
3PGCIC2013

October 2013

Building Event-Based Services for Awareness
in P2P Groupware Systems

Alex Poulovassilis, Fatos Xhafa, Tom O’Hagan

 Monitoring and awareness are essential in collaborative work
environments, in order to support team members’ interaction and
coordination processes

 There has been much work in implementing awareness in web-
based applications, but less so for P2P collaborative systems.

 P2P systems can potentially foster more support for collaboration
than centralized approaches as group members can interact
directly with their peers and can share their knowledge, skills and
resources in order to provide mutual support in the
accomplishment of group tasks

 Awareness is a vital aspect of collaborative systems, and refers
to knowledge provided by the system to group members about
what other group members are doing at the same time and what
they did in the past

Motivation

 However, several challenges arise in developing groupware and
awareness mechanisms in decentralized P2P systems:

• achieving a consistent view of the groupware global state from
the local states of the group members

• issues inherent to P2P systems such as their dynamicity and
heterogeneity

• P2P systems are pervasive and ubiquitous in nature, thus
requiring contextualized awareness, e.g. event transformation
and enrichment may be necessary

• awareness mechanisms in P2P systems have generally been
implemented as part of applications, thus having the limitation
of being application-dependent

Motivation

 Provision of service-based group awareness capabilities in
P2P middleware, on top of which groupware applications can
be developed

 We identify a set of low-level awareness services and show how
these can interoperate over the P2P network in order to provide
awareness as part of the P2P middleware infrastructure

 We envision the use of service composition to provide more
complex awareness services

 We envision the implementation of a superpeer P2P network
model on a Cloud platform and the provision of reliable
awareness services from the Cloud

 Our motivating P2P collaboration setting is that of Project-Based
Learning (PBL), although our approach is intended to apply more
generally to project-based collaboration in other sectors e.g.
business, science, healthcare

Our work

 Activity awareness

 Process awareness

 Communication awareness

 Context awareness

 Availability awareness

Major types of Group awareness requirements

 We propose an RDF/S-based superpeer network for
supporting group awareness in P2P groupware systems:

Computational Model

 Peers in a peergroup can communicate directly with their superpeer
and with each other

 Concretely, the P2P network will typically be an overlay network

 Each project is coordinated by one superpeer – though superpeers
may coordinate multiple projects.

 Peers contact the relevant superpeer in order to join a project — we
term the set of peers working on a project a project group, or just a
group

 Peers may join or leave a group at any time

 Services hosted at superpeers control and coordinate the peergroup’s
activities towards accomplishing one or more projects

 Such services include consistency control, distribution and replication
of information, maintaining the project workflow constraints, building
reports and summaries, and handling requests for resources from
peergroup members

Computational Model

 Information about the group’s processes can be distributed and
replicated at peers of the group

 Peers' operations and control information is forwarded to their
superpeer which manages the replication and consistency of
information within the group

 This enables efficiency due to local access to data and support of
failures e.g. when peers leave or are temporarily disconnected

 Information at peers is stored in local repositories; we assume it is
encoded in RDF/S

 The data in these RDF/S repositories will include descriptions of
objects, workspaces, resources, tasks, sessions, possible actions etc.,
as relating to the groupware application

 Our approach aims to support both stand-alone mobile peers and
mobile peers that are attached to other fixed peers through lightweight
mechanisms and summary services

Computational Model

 Each superpeer has Event-Condition-Action (ECA) rule processing
capabilities. ECA rules hosted at the superpeer can be used to:

• achieve replication and consistency of distributed group data
and processes – the replication and consistency policies are
encoded using ECA rules

• automate the generation and propagation of global overviews
and summaries from detailed information and local summaries
received from individual peers

• automate the receipt of awareness information by peers,
according to their current status, status of the project they are
participating in, their preferences, and their context

 Updates initiated at a peer site are executed locally and are then
notified to the superpeer. This determiness whether the update
triggers an ECA rule, or rules, causing the stated rule actions to be
propagated to other peers in the peergroup

Computational Model

 Core Services, necessary to support the group awareness
services:

1) Peer services: Event Notification, Repository Connection,
Messaging, Peer Resource Information, Object Sharing,
Synchronous forum

2) Superpeer services: Routing, ECA Rule Processing, Rule Base
Management, Synchronous forum management

Awareness services

 Group Awareness Services:

1) Peer services:

• joinProject, leaveProject, acceptTask, relinquishTask – support
activity awareness, process awareness

• notifyAction, notifyActionSummary – support activity, process,
context and communication awareness

• notifyCollaborationStatus, notifyAvailability, requestAvailability –
support availability awareness

• requestProjectSummary, requestTaskSummary,
requestPeerSummary – support activity awareness and process
awareness

• requestAwarenessSummary – supports all types of awareness

2) Superpeer services:

• assignProject

• provideProjectSummary, provideTaskSummary, providePeerSummary
– support activity awareness and process awareness

• provideAwarenessSummary – supports all types of awareness

 We have implemented a prototype providing the core peer and
superpeer functionality detailed above

 This prototype has been used in a preliminary performance
evaluation, detailed below

 Our intention is to allow application programmers to use the
system as middleware for building other P2P applications

 Application programmers can flexibly provision awareness
services using the system

 The prototype system is implemented in Java

 We use the Apache Jena API for RDF/S processing

 For data storage we use the Jena Triplestore (TDB); each peer
and super-peer hosts a local TDB repository

Implementation

 Event notifications (sent from peers to superpeers) are RDF
graphs encoded in RDF/XML

 These notifications trigger ECA rules at the superpeer

 ECA rules are encoded in XML and supplied by the application
programmer to the superpeer.

 These rules are templates for XML-RPCs that are used to trigger
actions at peer nodes

 The parameters used in each XML-RPC and the destination of
each XML-RPC is resolved at runtime by the superpeer through
its ECA rule-processing capability

Implementation

 A preliminary performance evaluation has investigated the scalability
of the system

 The test scenario we used was document synchronisation, as this likely
to be the most resource-intensive functionality required

 In this test scenario, collaborating members of a peergroup hold local
copies of a shared document; and when a peer makes a modification
to the shared document, we measure the average time it takes for
details of this modification to be received by all the other owners of
the shared document (so that they can make the requisite updates to
their own copies of the document)

 Variables under consideration in the performance evaluation are:

• The number of peers in a peergroup

• The fraction of these peers that have a local copy of the shared
document (0..1)

• The size of the update made to the document

Performance evaluation

Communication Protocols

 We studied the performance of three different communication protocols
for propagating the updates within the peergroup:

Protocol 1:

 A peer (Pinit) updates a local copy of a shared document (doc)

 Pinit sends an event notification (ev) plus the document 'patch' to its
superpeer

 The superpeer executes the ECA rules that are triggered by this event
notification and sends ev plus 'patch' to all peers who hold a copy of
doc (Ptarget). These peers update their copies.

Protocol 2:

 Peer Pinit updates doc and sends ev plus 'patch' to the superpeer

 The superpeer does not execute any ECA-rules. It sends ev plus 'patch'
to all peers in the peergroup

 If a peer holds a copy of doc, it updates it accordingly.

Communication Protocols

Protocol 3:

 Pinit updates its local copy of doc

 Pinit sends ev to its super-peer

 The superpeer executes ECA rules that are triggered by ev. This
process identifies which peers hold a local copy of doc (Ptarget)

 The superpeer sends details of the peers in Ptarget back to Pinit

 Pinit sends the 'patch' plus accompanying metadata to all peers
in Ptarget

 These peers update their local copies of doc

 We used the Amazon Web Services (AWS) Cloud Computing platform
for the performance evaluation

 This allowed us to flexibly and cheaply access the computing
resources required to simulate the P2P network

 Each peer and superpeer node was run on a dedicated Elastic
Compute Cloud (EC2) virtual machine ('instance').

 Peers were run on low-spec t1.micro instances

 Superpeers were run on higher-spec m1.large instances

 64-bit Linux AMIs were used for both types of instance

 For the experiments, peer nodes did not maintain continuous
connections to other peers, apart from the superpeer. Rather, when a
peer node needs to send a message/data to another peer node, it
creates a new connection to that node, transfers the message/data
and then closes that connection.

Cloud Platform

Results: update size 100Kb, Ptarget size 0.5

Results: update size 1Mb, Ptarget size 0.5

 Provision of awareness in project-based group work is a crucial factor
for the successful accomplishment of the project

 Mature proposals have been reported in the literature for web-based
groupware systems, but there has been little work for P2P groupware
systems

 We aim to address the awareness requirements of P2P groupware
systems

 We have identified awareness mechanisms that are targeted at the
middleware layer on top of which P2P groupware systems can be built

 Superpeers implement core services in order to support peergroup
activity and awareness provisioning

 Peers implement lower-level services and also support direct
communication among group members, reducing the communication
burden on superpeers during the group’s activities

Conclusions

 We envision the event-based services of superpeers and peers being
composed in order to build more complex services, at varying levels of
abstraction, in order to provide the required awareness functionality
for a particular P2P groupware application

 We have implemented a prototype system providing the core peer and
superpeer functionality, using Java, Apache Jena API, and Jena
Triplestore

 We have undertaken a preliminary performance evaluation to
investigate the scalability of our system, using the Amazon Web
Services (AWS) Cloud Computing platform

 This evaluation points to the scalability of our approach, but more
experimentation is under way

Conclusions

