
Graph databases and graph
querying

Advances in Data Management, 2019

Dr. Petra Selmer
Query languages standards & research group, Neo4j

1

Member of the Query Languages Standards & Research Group at Neo4j

Collaborations with academic partners in graph querying

Design new features for graph querying

Standardisation efforts within ISO: GQL (Graph Query Language)

Manage the openCypher project

Previously: engineer at Neo4j

Work on the Cypher Features Team

PhD in flexible querying of graph-structured data (Birkbeck, University of London)

About me

2

The property graph data model
The Cypher query language
Introducing Graph Query Language (GQL)
GQL Features

Graph pattern matching
Type system
Expressions
Schema and catalog
Modifying and projecting graphs
Query composition and views
Other work

Agenda

3

The property graph data model

4

What is a property graph?

5

Underlying construct is a graph

Four building blocks:

Nodes (synonymous with vertices)

Relationships (synonymous with edges)

Properties (map containing key-value pairs)

Labels

Property graph

6

https://github.com/opencypher/openCypher/blob/master/docs/property-graph-model.adoc

https://github.com/opencypher/openCypher/blob/master/docs/property-graph-model.adoc

Node

● Represents an entity within the graph
● Has zero or more labels
● Has zero or more properties

(which may differ across nodes with the same label(s))

Property graph

7

Node
● Represents an entity within the graph
● Has zero or more labels
● Has zero or more properties

(which may differ across nodes with the same label(s))

Edge

● Adds structure to the graph
(provides semantic context for nodes)

● Has one type
● Has zero or more properties

(which may differ across relationships with the same type)
● Relates nodes by type and direction
● Must have a start and an end node

Property graph

8

Node
● Represents an entity within the graph
● Has zero or more labels
● Has zero or more properties

(which may differ across nodes with the same label(s))

Edge

● Adds structure to the graph
(provides semantic context for nodes)

● Has one type
● Has zero or more properties
● Relates nodes by type and direction
● Must have a start and an end node

Property graph

9

Property

● Name-value pair (map) that can go on nodes and edges
● Represents the data: e.g. name, age, weight etc
● String key; typed value (string, number, bool, list)

When and why is it useful?

10

Relational vs. graph models

11

Query complexity grows with need for JOINs

Graph patterns not easily expressible in SQL

Recursive queries

Variable-length relationship chains

Paths cannot be returned natively

Relationship-centric querying

12

The topology is as important as the data...

13

Data integration

14

Real-world usage

15

Use cases

16

Examples of graphs in industry

17

Nodes model applications, servers,

racks, etc

Edges model how these entities are
connected

Impact analysis

Data centre dependency network

18

NASA

Knowledge repository for previous missions - root cause analysis

Panama Papers

How was money flowing through companies and individuals?

Some well-known use cases

19

The Cypher query language

20

Declarative graph pattern matching language

SQL-like syntax

DQL for reading data

DML for creating, updating and deleting data

DDL for creating constraints and indexes

Introducing Cypher

21

Graph patterns

22

Searching for (matching) graph patterns

23

() or (n)

Surround with parentheses

Use an alias n to refer to our node later in the query

(n:Label)

Specify a Label starting with a colon :

Used to group nodes by roles or types (similar to tags)

(n:Label {prop: ‘value’})

Nodes can have properties

Cypher: nodes

24

--> or -[r:TYPE]->

Wrapped in hyphens and square brackets

A relationship type starts with a colon :

<>

Specify the direction of the relationships

-[:KNOWS {since: 2010}]->

Relationships can have properties

Cypher: edges / relationships

25

Used to query data

(n:Label {prop: ‘value’})-[:TYPE]->(m:Label)

Cypher: patterns

26

Find Alice who knows Bob

In other words:

find Person with the name ‘Alice’

who KNOWS

a Person with the name ‘Bob’

(p1:Person {name: ‘Alice’})-[:KNOWS]->(p2:Person {name: ‘Bob’})

Cypher: patterns

27

// Data creation and manipulation
CREATE (you:Person)
SET you.name = ‘Jill Brown’
CREATE (you)-[:FRIEND]->(me)

// Either match existing entities or create new entities.
// Bind in either case
MERGE (p:Person {name: ‘Bob Smith’})
 ON CREATE SET p.created = timestamp(), p.updated = 0
 ON MATCH SET p.updated = p.updated + 1
RETURN p.created, p.updated

DML: Creating and updating data

28

// Pattern description (ASCII art)
MATCH (me:Person)-[:FRIEND]->(friend)
// Filtering with predicates
WHERE me.name = ‘Frank Black’
AND friend.age > me.age
// Projection of expressions
RETURN toUpper(friend.name) AS name, friend.title AS title
// Order results
ORDER BY name, title DESC

29

Input: a property graph
Output: a table

DQL: reading data
Multiple pattern parts can be defined in a
single match clause (i.e. conjunctive
patterns); e.g:
MATCH (a)-(b)-(c), (b)-(f)

Node patterns

MATCH (), (node), (node:Node), (:Node), (node {type:"NODE"})

Relationship patterns

MATCH ()-->(), ()<--(), ()--() // Single relationship
MATCH ()-[edge]->(), (a)-[edge]->(b) // With binding
MATCH ()-[:RELATES]->() // With specific relationship type
MATCH ()-[edge {score:5}]->() // With property predicate
MATCH ()-[r:LIKES|:EATS]->() // Union of relationship types
MATCH ()-[r:LIKES|:EATS {age: 1}]->() // Union with property predicate
 (applies to all relationship types specified)

Cypher patterns

30

Variable-length relationship patterns

MATCH (me)-[:FRIEND*]-(foaf) // Traverse 1 or more FRIEND relationships
MATCH (me)-[:FRIEND*2..4]-(foaf) // Traverse 2 to 4 FRIEND relationships
MATCH (me)-[:FRIEND*0..]-(foaf) // Traverse 0 or more FRIEND relationships
MATCH (me)-[:FRIEND*2]-(foaf) // Traverse 2 FRIEND relationships
MATCH (me)-[:LIKES|HATES*]-(foaf) // Traverse union of LIKES and HATES 1 or more times

// Path binding returns all paths (p)
MATCH p = (a)-[:ONE]-()-[:TWO]-()-[:THREE]-()
// Each path is a list containing the constituent nodes and relationships, in order
RETURN p

// Variation: return all constituent nodes of the path
RETURN nodes(p)
// Variation: return all constituent relationships of the path
RETURN relationships(p)

Cypher patterns

31

1: MATCH (me:Person {name: $name})-[:FRIEND]-(friend)
2: WITH me, count(friend) AS friends
3: MATCH (me)-[:ENEMY]-(enemy)
4: RETURN friends, count(enemy) AS enemies

WITH provides a horizon, allowing a query to be subdivided:
● Further matching can be done after a set of updates
● Expressions can be evaluated, along with aggregations
● Essentially acts like the pipe operator in Unix

Linear composition
● Query processing begins at the top and progresses linearly to the end
● Each clause is a function taking in a table T (line 1) and returning a table T’
● T’ then acts as a driving table to the next clause (line 3)

Cypher: linear composition and aggregation

32

Parameters: $param

Aggregation
(grouped by ‘me’)

Example query: epidemic!

33

Assume a graph G
containing doctors
who have
potentially been
infected with a
virus….

The following Cypher query returns the name of each doctor in G who has perhaps been
exposed to some source of a viral infection, the number of exposures, and the number of
people known (both directly and indirectly) to their colleagues

1: MATCH (d:Doctor)
2: OPTIONAL MATCH (d)-[:EXPOSED_TO]->(v:ViralInfection)
3: WITH d, count(v) AS exposures
4: MATCH (d)-[:WORKED_WITH]->(colleague:Person)
5: OPTIONAL MATCH (colleague)<-[:KNOWS*]-(p:Person)
6: RETURN d.name, exposures, count(DISTINCT p) AS thirdPartyCount

Example query

34

1: MATCH (d:Doctor)
2: OPTIONAL MATCH (d)-[:EXPOSED_TO]->(v:ViralInfection)

Matches all :Doctors, along with whether or not they have been :EXPOSED_TO a :ViralInfection
OPTIONAL MATCH analogous to outer join in SQL

Produces rows provided entire pattern is found
If no matches, a single row is produced in which the binding for v is null

Example query

35

d v

Sue SourceX

Sue PatientY

Alice SourceX

Bob null

Although we show the name property (for ease of
exposition), it is actually the node that gets bound

3: WITH d, count(v) AS exposures

WITH projects a subset of the variables in scope - d - and their bindings onwards (to 4).
WITH also computes an aggregation:

d is used as the grouping key implicitly (as it is not aggregated) for count()
All non-null values of v are counted for each unique binding of d
Aliased as exposures

The variable v is no longer in scope after 3

Example query

36

d exposures

Sue 2

Alice 1

Bob 0

This binding table is now the driving table for the MATCH in 4

4: MATCH (d)-[:WORKED_WITH]->(colleague:Person)

Uses as driving table the binding table from 3

Finds all the colleagues (:Person) who
have :WORKED_WITH our doctors

Example query

37

d exposures colleague

Sue 2 Chad

Sue 2 Carol

Bob 0 Sally

5: OPTIONAL MATCH (colleague)<-[:KNOWS*]-(p:Person)

Finds all the people (:Person) who :KNOW our doctors’ colleagues (only in the one direction), both directly
and indirectly (using :KNOWS* so that one or more relationships are traversed)

Example query

38

d exposures colleague p

Sue 2 Chad Carol

Sue 2 Carol null

Bob 0 Sally Will

Bob 0 Sally Chad

Bob 0 Sally Carol*

Bob 0 Sally Carol*

No Carol)<-[:KNOWS]-() pattern in G

* This is due to the :KNOWS* pattern: Carol is reachable from
Sally via Chad and Will
(Carol :KNOWS Will and Chad)

1: MATCH (d:Doctor)
2: OPTIONAL MATCH (d)-[:EXPOSED_TO]->(v:ViralInfection)
3: WITH d, count(v) AS exposures
4: MATCH (d)-[:WORKED_WITH]->(colleague:Person)
5: OPTIONAL MATCH (colleague)<-[:KNOWS*]-(p:Person)
6: RETURN d.name, exposures, count(DISTINCT p) AS thirdPartyCount

+---+

| d.name | exposures | thirdPartyCount |

+---+

| Bob | 0 | 3 (Will, Chad, Carol)|

| Sue | 2 | 1 (Carol) |

+---+

Example query results

39

Aggregating functions

count(), max(), min(), avg()

Operators

Mathematical, comparison, string-specific, boolean, list

Map projections

Construct a map projection from nodes, relationships and properties

CASE expressions, functions (scalar, list, mathematical, string, UDF,
procedures)

Other functionality

40

Introducing Graph Query Language (GQL)

41

Many implementations
Amazon Neptune, Oracle PGX, Neo4j Server, SAP HANA Graph, AgensGraph (over
PostgreSQL), Azure CosmosDB, Redis Graph, SQL Server 2017 Graph, Cypher for Apache
Spark, Cypher for Gremlin, SQL Property Graph Querying, TigerGraph, Memgraph,
JanusGraph, DSE Graph, ...

Multiple languages
ISO SC32.WG3 SQL PGQ (Property Graph Querying)
Neo4j openCypher
LDBC G-CORE (augmented with paths)
Oracle PGQL
W3C SPARQL (RDF data model)
Tigergraph GSQL

...also imperative and analytics-based languages

Property graphs are everywhere

42

SQL 2020
Participation from major
DBMS vendors.
Neo4j’s contributions
freely available*.

* http://www.opencypher.org/references#sql-pg

A new stand-alone / native query
language for graphs

Targets the labelled PG model

Composable graph query language with
support for updating data

Based on

● “Ascii art” pattern matching
● Published formal semantics (Cypher,

G-CORE)
● SQL PG extensions and SQL-compatible

foundations (some data types, some
functions, ...)

43

Graphs first, not graphs “extra”

https://www.gqlstandards.org

A property graph query language
GQL doesn’t try to be anything else

A composable language
Via graph projection, construction, subqueries
Closed under graphs and tables

A declarative language
Reading, updating and defining schema

An intuitive language
A compatible language: reuse SQL constructs where sensible, and be able to
interoperate with SQL and other languages

GQL design principles

44

GQL standardization

GQL will be standardized under the aegis of ISO SC32/WG3
This is the body that specifies and standardizes SQL
SQL 2020 is currently being designed - includes SQL Property Graph Extensions

GQL will be specified as a separate language to SQL
Will incorporate features in SQL Property Graph Extensions as well as SQL functionality where
appropriate

Goals:
Lead and consolidate the existing need for such a language
Increase utility of graph querying for ever more complex use cases
Covers full spectrum of features for an industry-grade graph query language
Drive adoption of graph databases 45

This is the first time
this has happened in
the history of the
standardization of
database languages

open
Cypher

Neo4j
Cypher

Oracle
PGQL

LDBC
G-CORE

GQLSQL PGQ

- Construct & project graphs
- Composable

- Read only
- Path macro (complex path
expressions)

- Create, Read
- Advanced complex path expressions
- Construct & project graphs
- Composable

- Create, Read, Update, Delete
- Advanced complex path expressions
with configurable matching semantics
- Construct & project graphs
- Composable

CRUD, Construct & project, Composable

Reading graphs

Reading graphs
Complex path expressions

Reading graphs
Advanced complex path expressions

Creating, constructing and projecting graphs,
Advanced complex path expressions, Composable

Reading graphs

Reading graphs

Complex path expressions

- Create, Read, Update, Delete (CRUD)

Academia
GXPath

W3C
XPath

Extended by

Academia
RPQs

(Regular
Path

Queries)

Extended by

- RPQs with data tests (node & edge properties)

Academia
Regular
Queries

46

Interdisciplinary, independent group:
Alin Deutsch (TigerGraph)
Harsh Thakkar (University of Bonn (Germany))
Jeffrey Lovitz (Redis Labs)
Mingxi Wu (TigerGraph)
Oskar van Rest (Oracle)
Petra Selmer (Neo4j)
Renzo Angles (Universidad de Talca (Chile))
Roi Lipman (Redis Labs)
Thomas Frisendal (Independent data modelling expert and author)
Victor Lee (TigerGraph)

Goals:
To construct a complete list/reference of detailed graph querying features

- organised into feature groups
To indicate, for each of these features, whether and how each language supports it

- syntax and semantics

Existing Languages Working Group (ELWG)

47

Languages:
● openCypher
● PGQL
● GSQL
● G-CORE
● SQL PGQ (Property Graph

Querying)

Helping to facilitate the GQL
design process

https://www.gqlstandards.org/existing-languages

//from graph or view ‘friends’ in the catalog
FROM friends

//match persons ‘a’ and ‘b’ who travelled together
MATCH (a:Person)-[:TRAVELLED_TOGETHER]-(b:Person)
WHERE a.age = b.age
 AND a.country = $country
 AND b.country = $country

//from view parameterized by country
FROM census($country)

//find out if ‘a’ and ‘b’ at some point moved to or were born in a place ‘p’
MATCH SHORTEST (a)-[:BORN_IN|MOVED_TO*]->(p)<-[:BORN_IN|MOVED_TO*]->(b)

//that is located in a city ‘c’
MATCH (p)-[:LOCATED_IN]->(c:City)

//aggregate the number of such pairs per city and age group
RETURN a.age AS age, c.name AS city, count(*) AS num_pairs
 GROUP BY age

Example GQL query

48

Illustrative syntax only!

GQL Features

49

Inputs and outputs

Graph

Table

Value

Nothing

Graph procedures

50

Graph pattern matching

51

Patterns are everywhere

52

Patterns are in
● Matching
● Updates
● Schema (DDL)

MATCH (query)-[:MODELED_AS]->(drawing),
 (code)-[:IMPLEMENTS]->(query),
 (drawing)-[:TRANSLATED_TO]->(ascii_art),
 (ascii_art)-[:IN_COMMENT_OF]->(code),
 (drawing)-[:DRAWN_ON]->(whiteboard)

WHERE query.id = $query_id
RETURN code.source

Expressed using “ASCII Art”

Regular path queries (RPQs)

X, (likes.hates)*(eats|drinks)+, Y

Find a path whose edge labels conform to the regular expression, starting at node X and
ending at node Y

(X and Y are node bindings)

Complex path patterns

53

I. F. Cruz, A. O. Mendelzon, and P. T. Wood

A graphical query language supporting recursion

In Proc. ACM SIGMOD, pages 323–330, 1987

Plenty of research in
this area since 1987!

SPARQL 1.1 has
support for RPQs:
“property paths”

Property graph data model:

Properties need to be considered

Node labels need to be considered

Specifying a cost for paths (ordering and comparing)

Complex paths in the property graph data model

54

Concatenation
 a.b - a is followed by b
Alternation
 a|b - either a or b
Transitive closure
 * - 0 or more
 + - 1 or more
 {m, n} - at least m, at most n
Optionality:
 ? - 0 or 1
Grouping/nesting
 () - allows nesting/defines scope

Functionality of RPQs
Relationship types

Using GXPath as inspiration
Node tests

Relationship tests

Not considering unreachable (via a given path) pairs of nodes: intractable

Academic research: Path Patterns

55

L. Libkin, W. Martens, and D. Vrgoč
Querying Graphs with Data
ACM Journal, pages 1-53, 2016

Sequence / Concatenation:

Alternation / Disjunction:

Transitive closure:

0 or more
1 or more
n or more
At least n, at most m

Overriding direction for sub-pattern:

Left to right direction
Right to left direction
Any direction

Composition of Path Patterns

56

()-/ 𝛂 𝛃 /-()

()-/ 𝛂 | 𝛃 /-()

()-/ 𝛂* /-()
()-/ 𝛂+ /-()
()-/ 𝛂*n.. /-()
()-/ 𝛂*n..m /-()

()-/ 𝛂 > /-()
()-/ < 𝛂 /-()
()-/ < 𝛂 > /-()

PATH PATTERN

 older_friends = (a)-[:FRIEND]-(b) WHERE b.age > a.age

MATCH p=(me)-/~older_friends+/-(you)

WHERE me.name = $myName AND you.name = $yourName

RETURN p AS friendship

Path Pattern: example

57

PATH PATTERN

 older_friends = (a)-[:FRIEND]-(b) WHERE b.age > a.age

PATH PATTERN

 same_city = (a)-[:LIVES_IN]->(:City)<-[:LIVES_IN]-(b)

PATH PATTERN

 older_friends_in_same_city = (a)-/~older_friends/-(b)

 WHERE EXISTS { (a)-/~same_city/-(b) }

Nested Path Patterns: example

58

PATH PATTERN road = (a)-[r:ROAD_SEGMENT]-(b) COST r.length

MATCH route = (start)-/~road*/-(end)

WHERE start.location = $currentLocation

 AND end.name = $destination

RETURN route

ORDER BY cost(route) ASC LIMIT 3

Cost function for cheapest path search

59

Pattern matching today uses edge isomorphism (no repeated relationships)

MATCH (p:Person {name: Jack})-[r1:FRIEND]-()-[r2:FRIEND]-(friend_of_a_friend)
RETURN friend_of_a_friend.name AS fofName

“Cyphermorphism”

60

:Person
{ name : Jack }

:Person
{ name : Anne }

:Person
{ name : Tom }

:FRIEND :FRIEND

+---------+

| fofName |

+---------+

| “Tom” |

+---------+

r1 and r2 may not be
bound to the same
relationship within the
same pattern

Rationale was to avoid potentially
returning infinite results for varlength
patterns when matching graphs
containing cycles (this would have been
different if we were just checking for the
existence of a path)

Usefulness proven in practice over
multiple industrial verticals: we have not
seen any worst-case examples

MATCH (p:Person {name: Jack})-[r1:FRIEND]-(friend)
MATCH (friend)-[r2:FRIEND]-(friend_of_a_friend)
RETURN friend_of_a_friend.name AS fofName

Overriding edge isomorphism today

61

:Person
{ name : Jack }

:Person
{ name : Anne }

:Person
{ name : Tom }

:FRIEND :FRIEND

+---------+

| fofName |

+---------+

| “Tom” |

| “Jack” |

+---------+

r1 and r2 may now be
bound to the same
relationship as they appear
in two distinct patterns

Node isomorphism:

 No node occurs in a path more than once
 Most restrictive

Edge isomorphism

 No edge occurs in a path more than once
 Proven in practice

Homomorphism:

 A path can contain the same nodes and edges more than once
 Most efficient for some RPQs
 Least restrictive

Configurable pattern-matching semantics

62

Allow all three types of
matching

All forms may be valid in
different scenarios

Can be configured at a
query level

Controlling the path pattern-matching semantics

REACHES - return a single path, i.e. path existence checking

ALL - returns all paths

[ALL] SHORTEST - for shortest path patterns of equal length (computed by number of edges).

[ALL] CHEAPEST - for cheapest path patterns of equal cost, computed by aggregating a user-specified cost
 for each segment of the path

TOP <k> SHORTEST|CHEAPEST [WITH TIES] - only at most <k> of the shortest or cheapest possible paths

MAX <k> - match at most <k> possible paths

Path pattern modifiers

63

Illustrative syntax only!

Some of these operations
may be non-deterministic

Type system

64

Data types
Scalar data types

Numeric, string, boolean, temporal etc

Collection data types
Maps with arbitrary keys as well as maps with a fixed set of typed fields (anonymous structs):
{name: "GQL", type: "language", age: 0 }
Ordered and unordered sequences with and without duplicates: [1, 2, 3]

Graph-related data types
Nodes and edges (with intrinsic identity)
Paths
Graphs (more on this in the Schema section)

65

Sharing some data types
with SQL’s type system

Support for
● Comparison and equality
● Sorting and equivalence

Advanced types
Heterogeneous types

MATCH (n) RETURN n.status may give conflicting types (esp. in a large schema)
Possible type system extension: Union types for expressing that a value may be one from a set of data
types, e.g. A | B | NULL

Complex object types
Support the typing of complex objects like graphs and documents
Possible type system extension: Graph types, structural types, recursive document type

Static and/or dynamic typing
DYNAMIC Allow queries that may possibly fail at runtime with a type error
STRICT Reject queries that may possibly fail at runtime with a type error

66

Expressions

67

Element access: n.prop, labels(n), properties(n), …

Element operators: allDifferent(<elts>), =, <>

Element functions: source(e), target(e), (in|out)degree(v)

Path functions: nodes(p), edges(p), …

Collection and dictionary expressions
Collection literals: [a, b, c, ...]
Dictionary literals: {alpha: some(a), beta: b+c, ... }
Indexing and lookup: coll[1], dict[‘alpha’]
More complex operations: map projections, list comprehension, etc

Graph element expressions and functions

68

Schema and catalog

69

“Classic” property graphs: historically schema-free/optional

Moving towards a more comprehensive graph schema
Label set - property mapping
Extended with unique key and cardinality constraints
Heterogeneous data

Partial schemas:
Data that doesn’t conform to the schema can still exist in the graph

Static, pre-declared portions alongside dynamically-evolving portions

Schema

70

Similar to Entity-Relationship
(E-R) diagrams

I.e. the graph would be
“open” with respect to
the schema

Access and manage multiple persistent schema objects

 Graphs

Graph types (labels and associated properties)

User-defined constructs: named graph procedures and functions

Users and roles

Catalog

71

Modifying and projecting graphs

72

Multi-part queries: reading and writing data
Modifying data operations

Creating data
Updating data
Deleting data

Reading and writing statements may be composed linearly in a single query
FROM customers
MATCH (a:Person)
WHERE NOT EXISTS { (a)-[:HAS]->(:Contract) }
WITH a, a.email AS email //query horizon
DETACH DELETE a
WITH DISTINCT email //query horizon
CALL {

FROM marketing
MATCH (c:Contact) WHERE c.email = email
UPDATE marketing
DETACH DELETE c }

RETURN email

73

● Follows established reading order in
many languages

● Useful to return data reflecting the
updates

Illustrative syntax only!

Sharing elements in the projected graph
Deriving new elements in the projected graph
Shared edges always point to the same (shared) endpoints in the projected graph

Graph projection

74

Projection is the inverse of pattern matching

75

Turns graphs into
matches for the pattern

Turns matches for the
pattern back into graphs

Query composition and views

76

● Use the output of one query as input to another to enable abstraction and views
● Applies to queries with tabular output and graph output
● Support for nested subqueries
● Extract parts of a query to a view for re-use
● Replace parts of a query without affecting other parts
● Build complex workflows programmatically

Queries are composable procedures

77

Pass both multiple graphs and tabular data into a query

Return both multiple graphs and tabular data from a query

Select which graph to query

Construct new graphs from existing graphs

Implications

78

Disjoint base data graphs
“Sharing” of nodes and edges in views

A (graph) view is a query that returns a graph

Graph operations: INTERSECT, UNION, UNION ALL, …
Support for parameterized views

Graph elements are shared between graphs and views
Graph elements have reference semantics and are
‘owned’ by their base graph or views that introduce them

Support for updateable views
Updates percolate downwards to the base graphs

Query composition and views

79

Other work

80

Interoperability between GQL and SQL

Defining which objects in one language are available to the other

Interoperability with languages other than SQL

Security

Reading and writing graph elements
Executing queries

Error handling

Failures and error codes

Language mechanics

81

Graph compute and analytics

Session model and transaction semantics

Cursors

Constraints and triggers

Bidirectional edges

Stream processing

Multidimensional data

Temporal processing

Future work

82

To conclude...

83

84Image courtesy of Graphaware (esp. Janos Szendi-Varga)

Neo4j Manual: https://neo4j.com/docs/developer-manual/current/

Graph Databases (book available online at www.graphdatabases.com)

Getting started: http://neo4j.com/developer/get-started/

Online training: http://neo4j.com/graphacademy/

Meetups (last Wed of the month) at http://www.meetup.com/graphdb-london (free talks
and training sessions)

Neo4j: Resources

85

https://neo4j.com/docs/developer-manual/current/
http://www.graphdatabases.com
http://neo4j.com/developer/get-started/
http://neo4j.com/graphacademy/
http://www.meetup.com/graphdb-london

Resources

petra.selmer@neo4j.com

Interested in joining the GQL design process?

Regular GQL Community Update Meetings

Working Groups

https://www.gqlstandards.org/

GQL Documents also available at http://www.opencypher.org/references#sql-pg

86

https://www.gqlstandards.org/
http://www.opencypher.org/references#sql-pg

Thank you!

87

