
1

Advances in Data Management

The AutoMed Heterogeneous Data Integration System

A.Poulovassilis

1 AutoMed

Heterogeneous data integration systems generally support one Common Data Model (CDM) e.g.
relational, Entity/Relationship, Object-Oriented, graph-based.

For each type of data source, there is a wrapper for translating its schema into the CDM.

Global schemas are then defined by means of view definitions over the export schemas expressed
in this CDM1.

AutoMed is a schema transformation and integration system developed at Birkbeck and Imperial
Colleges — see http://www.doc.ic.ac.uk/automed.

AutoMed provides a low-level hypergraph-based data model (HDM).

Higher-level modelling languages (e.g. relational, OO, XML, RDF/S, OWL) can be defined in
terms of this lower-level model, using the API of AutoMed’s Model Definitions Repository (MDR).

Thus, there is not a single Common Data Model assumed in AutoMed; instead, it is possible to
use any of the modelling languages defined in the MDR to specify a global schema. It is also
possible to extend this set of modelling languages with variants and new languages.

For any modelling languageM specified in terms of the HDM, AutoMed provides a set of primitive
schema transformations that can be applied to schema constructs expressed in M.

In particular, there is an add and a delete primitive transformation for adding/deleting any con-
struct of M to/from a schema.

For those constructs ofM which have textual names, there is also a rename primitive transforma-
tion.

Schemas are incrementally transformed by applying to them a sequence of such transformations.

Each add or delete transformation is accompanied by a query which defines the extent of the new
or deleted schema construct in terms of the rest of the constructs in the schema i.e. this query
specifies a view definition.

This query is expressed in an intermediate query language, IQL2. IQL is a functional query
language 3.

We term a sequence of transformations transforming a schema S1 to a schema S2 a transforma-
tion pathway, and we denote it by S1 → S2.

1This is known as global-as-view (GAV) data integration, which is what I am assuming for the purposes
of this course.

Also possible is local-as-view (LAV) data integration, in which local schemas are defined as views over a
global schema; and global-local-as-view (GLAV), in which views over the global schema are mapped to views
over the local schemas.

AutoMed is actually a both-as-view data integration system, as its schema transformation pathways can be
used to generate views for both GAV and LAV, and indeed GLAV, query processing.

2All primitive transformations have an optional additional argument which specifies a constraint on the current
schema extension that must hold if the transformation is to be applied. Constraints are also expressed as IQL
queries. For simplicity, none of the examples here need to make use of this feature.

3Functional query languages have a computational model which is based on functional programming.



2

Figure 1: A general AutoMed Integration

All source, intermediate and integrated schemas, and the pathways between them, are stored in
AutoMed’s Schemas & Transformations Repository (STR).

Schema integration in AutoMed proceeds by forming union-compatible schemas, as illustrated in
Figure 1.

In order to integrate n local schemas, LS1, . . . , LSn, each LSi first needs to be transformed into
a union-compatible schema USi. (Henceforth in this document, we use the term ‘union schema’
synonymously with ‘union-compatible schema’.)

These n union schemas are syntactically identical, and this is indicated by creating a sequence of
id transformation steps between each pair USi and USi+1, of the form id (USi : c, USi+1 : c) for
each schema construct c in USi and USi+1

4.

These id transformations can be generated automatically by the AutoMed software.

An arbitrary one of the USi can then be selected for further transformation into a global schema
GS.

There may be information within a USi which is not semantically derivable from the corresponding
LSi. This is indicated by extend transformation steps occurring within the pathway LSi → USi.

Conversely, not all of the information within a local schema LSi need be transferred into USi and
this is indicated by contract transformation steps occurring within LSi → USi.

These extend and contract transformations behave in the same way as add and delete, respectively,
except that they are accompanied by two queries, a lower-bound query and an upper-bound query,
which specify a range of values within which the extents of the new/removed constructs lie.

2 Representing Relational and OO Data Models in Au-
toMed

The following tables show the AutoMed specification of (a) the relational data model, with four
basic modelling constructs table, column, primary key and foreign key; and (b) part of a typical
object-oriented data model.

4id is an additional type of primitive transformation in AutoMed, and USi : c denotes construct c appearing in
schema USi.



3

Relational Construct
construct: table R
scheme: � R�
construct: column a of R
scheme: � R, a�
construct: primary key on constructs c1, . . . , cn of R
scheme: � R pk,R, c1, . . . , cn �
construct: foreign key, where c of R references c′ of R′

scheme: � R fki,R, c, R′, c′ �

OO Construct
construct: class C
scheme: � C �
construct: class attribute a of C, of type C ′

scheme: � C, a,C ′ �
construct: scalar attribute a of C
scheme: � C, a�
construct: set atttribute a of C, of type set(C ′)
scheme: � C, a,C ′ �
construct: primary key on constructs c1, . . . , cn of C
scheme: � C pk,C, c1, . . . , cn �

3 Examples

Example 1.

The transformation of the OO schema L2 into the relational schema C2 in Example 1 from the
earlier Notes can be accomplished by a series of transformation steps that first add the missing
relational schema constructs of C2 and then remove the, no longer needed, OO schema constructs
of L2.

For example, here is a sequence of transformations transforming the Department class of L2 into
the Department relation of C2:

// "growing" phase:

add(table,<<Department_R>>,[{d}|{o,d}<-<<Department,deptName>>])

add(column,<<Department_R,deptName>>,[{d,d}|{o,d}<-<<Department,deptName>>])

add(column,<<Department_R,deptHead>>,[{d,h}|{o1,d}<-<<Department,deptName>>;

{o2,h}<-<<Department,deptHead>>;

o1 = o2)]

add(primary_key,<<Department_R_pk,Department_R,<<Department_R,deptName>>>>)

// "shrinking" phase:

contract(primary_key,<<Department_pk,Department,<<Department,deptName>>>>)

contract(scalar_attribute,<<Department,deptHead>>)

contract(scalar_attribute,<<Department,deptName>>)

contract(class,<<Department>>)

// "renaming" phase:

rename(<<Department_R_pk,Department_R,<<Department_R,deptName>>,Department_pk)

rename(<<Department_R>>,Department)

Example 2.

Consider the export schema ES1 from the previous Notes:



4

Student(studentId, name, address, tutorId)
Staff(tutorId, name, deptName)
Lecturer(lecturerId, name, deptName)
Course(courseId, name, programme)
Teaches(lecturerId, studentId)

and the export schema ES2:

Department(deptName, deptHead)
Course(courseId, courseName, units)
Enrollment(studentId, year)
Staff(staffId, name,deptName)
Teaches(staffId, courseId)
CourseEnrollments(studentId,year, courseId)

and consider their integration discussed in Example 2 in the previous Notes.

Let us see how AutoMed can express this integration, and as well as automatically generating the
necessary schema mappings. For simplicity, I will ignore foreign key constraints.

Let us first express the transformations that were applied to ES1 and ES2 in Example 2 as
AutoMed transformations:

• add to ES1 a new relation Department(deptName) populated by the deptName values in
Staff and Lecturer:

add(table, <<Department>>,

distinct ([{d}|{i,d}<-<<Staff,deptName>>] ++

[{d}|{i,d}<-<<Lecturer,deptName>>]))

add(column,<<Department,deptName>>,

distinct ([{d,d}|{i,d}<-<<Staff,deptName>>] ++

[{d,d}|{i,d}<-<<Lecturer,deptName>>]))

add(primary_key,<<Department_pk,Department,<<Department,deptName>>>>)

• rename Staff in ES2 to Lecturer:

rename(<<Staff_pk,Staff,<<Staff,StaffId>>>>,Lecturer_pk)

rename(<<Staff>>,Lecturer)

• rename the attribute Lecturer.staffId in ES2 to lecturerId:

rename(<<Lecturer,staffId>>,lecturerId)

and similarly the attribute Teaches.staffId:

rename(<<Teaches,staffId>>,lecturerId)

• rename the attribute Course.name in ES1 to courseName:

rename(<<Course,name>>,courseName)

• rename Teaches in ES1 to TeachesStudents:

rename(<<Teaches_pk,Teaches,<<Teaches,lecturerId>>,<<Teaches,studentId>>>>,

TeachesStudents_pk)

rename(<<Teaches>>,TeachesStudents)



5

To summarise, the transformations on ES1 are therefore:

add(table, <<Department>>,

distinct ([{d}|{i,d}<-<<Staff,deptName>>] ++

[{d}|{i,d}<-{<<Lecturer,deptName>>]))

add(column,<<Department,deptName>>,

distinct ([{d,d}|{i,d}<-<<Staff,deptName>>] ++

[{d,d}|{i,d}<-{<<Lecturer,deptName>>]))

add(primary_key,<<Department_pk,Department,<<Department,deptName>>>>)

rename(<<Course,name>>,courseName)

rename(<<Teaches_pk,Teaches,<<Teaches,lecturerId>>,<<Teaches,studentId>>>>,TeachesStudents_pk)

rename(<<Teaches>>,TeachesStudents)

These can be applied to ES1, obtaining a new schema I1.

Similarly, the transformations on ES2 are therefore:

rename(<<Staff_pk,Staff,<<Staff,StaffId>>>>,Lecturer_pk)

rename(<<Staff>>,Lecturer)

rename(<<Lecturer,staffId>>,lecturerId)

rename(<<Teaches,staffId>>,lecturerId)

These can be applied to ES2, obtaining a new schema I2.

Next, we create a new schema U1 that extends I1 with the constructs that it is missing from I2;
and similarly we create a new schema U2 that extends I2 with the constructs that it is missing
from I1. This can be done automatically by the AutoMed software, taking I1 and I2 as input.

The resulting two schemas, U1 and U2, are identical and look as follows:

Student(studentId, name, address, tutorId)
Staff(tutorId, name,deptName)
Lecturer(lecturerId, name,deptName)
Course(courseId, courseName, units, programme)
TeachesStudents(lecturerId, studentId)
Department(deptName, deptHead)
Enrollment(studentId, year)
CourseEnrollments(studentId,year, courseId)
Teaches(lecturerId, courseId)

Next, we link U1 and U2 by a set of id transformation steps — this can be done automatically by
the AutoMed software. So if a query is now applied to U1 or U2 data will be sourced from both
L1 and L2:

• Schema constructs that appear in both I1 and I2 are populated by a bag union of the data
from L1 and L2.

• Schema constructs that appear only in one of I1 or I2 are populated by data from just L1

or L2, respectively.

Finally, we can now select either of U1 or U2, let’s say U1, for further improvement into the final
global schema:

• remove the redundant relation TeachesStudents since this information can be derived by
joining Teaches and CourseEnrollments:



6

delete(primary_key,<<TeachesStudents_pk,TeachesStudents,<<TeachesStudents,lecturerId>>,

<<TeachesStudents,studentId>>>>)

delete(column,<<TeachesStudents,studentId>>,

[{l,s,s} | {l,c1}<-<<Teaches>>; {s,y,c2}<-<<CourseEnrollments>>; c1 = c2])

delete(column,<<TeachesStudents,lecturerId>>,

[{l,s,l} | {l,c1}<-<<Teaches>>; {s,y,c2}<-<<CourseEnrollments>>; c1 = c2])

delete(table, <<TeachesStudents>>,

[{l,s} | {l,c1}<-<<Teaches>>; {s,y,c2}<-<<CourseEnrollments>>; c1 = c2])

• remove the redundant relation Enrollment since this information can be derived by project-
ing on the studentId, year attributes of CourseEnrollments

delete(primary_key,<<Enrollment_pk,Enrollment,<<Enrollment,studentId>>,

<<Enrollment,year>>)

contract(column,<<Enrollment,year>>,[{s,y,y} | {s,y,c}<-<<CourseEnrollments>>])

contract(column,<<Enrollment,studentId>>,[{s,y,s} | {s,y,c}<-<<CourseEnrollments>>])

contract(table,<<Enrollment>>, [{s,y} | {s,y,c}<-<<CourseEnrollments>>])

The global schema, GS, resulting from all the above transformations is:

Student(studentId, name, address, tutorId)
Staff(tutorId, name,deptName)
Lecturer(lecturerId, name,deptName)
Course(courseId, courseName, units, programme)
Department(deptName, deptHead)
CourseEnrollments(studentId,year, courseId)
Teaches(lecturerId, courseId)

4 Generating the Schema Mappings

In Automed, each primitive transformation has an automatically derivable reverse transformation:

• each add or extend transformation is reversed by a delete or contract transformation with the
same arguments;

• each delete or contract transformation is reversed by an add or extend transformation with
the same arguments;

• each rename transformation is reversed by a rename that restores the original name;

• each id transformation is reversed by an id transformation with the two arguments swapped.

View definitions which define the constructs of a global schema in terms of the constructs of a set
of source schemas (i.e. GAV mappings) are generated automatically by the AutoMed software.
The mapping generation algorithm makes use of the transformation pathways between the source
schemas and the global schema.

For example, views can be generated which define the constructs of the global schema GS in
the example earlier in terms of the constructs of the two source schemas L1 (relational) and L2

(object-oriented).

The view generation is done by traversing the reverse pathways from GS down to each Li. The
only transformations that are significant for the purposes of the view generation are those that
delete, contract or rename a construct:



7

• delete: This has an associated query which shows how to reconstruct the extent of the
construct being deleted. Any occurrence of the deleted construct within the current view
definitions is replaced by this query.

• contract: This is treated similarly to delete, except that its associated pair of lower and upper
bound queries is used.

• rename: All references to the old construct in the current view definitions are replaced by
references to the new construct.

For example, here are the successive rewriting steps that define the global construct GS:<<Department>>
as a view over L1 and L2:

GS:<<Department>>

=>

I1:<<Department>> ++ I2:<<Department>>

=>

(distinct ([{d}|{i,d}<-ES1:<<Staff,deptName>>] ++

[{d}|{i,d}<-ES1:<<Lecturer,deptName>>]))

++ ES2:<<Department>>

=>

(distinct ([{d}|{i,d}<-LS1:<<Staff,deptName>>] ++

[{d}|{i,d}<-LS1:<<Lecturer,deptName>>]))

++ [{d} | {o,d}<-LS2:<<Department,deptName>>]

Such GAV view definitions are then used by AutoMed for global query processing by substituting
the view definitions into queries that are expressed over the global schema, so as to reformulate
such queries into queries that are expressed on the source schemas.


