Advances in Data Management - NoSQL, NewSQL and Big Data
A.Poulouvassilis

1 NoSQL

So-called “NoSQL” systems offer reduced functionalities compared to traditional Relational DBMSs, with the aim of achieving higher performance and scalability for specific types of applications.

The functionality reductions may include:

- not offering full ACID guarantees for transactions,
- not supporting a high-level query language such as SQL, but instead a low-level programmer interface, and/or
- not requiring data to conform to a schema.

The query processing and data storage capabilities of NoSQL systems tend to be oriented towards supporting specific types of applications.

The archetypal examples are settings where there are very large volumes of relatively unstructured data supporting web-scale applications that require quick response times and high availability for users, or that require real-time or near real-time data analysis. This is so-called “Big Data”, examples being web log data, social media data, data collected by mobile and ubiquitous devices, and large-scale scientific data from experiments and simulations.

A key aim of NoSQL systems is elasticity i.e. undisrupted service in the face of changes to the computing resources of a running system, with adaptive load-balancing.

Two other key aims are scalability and fault-tolerance:

NoSQL systems partition and replicate their data so as to achieve scalability by adding more servers as needed, and also so as to achieve fault-tolerance.

In the presence of replicated data, the concurrency control protocols described in the earlier Notes on Distributed Databases require all, or a majority, of sites to be available in order for updates to proceed. If there is a partitioning of the network, sites that find themselves in a minority partition cannot process updates. Multiple network failures may lead to multiple partitions, none of which contains a majority of sites: in such a situation, the system cannot process Writes and, depending on the protocol, no Reads either, leading to non-availability of the database.

The so-called CAP Theorem states that it is not possible to achieve all three of the following at all times in a system that has distributed replicated data, and that one of these needs to be sacrificed:

- Consistency of the distributed replicas at all times;
- Availability of the database at all times;
- Partition-tolerance, i.e. if a network failure splits the set of database sites into two or more disconnected groups, then processing should be able to continue in all groups.

In large-scale distributed systems network partitions cannot be prevented, so either consistency or availability need to be sacrificed in practice.
Protocols such as ROWA and Majority sacrifice availability, not consistency.

However, for some applications (e.g. social networking applications), availability is mandatory while they may only require the so-called “BASE” properties:

Basically available, Soft state, Eventually consistent

Such applications require updates to continue to be executed on whatever replicas are available, even in the event of network partitioning.

“Soft state” refers to the fact that there may not be a single well-defined database state, with different replicas of the same data item having different values.

“Eventual consistency” guarantees that, once the partitioning failures are repaired, eventually all replicas will become consistent with each other. This may not be fully achievable by the database system itself and may need application-level code to resolve some inconsistencies.

NoSQL systems typically do not aim to provide Consistency at all times, aiming instead for Eventual Consistency.

Examples of NoSQL systems include:

- **key-value stores**, such as Dynamo, Voldemort:
 - store data values that are indexed by a key
 - support insert, delete and look-up operations
 - data is distributed across nodes according to values of the key

- **document stores**, such as MongoDB, Couchbase:
 - store more complex, nested-structure, data
 - support both primary and secondary indexes to the data
 - data may be more flexibly partitioned and/or replicated across nodes

- **wide-column stores** such as BigTable, HBase, Cassandra:
 - store records that can be extended with additional attributes;
 - records can be partitioned both vertically and horizontally across nodes.
 - Google’s Megastore builds on BigTable, providing a schema definition language, and multi-version concurrency control, synchronous replication and ACID transactional semantics for user-defined groupings of records (“entity groups”). Two-phase commit is also supported for achieving atomicity of updates that span different entity groups\(^1\).

- **graph DBMSs** such as Neo4J, HyperGraphDB, Sparksee, Trinity:
 - although these are classified as NoSQL systems by some commentators, they predate the NoSQL movement and they generally do support full ACID transactions;
 - graph DBMSs focus on managing large volumes of graph-structured data;
 - graph-structured data differs from other “big” data in its greater focus on the relationships between entities, regarding these relationships as important as the entities;
 - graph DBMS typically include features such as
 - special-purpose graph-oriented query languages
 - graph-specific storage structures, for fast edge and path traversal
 - in-database support for graph algorithms such as subgraph matching, breadth-first/depth-first search, path finding and shortest path.

2 In-Memory Database Systems; NewSQL

These target applications where the data can fit into main memory — typically, partitioned and replicated across multiple servers in a shared-nothing architecture — and where there is a need to achieve very high transaction throughput.

Example applications are real-time web analytics, online trade monitoring, telecommunications data management and analysis, social networking applications.

In-memory database systems are made possible by the increasing availability of larger main memories at lower costs.

If all the data fits into main memory then I/O and buffer management costs are reduced.

Moreover, data storage and indexing structures can be designed specifically for main memory, rather than the traditional disk-oriented data structures.

Log records still need to be written to persistent storage when a transaction commits, to ensure durability. However, it is possible to wait until blocks containing log records are full before writing them to stable storage, i.e. committing a set of transactions using just one write operation to the persistent log rather than committing each transaction separately. This is known as group commit and it reduces the overheads of logging, albeit at the cost of a delay in committing transactions. (Group commit can be used for disk-oriented databases too, not just main-memory ones.)
An example main-memory DBMS is VoltDB, which evolved from the H-Store research project\(^2\).

VoltDB has been characterised as a “NewSQL” system: these systems aim to achieve high throughput and scalability on OLTP (Online Transaction Processing) workloads while still retaining the relational data model and the SQL query language and still maintaining full ACID guarantees.

Key features of VoltDB:

- Transactions are registered in advance with the DBMS, as Stored Procedures, so that the database can be optimized for running these specific transactions, e.g. with respect to data partitioning and indexing.

 Since the database is memory-resident, there are no disk waits. Since transactions are Stored Procedures, there are no user waits either.

 So the execution of transactions at each node does not need to be interleaved in order to avoid leaving the CPU idle, and can be single-threaded and serial.

- The expectation is that most application transactions will be designed so that they can either be executed at just one site, or executed in parallel as a set of independent sub-transactions running over the partitioned/replicated data.

 (In a distributed database, transactions that only access data at a single node do not incur the overhead of Two-Phase Commit in order to ensure atomicity.)

- Automatic, synchronous replication of data partitions is used in order to achieve fault tolerance and to facilitate recovery from failures.

 K-safety is supported, whereby the database can withstand the loss of up to K nodes.

- Transaction execution at each site is serial, in time-stamp order, with no latching or locking.

 Every transaction is assigned a timestamp, and these timestamps form a global total ordering (relying on the NTP local clock synchronisation algorithm\(^3\)).

- Flexible logging is supported whereby DBAs can choose whether to deploy synchronous or asynchronous logging, and how often log information should be flushed from memory to disk.

 If a failure occurs at a node and, due to asynchronous logging, some part of the log hasn’t been to flushed to disk, then K-safety ensures that another replica of the log will have been successfully flushed a some other node.

- Command logging (see Reading 6) is used rather than traditional physical or logical logging, whereby the name of the Stored Procedure (i.e. transaction) that is about to be executed, plus its input parameters, are written to the log. This requires just one log record to be written, compared with the multiple log records required by traditional logging.

 Reading 6 reports a factor of x1.5 in the speed up of TPC-C transaction throughput compared with using physiological logging.

 After a system failure, the database state can be recovered by re-executing in order the committed transactions recorded in the command log subsequent to the last checkpoint.

 Use of command logging does incur a slower recovery time than use of physiological logging (Reading 6 reports a factor of x1.5). However, given the fact that failures are rare, this increased recovery time is less important than the reduced run-time overhead of logging.

\(^2\)HStore: A High Performance, Distributed Main Memory Transaction Processing System, R.Kallman et al., PVLDB’08, 2008, pp 1496-1499

These design decisions are motivated by the performance findings reported in the papers *The End of an Architectural Era (It’s Time for a Complete Rewrite)* and *OLTP Through the Looking Glass, and What We Found There* (see Homework Reading).

These papers identify 4 major sources of overheads when OLTP workloads are run on conventional, disk-oriented, database architectures:

- locking
- logging
- latching
- buffer management

Homework Reading

All of the following are on Moodle:

1) Read Section 1 and Section 2 of:

Accessible at dl.acm.org/citation.cfm?id=1376713

Read the rest of the paper, for interest.

2) Read:

Scalable SQL and NoSQL Data Stores, Rick Cattell, SIGMOD Record, 39(4), 2010, pp 12-27.

Accessible at dl.acm.org/citation.cfm?id=1978919

You can skip Subsections 2.3 - 2.6; 3.1; 3.4; 4.2; 5.3 - 5.6.

Although it is a few years old, this paper covers the main principles of NoSQL and NewSQL databases, and also describes some Use Cases. N.B. Some of the products described are now obsolete, and all of the rest will have evolved since the paper was written.

3) Read:

This is a slightly more up-to-date account of NoSQL and NewSQL data stores, motivated from the data management requirements of Cloud Computing.

You can skip these subsections: “Related Surveys”, on page 4; “Methodology”, on page 5; “Partitioning”, on page 10, through to the end of “Security”, at the top of page 19.

4) Read Section 19.9 in Chapter 19 of Silberschatz et al., on “Cloud-Based Databases”.

6) Read Nigel Martin’s notes on NoSQL Databases, from the DKM module, which have a specific focus on MongoDB and Neo4J.
Further reading, for interest
