offers features such as being fully transactional and sup-
porting a declarative graph query language, Cypher. We stress that our perfor-
mance studies compare our standalone index with a fully-fledged graph DBMS.
Hence, the performance figures must be interpreted in this light. Nonetheless,
the significantly faster query processing times achieved by our index is a clear
indication that our solution warrants further investigation towards practical de-
ployment in graph DBMSs. We also highlight the design and benefits of a simple
yet highly effective path-centric compression scheme used in our index.

We note that, to our knowledge, the proposed approach to path indexing is
not found in any current graph datbase system, and thus the contributions of
this paper and their potential for practical impact extend beyond our specific
demonstration here by comparison to Neo4j.

Organization. In the next section we define our graph data model and path
queries. In Section 3 we describe our path index implementation, including index
design, initialization and compression. In Section 4 we describe an empirical
evaluation of our implementation. We conclude in Section 5 with indications for
further research.

2 Graphs and path queries

Data model. Although modern graph DBMSs such as Neo4j support a richer
property graph model, we restrict our attention to just the path structure of
graphs. In particular, we adopt a basic model of finite, edge-labeled, directed
graphs G = (N, E, L) where: N is a finite set of nodes; £ is a finite set of edge
labels; and E C N x L x N is a set of labeled directed edges.

Given a graph G, our interest is in indexing paths in G. The simplest paths
are edges between adjacent nodes. In particular, for each edge (s,/,t) € E, we

4 https://github.com/jsumrall/Path-Index
® http://neo4j.com/docs/stable/

Investigations on path indexing for graph databases 3

say there is a path of length one from s to ¢ (resp., from ¢ to s) having label ¢
(resp., £71).6

In general, for k£ > 0, let paths;(G) denote the set of all vectors of nodes
(n1,...,nj41) € N x--- x N, for 1 < j <k, such that there is a path of length

j+1 times

one from n; to n; + 1 in G, for each 1 < ¢ < j. The label-path of a given path
(n1,41,n2), (n2, b2, n3), ..., (n;,¢;,n;11) is the sequence of edge labels {145 - - - ¢;
along the path.

As an example, consider a graph G, with node set {sue, tom, zoe, chem101}
and edge set

{(sue, takesCourse, chem101), (zoe, teacherO f, chem101),

(tom, takesCourse, chem101), (sue, knows, tom), (tom, knows, zoe)}.

Then there are two distinct paths in G, of length two from sue to zoe, with
respective label-paths knows - knows and takesCourse - teacherOf~1.

Queries. We focus on the evaluation of path queries which are specified by
projections on label-paths over £. Given a label-path ¢ = ¢,¢5-- -/}, and, for
some r > 0, a list of indices i1, ..., 4, each in the range [1,k + 1], the semantics
of evaluating 7;, . ; (£) on G is the set of all vectors of nodes (my1,...,m,) €
N X .-+ x N such that there is a path (n1,%1,n2), (ne,f2,n3), ..., (N, bk, Ngpt1)
T times
in G with m; = N, foreach 1 <j<r.
As an example, the following query selects all node pairs (z, z) such z takes
a course taught by z:

71 3(takesCourse - teacherOf~1).

This query evaluates to the result set {(sue, zoe), (tom, zoe)} on the graph G,
above.

Here, we consider the execution of path queries of length at most k, for some
fixed k. Compilation strategies for arbitrary graph queries targeting our path
indexes is outside the scope of the work reported here and is a topic of ongoing
study. In particular, preliminary work along these lines is reported by Fletcher
et al. [3] which studies the use of path indexing for accelerating regular path
queries on graphs.

3 Path Indexing

In this section we describe our index for accelerating the execution of path
queries, focussing on the design, initialization and compression of our path in-
dexes. For an overview of the larger design space considered and discussion of
the choices made, we refer the reader to Sumrall’s thesis [7].

5 Here, ¢! denotes the inverse of edge label ¢, which we just treat as normal edge
label.

4 J. M. Sumrall et al.

3.1 Index design

Path keys. The objective of our path index is to maintain an index on the
set pathsi(G) of a graph G, for some fixed k. Members of this set need to be
represented in a standard fashion, using a scheme such that specific elements
of a path can be identified, different paths can be compared to each other, and
paths can be serialized. This indexible form of a path is called a key.

To make a transformation from label-paths to keys, we first assign an or-
dering to the elements of £. Under this ordering, we convert each label to an
integer value in the range 1,...,|L]. As noted above, we also consider the in-
verse of labels: for a label identified by integer ¢, the inverse of the label is
assigned the value |£]| + 4. A k-label-path can now be uniquely identified by a
vector (v1,...,v;) where each v; is in the range 1,. .., 2|£|. Based on this vector
representation of label-paths, a unique integer is assigned to each label-path:
the label-path’s identifier. These identifiers are stored in a mapping dictionary.
During query evaluation, the mapping dictionary is consulted to identify the
corresponding identifier for that particular label-path.

To represent specific paths of G, the sequence of nodes along a path must
also be considered. Each node is differentiated from all other nodes in the graph
by a unique integer identifier. Concatenating the identifier of a path’s label-path
and the identifiers of the nodes along the path, a path can be represented as a
vector consisting of first its label-path identifier followed by its node identifiers.
Therefore our data representation of a key is as a series of integer values, and
for a path of length k, the size of the key is k+1 integer values (of 8 bytes each).

We finally note that our implementation supports alternative sort orderings of
the paths, which becomes desirable during join processing. Detailed description
of this is can be found in Sumrall [7].

Storage and search. We use a Bt tree [2] as the underlying storage mechanism
for keys. Our requirements are the ability to store and retrieve keys in sorted
order efficiently for large sets of keys which may exceed the amount of internal
memory in the system. In this regard, the characteristics of a BTtree are ideal.
Our path index provides support for searching using any prefix of a key stored
in the index.

Page design. Our index is designed to be disk-based, and therefore careful
attention has been paid to how the bytes of the internal and leaf pages of the
index are arranged. All pages contain a header with essential information in-
cluding sub-tree references and the number of elements in the page. Individual
elements are assumed to be of equal size, and therefore delimiter values between
elements are not needed.

Figure 1 details the structure of internal pages and leaf pages. The internal
pages contain a 25 byte header, followed by references to children pages, followed
by the keys which sort the children pages. Leaf pages contain the 25 byte header,
followed by the keys. Since the header contains information about the number of

Investigations on path indexing for graph databases 5

keys in the page, it is possible to directly navigate to specific keys by calculating
an offset value based on the size of the keys and the ordered position of the
desired key.

Header| |Child|Child Key
25 B 8B | 8B | |(k+2)«x8B

(a) Internal Page

Header Key Key Key
25B | [(k+2)«x8B|(k+2)«8B|(k+2)«8B

(b) Leaf Page

Fig. 1: Layout of the internal pages and leaf pages of the index.

3.2 Index compression

We recall that the first value of a key is a label-path id and the subsequent values
are node ids, i.e. a key is of the form pathI D, nodel D1, nodel Dy, nodel D3,
Within the index, keys are sorted lexicographically, first by pathID, then by
nodel D1, then by nodel Do, and so on. This ordering causes neighbouring keys
to be similar. Indeed, many keys will often have the same values of pathID and
nodel Dy in particular, since many neighboring keys have the same label-path ids
and the same starting node ids along the path. This is similar to the observation
of Neumann and Weikum [6] on efficiently storing RDF triples, and allows for a
similar compression scheme. The compression method we use involves not storing
the full key, but only storing the difference between successive keys. This results
in a high compression, as the change between keys is very often quite small.

For each value in a key, the delta (i.e., integer distance) to obtain this value
from the value in the same position in the previous key is calculated. Once each
delta is obtained, the minimum number of bytes necessary to store the largest
delta for this key is found. Each delta is then standardized in length to only
that minimum number of bytes. A header byte contains a value representing the
size of all these deltas. The largest possible delta would require 8 bytes and the
minimum delta we consider is 1 byte.

Often, the prefix of a key can be identical to that of the previous key in the
page, while the final value in the key can require a large delta. In the compression
scheme above, we allocate a number of bytes to store the large delta, but the
delta for the first few values would be zero. To compress even further, the first
5 bits in the header can be used to signal when the corresponding value has a
delta of zero, essentially forming a gap in the series of deltas stored for this key.
We call these “gap bits”. By enabling a gap bit, we can avoid writing the delta
for that value altogether, and only write the values which have a non-zero delta.
An illustration of our compressed key structure can be found in Figure 2.

6 J. M. Sumrall et al.

Gap |Payload Delta Delta Delta
2 Bits| 6 Bits | |1-8 Bytes| |1-8 Bytes| [1-8 Bytes
Header Path ID Node ID Node ID

Fig. 2: Structure of a compressed key with gap bits for a path with k = 1.

Compression is applied to individual leaf pages, not across pages. Compress-
ing larger portions of the index would produce a smaller index, but at a cost of
greater complexity in maintaining the index under updates. By only compressing
individual pages, we can still traverse to any leaf page and immediately begin
reading keys. If larger portions of the index were compressed together, then those
additional portions would need to be fetched and decompressed before beginning
to read keys.

Compression is also not applied to pages representing internal pages in the
index. Internal pages account for a much smaller share of the total number of
pages in the index, as most pages are leaves. Further, we assume that internal
pages will be accessed often during traversals, and the additional decompression
time on these pages may not justify the possible space savings.

3.3 Index initialization: full vs. workload-based indexing

We have explored two approaches to populating the index. The first is to generate
and store all possible paths up to length k. For large values of k, however, this
requires an extensive time and space commitment, as we see below. The payoff
is that the expected query execution time on any arbitrary k-path query will be
very low.

As an alternative to generating all paths up to length k, it is possible to only
index on demand (i.e., at query evaluation time) the paths needed to fulfill a
given query workload, i.e., a finite set of path queries of arbitrary length. Such
an index is first initialized with the length-1 paths, i.e., the graph’s edge set FE.
Then, as encountered in the query workload, longer paths (of arbitrary length)
are dynamically built and added to the index by performing joins on the initial
1-paths and subsequent longer paths which have already been indexed.

We refer to the indexes for the first method as full k indexes and the latter
as workload-based indezes.

4 Evaluation

We now describe a set of experiments that investigate our index compression
scheme, index sizes, and query execution times using path indexing.

4.1 Experimental setup

Environment. All experiments described here were performed on a 2.0GHz
i7 processor with 8 GB of main memory and a solid state drive, running OSX
10.10.

Investigations on path indexing for graph databases 7

Data. We used the well-known Lehigh University Benchmark (LUBM) for data
generation [5]. LUBM graphs model a university scenario (e.g., nodes represent
universities, departments, students, teachers, ...). In our experiments, a graph
was generated with 50 universities, containing approximately 6.8 million unique
edges. We followed the same data preparation steps as taken by Gubichev and
Then [4], except our dataset was not enriched with inferred facts derived from
ontology rules. For example, nodes of type Associate Professor do not also get
the more general label Professor.

Queries. LUBM is provided with 14 different queries. Here, only the 9 queries
used by Gubichev and Then [4] are included in our experimental results. These
queries can be found in the Appendix.

Additional experiments. Further detailed experiments on two other well-
known graph datasets, which confirm and further strengthen the results we
present in this section, are reported by Sumrall [7].

4.2 Index compression evaluation

Firstly, evaluation of our compression scheme shows that it results in significantly
reduced index sizes compared to the uncompressed index size. Further, our com-
pression method outperforms general-purpose LZ4 compression” in terms of both
speed and scale of compression. A comparison of the size of indexes resulting
from each compression technique is shown in Table 1, while a comparison of the
speed of the compression techniques is shown in Table 2. The comparison was
undertaken by inserting sequentially increasing keys into the index and mea-
suring throughput time and final index size. The evaluation was undertaken for
indexes with key sizes of k = 1,2,3. However, the size of the k = 3 index with-
out compression and with the L.Z4 algorithm was either too large for our test
system or took a significant amount of time. We also include here results for our
workload-based index, built using the query workload of the LUBM benchmark,
which significantly lowers storage overhead and compression time. Overall, the
comparison shows that our scheme outperforms the LZ4 algorithm in terms of
both speed and scale of compression.

Table 1: Index size.
Index Uncompressed LZ4 Path Index

k=1 0.16 GB 0.053 GB 0.02 GB

k=2 15.99 GB 3.67 GB 1.69 GB

k=3 - - 41.58 GB
workload-based - - 0.1 GB

" https://github.com/jpountz/1z4-java

8 J. M. Sumrall et al.

Table 2: Indexing time, rounded to the nearest minute.
Index Uncompressed LZ4 Path Index

k=1 < 1 Minute 4 Minutes < 1 Minute

k=2 28 Minutes 266 Minutes 27 Minutes

k=3 - - 178 Minutes
workload-based - - 4 Minutes

4.3 Index size evaluation

The index sizes are shown in the right-most column of Table 1. These results
show that the size of the index as k increases becomes a limiting factor to the
usability of the index. However, while the index sizes may be large, the evaluation
time for path queries using the index remains very low (see below). Moreover,
although the full indexes can grow to be quite large, the workload-based index
has very low overhead while still supporting efficient query processing, as we see
next.

4.4 Query execution evaluation

We compare query execution time using our path index with that using Neo4j,
subject to the provisos discussed in Section 1. Only the time needed to retrieve
the results is compared for each query: the time needed to open and close the
database or index, and to open and close a transaction event is ignored. Each
query was executed 5 times per run, with 6 runs being conducted. Between each
run, the system’s caches were flushed. The first execution after a cache flush
was considered a “cold” run, with empty caches, and the subsequent runs were
considered “warm” runs, where caching is likely to result in lower evaluation
times. Once all the results were collected, we excluded 20% of the data points
from the top and bottom tails of the results set, eliminating outliers due to non-
determinism in the runtime environment. We report the mean of the remaining
values. Here, only highlights of the warm run experiments are reported. A full
analysis, including the cold runs, can be found in Sumrall [7].

Full indexes. We first consider path query performance on a full £ = 3 index.
Results are reported in Table 3, where we give the time to the first result and
the time to the last result. For both Neo4j and our path index, the time to
the first result is measured as the time from immediately before Neo4j’s or the
path index’s find operation is executed, and the time immediately after the first
result is found. The time to the last result is measured as the time immediately
before Neo4j’s or the path index’s find operation is executed, until the time
immediately after the last result is found.

In addition to using the full-length k-paths in the index, queries are also
evaluated using the (k — 1)-paths in the index, for comparison purposes. For
example, looking at Query 7 in Table 3, we see under the column labeled “Index

Investigations on path indexing for graph databases 9

Table 3: Average times (ms) to retrieve the first result and the last result in
Neo4j and in the Path Index.

Neo4j|Index k = 3|Index k = 2|Index k = 1|Speedup
Q1 First Result| 480 - - 0.19 2526x
Last Result | 2080 - - 37 56x
Q2 First Result| 2014 - - 1 2014x
Last Result | 2014 - - 1 2014x
Q3 First Result| 413 - - 0.05 8260x
Last Result | 1352 - - 4 338x
Q4 First Result| 774 - 0.8 173 967x
Last Result | 3741 - 112 10932 33x
Q5 First Result| 457 - 2 45 228x
Last Result | 13303 - 1439 4645 9x
Q6 First Result| 437 - 2 47 218x
Last Result | 2225 - 107 2831 20x
Q7 First Result 8 2 2.4 - 4x
Last Result | 2221 32 179 - 69x
Q8 First Result 1 1 2 - 1x
Last Result | 5319 1992 493 - 2x
Q9 First Result 1 2 2 - 0.5x
Last Result | 1378 8 179 - 172x
Q10 First Result 1 3 2 - 0.3x
Last Result | 1392 4 16 - 348x
Avg First Result| 458 2 1 <1 1444x
Last Result | 3502 509 552 14 306x

k = 2” the time needed to evaluate Query 7 using the k = 2 and k& = 1 subpaths
of the query and joining the results (using a merge join). This gives us an indica-
tion of query evaluation times if the index only contained the smaller subpaths
and not the full £ = 3 path. The column “Index k = 1” for Query 7 is blank,
as these experiments only show the times needed to perform a single (merge)
join to evaluate a given query. Evaluating Query 7 using only the & = 1 paths is
possible, but would require joining two subpaths first, and then undertaking a
sort merge join with the third subpath or performing a hash join with the third
subpath.

Workload-based indexes. Experiments were also conducted on the workload-
based indexes. The workload indexes are built at runtime, where the necessary
k = 1 paths are joined to form the paths of length 2 in the queries, or joined a
third time to form the paths of length 3. Table 4 shows the cost of building and
using the workload-based indexes.

10 J. M. Sumrall et al.

Table 4: Workload experiment with paths constructed from the k = 1 index with
joined results inserted into the index (average time to last result, in ms).

Query Plan Index| Index|Neo4j|Speed
Const-|Query up
ruction

Q4 [takesCourse 1 teacherOf ' 30289 119 3741 31x
Q5 |memberOf pa subOrganizationOf 129499 775 13303 17x
Q6 |memberOf <1 subOrganizationOf 11113 39| 2225 57x
Q7A [undergraduateDegreeFrom > Query 6T 769 < 1| 2221) 2221x
Q7B P75 = subOrganizationOf T 1 memberOf~?

undergraduateDegreeFrom 1 P7p 15832 < 1| 2221| 2221x
Q8A [hasAdvisor b1 Query4 ! 836 2| 5319| 2659x
QSB Pss = teacherOf i takesCourse ©

hasAdvisor < Pgp 2703 2| 5319| 2659x
Qo Py = worksFor subOrganizationOffl

headOf ' 1 Py 8807 2| 1378| 689x
Q10 P10 = worksFor <t subOrganizationOf

headOf~ " 1 P 822 < 1| 1392| 1392x
Avg 22296 104| 4124| 1327x

4.5 Summary

The results of our experiments demonstrate that both the full and the workload-
based path indexes have much lower evaluation times for all path queries com-
pared to Neo4j. In all experiments and all queries, the time to the first result in
the result set is faster using our path index.

5 Concluding remarks

This paper has presented a new and simple path indexing approach to improve
path query performance for graph database systems. Our implementation in-
cludes supporting tools, e.g., for bulk loading the index with paths from the
graph in an efficient way. As indicated in the Introduction, the complete code-
base is available open-source for further study.

Our empirical study has demonstrated the significant potential of path in-
dexes for graph databases. Keeping in mind that Neo4j is a fully-fledged graph
DBMS, our experiments show that, for every query in the benchmark, path
indexing provides a non-trivial, often multiple orders of magnitude, improve-
ment in query evaluation time. We have also demonstrated the practicality of
workload-driven path indexes, where the additional time to first evaluate and
store the results of a path query is relatively large, but subsequent query times
using the index provide significant speedups, amortizing the index build cost over
the lifetime of the query workload. Furthermore, our workload-based indexes are
an order of magnitude smaller than the full index.

Investigations on path indexing for graph databases 11

Future work. Workload-based indexing shows the most promise in terms of
index size, index construction time, and query performance. Further study of the
design, engineering, and deployment in practical graph database systems of these
types of indexes is the natural progression of this work. Additional experiments
need to be conducted to identify how to best build the index based on encoun-
tered queries. Ideas for this include examining query logs and building indexes
based on frequent queries. Study of index maintenance under mixed transactional
workloads is another interesting direction of future study. Finally, another im-
portant direction for future research is compilation strategies for richer query
languages such as Cypher targeting our path indexes as one of the alternative
access paths available in the DBMS.

References

1. Elisa Bertino et al. Object-oriented databases. In Elisa Bertino et al, editor, Indexing
Techniques for Advanced Database Systems, pages 1-38. Kluwer, 1997.

2. Douglas Comer. Ubiquitous B-Tree. ACM Computing Surveys, 11(2):121-137, June
1979.

3. George H. L. Fletcher, Jeroen Peters, and Alexandra Poulovassilis. Efficient regular
path query evaluation using path indexes. In EDBT, pages 636-639, 2016.

4. Andrey Gubichev and Manuel Then. Graph pattern matching — do we have to
reinvent the wheel? In GRADES, 2014.

5. Yuanbo Guo et al. LUBM: A benchmark for OWL knowledge base systems. J. Web
Semantics, 3(2-3):158-182, 2005.

6. Thomas Neumann and Gerhard Weikum. The RDF-3X engine for scalable manage-
ment of RDF data. The VLDB Journal, 19(1):91-113, September 2009.

7. Jonathan Sumrall. Path indexing for efficient path query processing in graph
databases. Master’s thesis, Eindhoven University of Technology, 2015.

8. Kam-Fai Wong, Jeffrey Xu Yu, and Nan Tang. Answering XML queries using path-
based indexes: A survey. WWW J, 9(3):277-299, 2006.

9. Xifeng Yan and Jiawei Han. Graph indexing. In Charu C. Aggarwal and Haixun
Wang, editors, Managing and Mining Graph Data, pages 161-180. Springer, 2010.

Appendix: LUBM Cypher Queries

Q1:
MATCH (x)-[:member0f]->(y)
RETURN ID(x), ID(y)

Q2:

MATCH (x)-[:member0f]->(y)

WHERE x.URI = "http://www.DepartmentO...Student207"
RETURN ID(x), ID(y)

Q3:
MATCH (x)-[:worksFor]->(y)
RETURN ID(x), ID(y)

12 J. M. Sumrall et al.

Q4:
MATCH (x)-[:takesCourse]->(y)<-[:teacher0f]-(z)
RETURN ID(x), ID(y), ID(z)

Q5:
MATCH (x)-[:member0f]->(y)<-[:subOrganization0f]-(z)
RETURN ID(x), ID(y), ID(z)

Q6:
MATCH (x)-[:member0£f]->(y)-[:subOgranization0f]->(z)
RETURN ID(x), ID(y), ID(z)

Q7:

MATCH (x)-[:undergraduateDegreeFrom]->(y)
<-[:subOrganization0f]-(z)<-[:member0f]-(x)

RETURN ID(x), ID(y), ID(z)

Q8:

MATCH (x)-[:hasAdvisor]->(y)-[:teacher0f]->(z)<-[:takesCourse]-(x)

RETURN ID(x), ID(y), ID(z)

Q9:

MATCH (x)<-[:head0f]-(y)-[:worksFor]->(z)<-[:subOrganisation0f]-(w)

RETURN ID(x), ID(y), ID(z), ID(w)

Q10:

MATCH (x)<-[:head0f]-(y)-[:worksFor]->(z)-[:subOrganisation0f]->(w)

RETURN ID(x), ID(y), ID(z), ID(w)

