Advances in Data Management - Web Data Integration
A.Poulouvassilis

1 Integrating Deep Web Data

Traditionally, the web has made available vast amounts of information in unstructured form (i.e. text). Searching for this information has utilised techniques from Information Retrieval, in web search engines. However, there is an even larger amount of structured data also accessible on the web, arising from data that is stored in databases and is accessed via HTML forms — this is known as the deep web.

Integrating such data presents similar problems to those we discussed earlier in the context of heterogeneous databases but on a much larger scale: the back-end databases use different modelling languages, different data types, and different representations for the same real-world concepts.

These heterogeneities are manifested in the HTML forms provided for accessing the data, and in the results returned in response to user queries submitted via such forms.

The dynamically-generated web content arising from deep web data cannot be discovered and indexed by traditional search engines.

This poses the question: Is it possible to apply and extend techniques developed for heterogeneous data integration to access this kind of heterogeneous web content through a single query interface?

1.1 Domain-specific meta-search engines

One early area of research in this direction were techniques for automatically generating domain-specific meta-search engines: These aim to provide domain-specific search that utilises multiple source search engines.

One of the major steps involved in automatically generating such tools is the task of schema matching and schema mapping — these tasks are key, more generally, to any kind of large-scale heterogeneous data integration:

- **Schema matching** identifies correspondences between elements from different schemas (these correspondences may be 1-1, 1-n, n-1, n-m).
- **Schema mapping** specifies these correspondences i.e. generates the GAV/LAV/GLAV mappings that link two schemas.

In our context here, the “schema” is the format of the HTML form that allows users to access information retrieved via each source search engine.

The volumes and heterogeneity of Web data require the development of automatic schema matching and mapping techniques.

In the approach by Naz et al. 2009 (see Reading 1), a domain ontology serves as a “global schema”, and several schema-matching techniques are used to automatically resolve semantic heterogeneities between the source search engine schemas.

These include a variety of element-level, structure-level and ontology-based schema-matching techniques. See Reading 1 for a review of such techniques, and for references.

The mappings between the source search engine schemas and the domain ontology are also derived automatically.
These mappings are then used to:

- automatically generate an integrated search query interface;
- support query processing in the meta-search engine;
- resolve semantic conflicts arising during result extraction from the source search engines, so as to present an integrated, harmonised set of results to the user.

1.2 Web-scale data integration

Beyond domain-specific techniques, the Pay-As-You-Go (PAYGO) approach proposed by researchers at Google has been every influential\(^1\). With this approach:

- deep web content is discovered by pre-computing the most relevant submissions for each “interesting” HTML form and adding the resulting URLs to the search engine index — this is called *surfacing* the deep web content;
- this allows existing search engine infrastructure to be leveraged;
- when a user clicks on a search result — on the basis of seeing the displayed snippet — the user is directed to the underlying web site and will see fresh content;
- the paper on “Google’s Deep-Web Crawl”\(^2\) identifies two main challenges that need to be addressed for effective surfacing, and proposes techniques to address them: (i) deciding which form inputs to fill in when submitting queries to a form, and (ii) deciding on appropriate values for these inputs;
- there is no single global schema encompassing all of this surfaced deep web content of course;
- instead it is envisaged that, over time, multiple “topic-oriented” schemas will emerge, each playing the role of a “global schema” for a particular domain;
- the mappings between surfaced schemas and topic schemas will typically be approximate, not exact;
- queries can be posed to the topic schemas and automatically routed to the relevant web content;
- the entire integration approach is *“pay-as-you-go”*, in the sense that data sources will become increasingly, and more accurately, integrated over time. Such an approach is in contrast to the “single-shot” integration effort in conventional data integration approaches\(^3\).

The PAYGO proposal for Web-scale data integration is an example of a **Dataspace Management System**\(^4\). In such systems, a *co-existence approach* to heterogeneous data sources is adopted, rather than full semantic integration:

- no large up-front investment is required for creating mappings in order to support data services on the data sources;
- instead, the data sources are iteratively mapped and integrated, as time and resources allow, to give higher-quality answers to queries;
- effort and resources can be focussed on supporting more effectively the most important queries.

---

Pay-As-You-Go

Indexes

Query Processor

keyword query

ranked answers

Deep web

Topic schema

Surfaced data and schema

Surfaced data and schema

Surfaced data and schema

Approximate Mappings

data surfacing

data surfacing

data surfacing
2 Integrating Linked Open Data

Large volumes of information that was hidden up to now in the deep web is being published by its owners as sets of RDF triples, in the form of Linked Open Data (LOD). Different RDF data sets may be published by different people, but referencing common URIs and hence providing links between these different data sets.

This ‘Web of Data’ relies on pay-as-you-go principles in order to semantically integrate different data sets over time. The ultimate vision is to be able to access Linked Open Data as if it were a single global database.

In recent years, federated SPARQL querying tools have been developed that allow transparent querying of multiple LOD sources.

See Reading 2 for: a review of several of the major systems; an example Use Case from Life Sciences data integration; description of an approach to optimising federated SPARQL queries on the basis of available information about the contents and sizes of the data sources; and results of a performance evaluation of the approach and comparison with other systems.

---

5See http://linkeddata.org/ for datasets, tools, guides, tutorials etc. Also http://www.w3.org/standards/semanticweb/data for related W3C standards and examples.
Figure 1: ADM Summary

3 ADM Round-Up

Recall from Week 1 that this course aimed to explore three major directions of developments and advances in DBMS technology:

- the degree of distribution and heterogeneity of the DBMS
- DBMS performance
- the variety of information managed by the DBMS

The figure summarises the topics we have covered along these three axes. Not shown, but cross-cutting all three axes, are the issues of consistency guarantees and support of full ACID or reduced transactional properties.
4 Ongoing Research Topics (Optional Reading, for interest)

- light-weight integration of heterogeneous datasets in dataspace environments, leveraging AutoMed’s fine-grained data integration capabilities;
  see “Intersection schemas as a dataspace integration technique”, Richard Brownlow, Alex Poulouvassilis, Proc. EDBT/ICDT Workshops 2014, pp 2-99, Moodle reading 3.

- querying of graph data using Regular Path Queries, with automatic query approximation & relaxation, and ranking of query answers;

- adding flexible querying to SPARQL 1.1;

- going beyond federated SPARQL query processing to support semantic P2P integration of Linked Data;

- a variety of interdisciplinary projects at the London Knowledge Lab (see my home page and follow the links) e.g.:
  - Weaving Communities of Practice: ontology-based integration and querying of rich data on Andean Textiles; using Jena, SPARQL etc. See www.weavingcommunities.org
  - Learning analytics to support exploratory learning.
  - Event-based services for Awareness in P2P Groupware Systems; implemented using P2P event-condition-action rules (triggers).
    See www.dcs.bbk.ac.uk/~ap/talks/3PGCIC2013Pres.pdf
  - Flexible querying of lifelong learners’ metadata;
    see http://www.dcs.bbk.ac.uk/~ap/talks/BusWeek2011.pdf
    and http://www.dcs.bbk.ac.uk/~ap/talks/nldb2013.pdf pages 6 - 49

Readings (for interest)
