
1

Advances in Data Management

Query Processing and Query Optimisation

A.Poulovassilis

1 General approach to the implementation of Query Processing
and Query Optimisation functionalities in DBMSs

1. Parse and translate queries expressed in a high-level query language into a small set of lower-
level algebraic operators.

2. Provide efficient implementations of these operators.

3. Devise a cost model for these operators.

4. Use the algebraic laws governing the behaviour of the operators to generate a set of candidate
query plans for a given query.

5. Use the cost model and the statistics maintained by the DBMS to estimate a cost for each
candidate query plan. Select the cheapest plan for execution.

6. Execute the chosen plan.

The general architecture of a DBMS’s Query Processor is illustrated in Figure 1. We discuss in
these notes the above steps in the case of a relational DBMS and the SQL query language, but the
principles are the same for all DBMSs and declarative query languages.

2 Translation into algebraic form

SQL queries are first parsed and translated into an expression in an extended relational algebra.

This extended algebra consists of:

• the classical relational algebra operators, but operating on bags — i.e. collections that may
contain duplicates — rather than sets;

• additional GROUP BY and HAVING operators;

• also, aggregation functions (such as SUM,COUNT,AVG,MIN,MAX) are allowed to appear in
the argument list of the projection operator, π.

If an SQL query references a view, then the view definition is first substituted into the query before
the query is translated into the extended relational algebra.

Each “block” of an SQL query, i.e. each SELECT ... FROM ... WHERE ... GROUP BY ...
HAVING ... clause, is translated into a separate expression in the extended relational algebra.



2

Query Processor

Parser

Storage Manager

Database

Buffer manager

File manager

Optimiser

Plan executor

Operator implementations

Data access methods 
(e.g. B+ trees, hash 
indexes, R trees)

Plan generator

Plan cost estimator

Figure 1: Query Processor Architecture



3

The extended relational algebra expression for each block consists of an inner σ, π, × expression,
with possibly additional GROUP BY, HAVING and π operators applied to it (in that order, from
the “inside-out”).

If a subquery is a correlated query, its parent query is considered as providing a selection condition
within the subquery.

Translation Example. Translate the following SQL query (which returns the earliest reservation
of a red boat by each sailor of the highest rating) into the extended relational algebra. There are
two query blocks, and therefore two extended relational algebra expressions will be produced:

SELECT S.sid,MIN(R.day)
FROM Sailors S,Reserves R,Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.colour =′ red′ AND

NOTEXISTS
(SELECT ∗
FROM Sailors S1
WHERE S1.rating > S.rating)

GROUP BY S.sid

3 Relational Query Optimisation

Generally, each query block is optimised separately.

The inner σ, π, × expression of a query block is optimised first; and then the cheapest method of
evaluating the outer GROUP BY, HAVING and π operators (if there are any) is determined.

Optimisation of an inner σ, π, × expression consists of three steps:

1. Generate a set of candidate query plans for this expression. A query plan is a tree such
that:

• each leaf of the tree is a stored database relation;

• each inner node of the tree is a relational algebra operator which is applied to the
relations that are produced by its chidren;

• each inner node is annotated with a choice of algorithm for this operator.

Thus, when a query plan is executed, data flows upwards, from the leaves of the tree, through
the inner nodes, all the way up to the root of the tree; the root of the tree is the final query
operator and it produces the query result.

2. Estimate the cost of each candidate query plan.

3. Select the cheapest plan.

Generating candidate query plans

Algebraic equivalences relating to the relational algebra operators are applied to a query block
to generate candidate query plans in step 1 above. Some example equivalences are the following:



4

(i) Commutativity and associativity of most of the binary operators: natural join, theta join,
product, union and intersection are all both commutative and associative.

(ii) Cascade of projections: if {A1, . . . , An} ⊆ {B1, . . . , Bn} then

πA1,...,An(πB1,...,Bm(E)) = πA1,...,An(E)

(iii) Cascade of selections, and commutativity of selections:

σC1(σC2(E)) = σC1 AND C2(E) = σC2 AND C1(E) = σC2(σC1(E))

(iv) Commuting selection and projection: If C involves only attributes in A1, . . . , An then

πA1,...,An(σC(E)) = σC(πA1,...,An(E))

(v) Converting a selection over a product into a natural join: if C is a conjunction (AND) of
equality comparisons over all the attributes that E1 and E2 have in common then

σC(E1 × E2) = E1 1 E2

(vi) Converting a selection over a product into a theta join or equijoin: if C is a conjunction of
comparisons of attributes of E1 and E2 of the form a1 op a2 where a1 is an attribute of E1

and a2 is an attribute of E2, then

σC(E1 × E2) = E1 1C E2

(vii) Pushing selection through product or join: If C1 involves only attributes of E1 then

σC1(E1 × E2) = σC1(E1)× E2

σC1(E1 1 E2) = σC1(E1) 1 E2

σC1(E1 1C E2) = σC1(E1) 1C E2

Two heuristics are generally applied during the generation of candidate query plans:

(a) Convert selections over products into joins whenever possible. This is in order to eliminate
the very costly product operation.

(b) Consider only left-deep join orders; this is in order to reduce the total number of possi-
ble query plans that need to be generated and costed: left-deep join orders take the form
(. . . ((R1 1 R2) 1 R3) . . . 1 Rn).

(other possible join orders are “right-deep” e.g. R1 1 (R2 1 (R3 1 R4)), and “bushy” e.g.
(R1 1 R2) 1 (R3 1 R4)).

Rule-based vs cost-based optimisation

There are two main approaches to generating and selecting query plans: rule-based and cost-
based. (In this course we focus on the latter.)



5

Rule-based optimisation uses a predefined ranked order of all possible access paths and algorithms
supported by the DBMS, to guide the generation and selection of candidate query plans.

Cost-based optimisation considers all the candidate query plans and uses statistics maintained by
the DBMS relating to the current database state in order to estimate the cost of each candidate
query plan.

Cost-based optimisation is generally at least as effective as rule-based optimisation (and generally
better as it makes use of database statistics). However, it is more expensive, and becomes pro-
hibitively so for queries involving a large number of relations, for which rule-based optisation is
used.

How is cost-based optimisation done ?

In our discussion below of how the relational operators are implemented, we will see how an ana-
lytical cost formula can be derived for each algorithm and access path supported by the DBMS.

The DBMS can also dynamically maintain statistics regarding the volume and distribution of data
in the database. These statistics include:

• for each relation: the number of records and the number of pages in the physical file storing
its data;

• for each index: the number of key values and the number of pages; the structure of the index
e.g. hash file or B+ tree (in which case its height is also recorded); whether the index is
clustered or not; the minimum and maximum key values present in the index; and possibly a
histogram recording the distribution of the key values.

These numbers are substituted into the analytic cost formulae to estimate the cost of each operation
in the query plan, starting from the “leaves” of the plan and moving upwards. Also estimated are
the size of the relation output by the operation, and the sort order of this relation (if it is produced
in a sorted order).

These costs, sizes, and sort orders are recursively fed into operations higher up the query plan,
starting at the leaves of the plan and terminating at the root; and in this way the cost of the whole
plan is estimated.

Note that it may be possible to pipeline the output of one operation into the next operation
upwards in the query tree, without storing (materialising) intermediate results in a temporary
table in memory or on disk. Pipelining has a lower cost than storing intermediate results and it is
therefore used whenever possible.

4 Implementing the Relational Algebra Operators

In what follows, suppose we have two relations R and S. There are NR data pages in relation R,
with pR rows per page; and NS data pages in relation S, with pS rows per page.

(a) union : R ∪ S

If duplicates do not need to be removed from the result, then this operation can be implemented
by:



6

(i) reading and outputing R;

(ii) reading and outputing S.

By convention, query cost formulae do not include the cost of writing out the output to disk, so
the cost of the above is just the cost of reading R plus the cost of reading S.

For this course, we assume a simple query cost model which considers the cost of a query to comprise
just the number of I/O operations required for its evaluation.

This is a reasonable assumption for database systems where the data does not all fit into memory,
since disk accesses are much slower than in-memory operations.

Thus, the cost of (i) + (ii) above is NR +NS I/Os.

(Aside: Real DBMSs do generally take memory access costs and CPU costs into account as well
in their query cost models. Also, they may break down an I/O operation into the disk seek time
and the block transfer time for finer-grain modelling of I/O costs.

Main-memory DBMSs do not consider I/O costs at all in their query cost models; and they use
fine-grained modelling of memory access operations, simple comparison/arithmetic operations, eval-
uation of more complex user-defined functions etc. )

If duplicates do need to be removed from the result of a union then this can be implemented by:

(i) sorting R (on the combination of all its attributes);

(ii) sorting S similarly;

(iii) reading the sorted R and S in parallel, and merging them.

(Aside: Appendix A discusses how relations are sorted in DBMSs — you don’t need to remember
all the details discussed there. The volumes of data involved mean that the data to be sorted may
not all fit into main memory, in which case conventional, main-memory oriented, sorting algorithms
are not adequate. The external merge sort algorithm described in Appendix A uses the DBMS’s
buffer (in main memory) to incrementally sort a file over several passes. On each pass, the partially
sorted file is read into B buffer pages, and 1 buffer page is used to construct each sorted output
page, which is written back to disk, ready to be read in again in the next pass of the algorithm.

For a file of N pages, dlogB(N)e passes are required in order to completely sort the file1. On each
pass, the whole file is read in and written out again. So the total cost of sorting the file is

2N(dlogB(N)e)

I/O operations.)

Assuming B input buffer pages, the cost of steps (i)-(iii) above is therefore

2NR(dlogB(NR)e) + 2NS(dlogB(NS)e)

to sort R and S, plus
NR +NS

1The notation dee denotes the whole number greater than or equal to e.



7

to read the sorted relations and merge them (again note that the cost of actually writing out the
final output to disk is not included).

If one or both of R and S are already appropriately sorted, then of course they do not need to be
sorted in (i) and (ii) above, and this cost is not incurred.

(b) difference : R− S

(i) sort R;

(ii) sort S;

(iii) read the sorted R and S and output the rows in R that are not in S.

Assuming B input buffer pages, the cost is

2NR(dlogB(NR)e) + 2NS(dlogB(NS)e) +NR +NS

(c) projection, πA1,...,AnR

If duplicates do not need to be removed from the result, then R can be read and the A1, . . . , An

fields of each of its records can be output. The cost is just

NR

Suppose duplicates do need to be removed. If there is a B+ tree index on R whose search key
contains A1, . . . , An as a prefix (i.e. the search key is A1, . . . , An, B1, . . . , Bm for 0 or more further
attributes B1, . . . , Bm), then

(i) retrieve the records of R from the index leaf pages in order of the search key,

(ii) check consecutive records for duplicates over the attributes A1, . . . , An,

(iii) output each distinct n-tuple of values of A1, . . . , An

The cost is just
NR

to read the NR leaf pages (for either a clustered or an unclustered index).

If such an index is not available, a variation of the external merge sort algorithm can be used:

- in the first pass of the algorithm, all record fields other than A1, . . . , An are eliminated from
the records being read in;

- in subsequent passes of the algorithm, duplicates are removed as sorted pages of records are
written out.



8

(d) selection, σC(R)

(d.i) simple selection conditions

Suppose C is of the form attr = value e.g.

SELECT ∗ FROM Sailors WHERE Sailors.rating = 10

If there is a B+ tree index on attr (e.g. on ‘rating’ in the above example) then this index can be
used to find the qualifying rows.

The cost of a selection σA=vR assuming a clustered B+ tree index of height hR on attribute A of
R is approximately:

(hR − 1) + dselectivity(A = v,R)×NRe

where hR − 1 is the number of inner nodes that have to be read before reaching the leaf nodes of
the index, and

selectivity(A = v,R)

denotes the percentage of rows of R whose A attribute has value v.

If the B+ tree index is unclustered, the cost is:

(hR − 1) + dselectivity(A = v,R)×NRe+ dselectivity(A = v,R)×NR × pRe

where pR is the number of records per leaf page of the index.

More generally, the cost of a selection C of the form A op v, where op is =, <, >, ≤ or ≥, assuming
a clustered B+ tree index of height hR on attribute A of R is:

(hR − 1) + dselectivity(C,R)×NRe

With an unclustered B+ tree index the cost is:

(hR − 1) + dselectivity(C,R)×NRe+ dselectivity(C,R)×NR × pRe

If op is the equality operation, =, then a hash index on attribute A of R can also be used to
support this operation:

The cost of a selection σA=vR assuming a (clustered) hash index on attribute A of R is:

dselectivity(A = v,R)×NRe

If a suitable index is not available, then the whole of R has to be read and the qualifying rows
output, at a cost of

NR

(d.ii) conjunctions of simple selection conditions (AND)

For example, SELECT ∗ FROM Reserves R WHERE R.day < 8/9/2015 AND R.bid =
5 AND R.sid = 20.

The general approach is to:



9

1. determine an access path (i.e. an index or file scan) matching part of the conjunction;

2. check records retrieved using this access path for the rest of the selection conditions.

Example. Consider the condition day < 8/9/2015 AND bid = 5 AND sid = 20. Suppose there
is a clustered B+ tree index of height 2 on Reserves over day, and an unclustered B+ tree index of
height 2 over (bid, sid). Suppose also that the Reserves data consists of 200 pages each containing
100 tuples.

The clustered B+ tree index over day can be used to retrieve the rows satisfying day < 8/9/2015,
and those rows that also satisfy bid = 5 AND sid = 20 can be output.

Alternatively, the unclustered B+ tree index over (bid, sid) can be used to retrieve the rows satis-
fying bid = 5 AND sid = 20, and those rows also satisfying day < 8/9/2015 can be output.

How does the DBMS determine the cost of these two alternatives?

It uses knowledge of the selectivity of the respective indexes i.e. what percentage of the rows of
the Reserves relation satisfy day < 8/9/2015 and what percentage satisfy bid = 5 AND sid = 20.

How are selectivities estimated?

Simple approach:

selectivity =
|retrieval range|

|max value−min value|

For example, suppose that in the current Reserves relation

• the latest reservation date in the day column is 31/12/2015,

• the earliest reservation date in the day column is 1/9/2015,

• the bid values are in the range 1 . . . 100

• the sid values are in the range 1 . . . 50

For the condition day < 8/9/2015 AND bid = 5 AND sid = 20:

• The B+ tree index on day is estimated to select 7/120 of the Reserves relation (assuming
months are 30 days long).

Since this index is a clustered one, the cost of the retrieval will be approximately

1 + d(7/120)× 200e

= 1 + 12 = 13 I/Os.

• The index on (bid, sid) is estimated to select 1/(50× 100) = 1/5000 of the Reserves relation.

Since this index is an unclustered one, the cost of the retrieval will be approximately

1 + d(1/5000)× 200e+ d(1/5000)× 200× 100e

= 1 + 1 + 4 = 6 I/Os.



10

This simple approach to estimating the selectivity of a condition works well when the values of a
column are evenly distributed over the domain of that column, but it may not work so well if the
distribution is uneven. For example, what if there is actually only one row in Reserves with a date
earlier than 8/9/2015 ?

Then the clustered B+ tree index on day would actually only require 2 I/Os, rather than 13 I/Os.

A more accurate approach to estimating selectivities is therefore to maintain a histogram for each
column of a relation. This divides the domain of that column into a sequence of ranges and keeps
a count of the number of rows that currently fall within each range.

These histograms are updated periodically (not every time an update on the relation occurs, as
this would be too costly). Some DBMSs update histograms automatically, while others do so in
response to an explicit user request.

For example, for the day column of the Reserves relation, suppose each range in the histogram is
7 days long. Thus, the count for the first range 1/9/2015 − 7/9/2015 would be 1, and the cost of
the B+ tree index on day would be estimated more accurately as 2 I/Os.

(d.iii) disjunctions of conditions (OR)

For example SELECT ∗ FROM Reserves R WHERE R.day < 8/9/2015 OR (R.bid =
5 AND R.sid = 20).

If every sub-condition of the disjunction has a matching index, then the query can be transformed
into two subqueries whose results are unioned together. For the above example, the transformed
query would be:

(SELECT ∗ FROM Reserves R

WHERE R.day < 8/9/2015)

UNION

(SELECT ∗ FROM Reserves R

WHERE (R.bid = 5 AND R.sid = 20))

This allows the each subquery to be efficiently evaluated using the appropriate matching index.

If there are some sub-conditions of the disjunction for which matching indexes are not available,
then it is cheaper to evaluate the original query by one full scan of the table, checking each record
against the overall condition (because a full table scan would need to be done in any case for those
sub-conditions that do not have matching indexes).

(e) natural join / equi-join of R and S over one join column A

We discuss four alternative join algorithms commonly used in relational DBMS:

(e.i) Nested Loops Join (NLJ):

This algorithm can be used to join any two tables:



11

for each page, RP , of R do
for each page, SP , of S do

output all pairs of records r, s such that
r is in RP and s is in SP and r.A = s.A

The cost of this is NR + (NR × NS) (NR to read each page of R and, for each page of R, NS to
read the whole of S).

Thus, note that it is cheaper to make the smaller relation the “outer” one.

(e.ii) Index Nested Loops Join (INLJ):

If there is an index on the A attribute of one of the relations (say S), this can be made the “inner”
relation and the index can be exploited:

for each page RP of R do
for each record r in RP do

output all pairs of records r, s such that s is in S and r.A = s.A

The cost of this is:

NR + (NR × pR × cost of finding the matching records in S for a record of R)

For each record r of R, the cost of finding its matching records in S (i.e. of “probing” S) depends on
whether the index on S is a hash or B+tree index, and whether it is clustered or unclustered. The
cost formulae are the same as those for a selection with an equality condition (see (d)(i) above).

(e.iii) Sort-Merge Join (SMJ):

This first sorts R and S on the join column A. It then reads the sorted files in parallel in order to
combine records that agree on A. This second phase works as follows:



12

while not (eof(R) or eof(S)) do
if R-record.A < S-record.A then

get next R-record
elsif S-record.A < R-record.A then

get next S-record
else /* R-record.A = S-record.A */

currentV al := R-record.A;
output all pairs of records r, s with r in R and

s in S such that r.A = s.A = currentV al;
R-record := the first record in R with A > currentV al;
S-record := the first record in S with A > currentV al;

endif
endwhile

The overall cost of the sort-merge join consists of
(a) the cost of the two original sorts, plus
(b) NR to scan R, plus
(c) the cost of scanning the matching records of S for the records of R

I.e.
2NR(dlogB(NR)e) + 2NS(dlogB(NS)e) +NR + C

Cost C is theoretically anywhere between NS and NR∗NS , but is likely to be near to NS in practice.

If there is a clustered B+ tree index available on R or S that has the join column A as a prefix
of the search key, then there is no need to sort that table since its data records are already in the
desired order within the index leaf pages.

(e.iv) Hash Join (HJ):

This first partitions R and S using the same hash function h on A. Thus, records in the ith partition
of R can have the same A value only as records in the ith partition of S.

The algorithm then reads into memory the first partition PR of R, creating a hash table TPR
for it

using some other hash function, h2, also on A.

It then scans the corresponding partition PS of S on disk and “probes” the hash table TPR
to find

the matching records in PR for each record of PS .

This process is repeated for the second partition of R and S, the third partition, and so on, to the
last partition.

The overall cost is thus 3(NR+NS), since R and S are both read and written during the partitioning
phase, and are then both read again during the matching phase.

(f) equi-join / natural join over more than one join attribute

NLJ can be used for this.

INLJ can be used if there are matching indexes on S over one or more of the join attributes.

SMJ can be used, and requires sorting on all the join attributes.



13

HJ can be used, and requires hashing on all the join attributes.

(g) theta join involving <, ≤, >, ≥

NLJ can be used for this.

INLJ can be used if there is a matching B+ tree index on S.

SMJ and HJ are not applicable (why not ?)

(h) intersection, product

These are special cases of equi-join:

For intersection, the set of join attributes is the whole of the scheme of R and S. All four join
algorithms are applicable, as in (f) above.

For product, the set of join attributes is empty, so all rows of R match all rows of S. So which of
the 4 join algorithms are suitable for evaluating a product ?

(i) aggregation operations (SUM, MAX, MIN, COUNT, AVG)

If there is no GROUP BY clause in the query, then the output of the SELECT ... WHERE ...
clause of the query needs to be scanned to compute the aggregation operation. In practice this
can be done “on-the-fly” during the last phase of the computation of the SELECT ... WHERE ...
clause, not incurring any additional I/O operations. For each aggregation function, some “running
information” needs to be maintained:

COUNT: number of values scanned so far

SUM: sum of the values scanned so far

AVG: number of values scanned so far, and their sum

MIN: minimum value scanned so far

MAX: maximum value scanned so far

If there is a GROUP BY clause in the query, then the output of the SELECT ... WHERE ... clause
first needs to be sorted on the GROUP BY attributes. This sorted data is then scanned to compute
the aggregation operation for each group. The same running information as above is maintained,
but in this case it is re-initialised at the beginning of each group.



14

5 Query Optimisation Exercise

Consider the following query:
SELECT R.day
FROM BoatsB, Reserves R
WHERE B.colour =′ red′ AND R.bid = B.bid

(i) Translate this query into the relational algebra, using the operators π, σ and ×.

Answer: πR.day(σReserves.bid=Boats.bid AND Boats.colour=′red′(Boats×Reserves))

(ii) Write down 4 possible query plans for this query, assuming that:

– there is a clustered hash index on bid of Boats, and

– there is a clustered B+ tree index of height 3 on (bid, sid) of Reserves.

Answer (there are other possibilities as well):

(a) INLJ of Boats as the outer relation and Reservers as the inner relation, using the index
on (bid,sid) of Reserves; followed by selection of red boats and projection on day ‘on-
the-fly’.

(b) Selection of red boats from Boats, pipelined into INLJ with Reserves as the inner relation,
using the index on (bid,sid) of Reserves; followed by projection on day ‘on-the-fly’.

(c) INLJ of Reserves as the outer relation and Boats as the inner relation, using the index
on bid of Boats; followed by selection of red boats and projection on day ‘on-the-fly’.

(d) Selection of red boats from Boats, stored as a Temp file sorted on bid. SMJ of Reserves
and Temp (both now sorted on bid), scanning them and doing the projection on day
‘on-the-fly’

(iii) Estimate the cost of each of your four query plans, assuming that:

– Boats consists of 4 pages of 25 records per page

– Reserves consists of 200 pages of 100 records per page

– bid values are in the range 1 . . . 100

– One quarter of boats are red

– There is a uniform distribution of bid values in Reserves, and one quarter of boat reser-
vations are for red boats.

Answer:



15

(a) Read the Boats relation => 4 I/Os

For each of its 100 Boats records,

look-up the matching Reservations records in Reserves using the

clustered B+ tree index on (bid,sid).

There will be 20000/100 = 200 Reservation records per boat,

stored on about 2 leaf pages of the B+ tree (since this is

clustered).

Hence a cost of 2 I/Os [to read the inner nodes - recall that

the height of the B+ tree is 3]

and 2 I/Os [to read the 2 leaf nodes]

for each of the 100 boats.

=> 100 x 4 = 400 I/Os

The selection and projection are done on-the-fly as the rows

from this join are produced, and hence incur no I/O cost.

Total cost: 404 I/Os

(b) Read the Boats relation => 4 I/Os

For each record, check the selection condition colour=’red’.

There will be approximately 100/4 = 25 such records.

For each such record,

look-up the matching Reservations records in Reserves using the

clustered B+ tree index on (bid,sid).

There will be 20000/100 = 200 Reservation records per boat,

stored on about 2 leaf pages of the B+ tree (since this is

clustered).

Hence a cost of 2 I/Os [to read the inner nodes]

and 2 I/Os [to read the 2 leaf nodes]

for each of the 25 red boats.

=> 25 x 4 = 100 I/Os

Do the final projection on-the-fly as the rows of this

join are produced.

Total cost: 104 I/Os



16

(c) Read the Reserves relation => 200 I/Os

For each of its 20,000 Reservation records,

look-up the matching Boat record in Boats using the

hash index on bid.

Boats is clustered on bid, and Reserves is ordered on (bid,sid).

So the relevant page of Boats will be in the buffer for each of the 100

different bid values that are successively encountered in the leaves of

Reserves.

=> 100 I/Os

The selection and projection are done on-the-fly as the rows

from this join are produced, and hence incur no I/O cost

Total cost: 300 I/Os

(d) Read Boats => 4 I/Os

Write the approximately 25 red boat records into Temp file

after first sorting these records (in memory) => 1 I/O

Now do the SMJ: scan Reserves and Temp concurrently

(both will be sorted in bid order), joining pairs of

rows that match on their bid value

=> 200 I/Os to read Reserves

=> 1 I/O to read Temp

Do the final projection on-the-fly as the rows of this

join are produced.

Total cost: 206 I/Os

Exercise for class: What would be the costs of plans (a)-(d) using different join algorithms
e.g. HJ and SMJ for plans (a), (b), (c), HJ for (d).

6 Optimising Nested queries

Subqueries are typically optimised independently from their parent queries. For estimating the
overall query cost, the optimiser needs to take into account that non-correlated subqueries will be
evaluated only once. In contrast, for correlated subqueries, their parent query provides a selection
condition within the subquery; so correlated subqueries will be evaluated once for each different
value passed to them from their parent query.

In some cases it is possible to “flatten” nested queries into equivalent join queries, and some
optimisers try to do that. This is advantageous because there may be more efficient query plans



17

generated by the optimiser than if it considers only the nested form of the query.

7 Plan Execution

The implementations of the relational operators forming the nodes of a query plan each support
an Iterator interface, which encapsulates the implementation details of each operator.

The Iterator interface includes the functions open, get next and close:

• open initialises the state of the Iterator, allocating memory buffers for its input and its output,
and passing parameteters to the Iterator such as selection and join conditions, projection
attributes, group-by attributes etc.

• get next is called by an operator node whenever it requires more input tuples from one of
its children nodes; the operator then executes operator-specific code to process these input
tuples; and the output tuples it generates are placed in its output buffer.

The decision to pipeline or materialise the input tuples is encapsulated in the operator-specific
code that processes input tuples: if the operator can completely process the input tuples as
it receives them, then it doesn’t need to materialise them; if it needs to examine the same
input tuples several times, then they need to be materialised.

• close is called by an operator when all input from a child node has been consumed. Similarly,
its own close is called by its parent node it when it can produce no more tuples.

Appendix A - External Sorting

Why is sorting important in databases ?

• Users frequently require data to be presented in a sorted order c.f. ORDER BY clause in
SQL.

• Sorting is useful for removing duplicate rows from a collection c.f. DISTINCT in SQL.

• The sort-merge algorithm for implementing the join operation requires sorting. Several of the
other relational algebra operations also require sorting.

The volumes of data involved mean that conventional “internal” sorting algorithms may not be
suitable because they do not use information about the amount of main memory available for the
sort and hence may cause a lot of I/O in cases where not all of the data fits into main memory.

External merge sort is a standard sorting technique used in DBMS. We give a simple version of
it first, that uses 2 input buffer pages and one output buffer page. The general version for B input
buffer pages is given next.



18

Two-way external merge sort

The problem: sort a file of N pages using 2 input buffer pages and 1 output buffer page.

The algorithm is as follows:

Pass 0: Read two pages of the file at a time into the 2 input buffer pages. Sort each pair of pages
(using an internal sorting algorithm such as quicksort, bubble sort etc.) and output the result.

This produces dN/2e sorted groups of 2 pages each2.

Pass 1: Read the pairs of pages output by Pass 0 two at a time into the input buffer pages. Merge
them into 4 new sorted pages using the output buffer page and output the result.

This produces dN/22e sorted groups of 4 pages each.

Pass 2: Read the groups of 4 pages output by Pass 1 two at a time into the input buffer pages. Merge
them into 8 new sorted pages using the output buffer page and output the result.

This produces dN/23e sorted groups of 8 pages each.

. . .

Pass i: Read the groups of 2i pages output by Pass i − 1 two at a time into the input buffer pages.
Merge them into 2i+1 new sorted pages using the output buffer page and output the result.

This produces dN/2i+1e sorted groups of 2i+1 pages each.

. . .

The sort terminates when 2i+1 ≥ N i.e. when i = dlog2dN/2ee.

Thus, the total number of passes is 1 + dlog2dN/2ee = dlog2(N)e.

On each pass, each page of the file is read in and written out. Thus the total cost (in terms of I/O
operations) is

2N(dlog2(N)e)

For example, the cost of sorting a file of 1,000,000 pages is

2, 000, 000× (dlog2(1, 000, 000)e) = 2, 000, 000× 20 = 40, 000, 000

I/O operations.

General external merge sort

The problem: sort a file of N pages, using B input buffer pages and 1 output buffer page.

The algorithm is as follows:

Pass 0: Read B pages of the file at a time into the B input buffer pages. Sort each group of pages
(using an internal sorting algorithm) and output the result.

This produces dN/Be sorted groups of B pages each.

2The notation dee denotes the smallest integer greater than or equal to e.



19

Pass 1: Read the groups of B pages output by Pass 0 B at a time into the input buffer pages. Merge
each group into B2 new sorted pages using the output buffer page and output the result.

This produces dN/B2e sorted groups of B2 pages each.

Pass 2: Read the groups of B2 pages output by Pass 1 B at a time into the input buffer pages. Merge
each group into B3 new sorted pages using the output buffer page and output the result.

This produces dN/B3e sorted groups of B3 pages each.

. . .

Pass i: Read the groups of Bi pages output by Pass i − 1 B at a time into the input buffer pages.
Merge each group into Bi+1 new sorted pages using the output buffer page and output the
result.

This produces dN/Bi+1e sorted groups of Bi+1 pages each.

. . .

The sort terminates when Bi+1 ≥ N i.e. when i = dlogBdN/Bee.

Thus, the total number of passes is 1 + dlogBdN/Bee = dlogB(N)e.

On each pass, each page of the file is read in and written out. Thus the total cost is

2N(dlogB(N)e)

For example, the cost of sorting a file of 1,000,000 pages using 100 input buffer pages is

2, 000, 000× (dlog100(1, 000, 000)e) = 2, 000, 000× 3 =

6,000,000 I/O operations (compare with the cost using 2 input buffers).

Using 1000 input buffer pages it would be:

2, 000, 000× (dlog1000(1, 000, 000)e) = 2, 000, 000× 2 = 4, 000, 000

Appendix B - Query Optimisation in Oracle

Oracle has extensive Query Optimisation capabilities. Information about these can be found in the
“Oracle Database Performance Tuning Guide”

Oracle uses the syntax “EXPLAIN PLAN FOR SQL statement” to display the selected execution
plan for an SQL statement. The selected plan is stored in a global table called PLAN TABLE, by
default.

The query
SELECT * FROM TABLE(DBMS XPLAN.DISPLAY());
displays the stored plan, as well as the estimated cost of the plan.



20

Oracle can store query execution plans for SQL statements with trusted performance characteristics
— these are termed baseline plans. When the query optimiser generates an execution plan for an
SQL statement, it checks whether there exist any baseline plans for that statement. If the new
plan is different from all the baseline plans, the optimiser selects what it considers to be the best
plan; it also adds the new plan to the plan history for that statement; subsequently this may be
added to the set of baseline plans for the query.

Automatic gathering of database statistics for the optimiser can be enabled or disabled. It is also
possible to use the DBMS STATS package to gather statistics, setting specific preferences for the
statistics gathering (e.g. sampling level, when to update the statistics, which columns to maintain
histograms for, the bucket-size of the histograms). The current statistics held about tables, indexes
and columns can be viewed, including the content of the histograms.

Candidate Query Plan generation in practice (optional reading)

In practice, DBMSs generate cadidate query plans using dynamic programming — an approach
pioneered by the System R optimiser, an early and very influential relational DBMS prototype
developed by IBM.

The principle of dynamic programming is that optimal solutions to sub-problems can be used to
find good solutions to an overall problem.

In the context of query optimisation, this is done “bottom-up”, starting with generating one or
more single-table query plans for each of the n tables being joined in the query (retaining the best
plan for each possible sort order of the result tuples).

A second table is then added to each of these single-table plans and the best two-table query plans
are retained for each possible pair of tables and sort orders.

A third table is then added to each of these two-table plans and the best three-table query plans
are retained.

The process continues in this fashion until the best n − 1-table query plans have been generated.
The final table is added to each of these, and the cheapest n-table query plan is retained as the
final overall query plan.

Pages 497-503 of Ramakrishnan & Gerhke has a more detailed description of this process.


