
1

Advances in Data Management

Beyond records and objects

A.Poulovassilis

1 Stored procedures and triggers

So far, we have been concerned with the storage of data in databases. However, modern DBMSs
also allow code to be stored in the database.

Sequences of queries and updates can be bundled together into a stored procedure or function
which is stored in the database and is available for subsequent execution.

To illustrate, suppose a relational database contains two relations
Products(ProductID,QuantityInStock,ReorderLevel)
NeedToReorder(ProductID,ReorderQuantity)

The following stored procedure (written in Oracle’s PL/SQL language, which we will be looking at
in more detail in an upcoming lab session) takes a product ID p and a quantity q (both numbers),
finds out whether p is already on order, and if not it inserts the tuple (p,q) into the NeedToReorder
relation:

CREATE PROCEDURE ReorderProduct(p,q NUMBER) AS

DECLARE AlreadyReordered NUMBER;

BEGIN

SELECT COUNT(*) INTO AlreadyReordered

FROM NeedToReorder

WHERE ProductID = p;

IF AlreadyReordered = 0

THEN INSERT INTO NeedToReorder VALUES (p,q)

ENDIF;

END;

Such stored procedures or functions can be called from within an SQL statement or from within
another function or procedure. Stored functions can be used anywhere that SQL built-in functions
can be used.

In addition to providing procedural abstraction, stored procedures/functions allow a block of SQL
statements to be grouped into one statement that is submitted by the client application to the
database server.

Generally, every SQL statement is executed individually by the database server. So grouping sev-
eral statements together into one reduces client/server communication overheads and also network
overheads if the client application and the database server are running on different machines. This
has the potential to give considerable performance gains for applications.

The SQL/PSM (Persistent Stored Modules) standard specifies a language for defining stored pro-
cedures and functions. Its major elements include CREATE PROCEDURE and CREATE FUNC-

2

TION statements. Within the definitions of such procedures/functions, one can declare variables
and use branching statements (IF ... THEN ... ELSEIF ... ELSE ... ENDIF), SQL statements,
loops (LOOP ... END LOOP, WHILE ... DO ... END WHILE, REPEAT ... UNTIL ... END
REPEAT). Similar features are provided by all modern commercial DBMSs, but in general not
conforming precisely with the SQL/PSM syntax e.g. Oracle’s PL/SQL language.

In modern DBMSs it is also possible to define triggers which will automatically execute some code
if a specified event occurs in the database.

For example, the following trigger (written in Oracle’s trigger syntax) is executed after any update
of the QuantityInStock or ReorderLevel attributes of the Products relation.

It invokes the procedure ReorderProduct above for each product where the quantity in stock is
now less than the reorder level:

CREATE TRIGGER ReorderTrigger

AFTER UPDATE OF QuantityInStock OR

ReorderLevel

ON Products

FOR EACH ROW

WHEN (new.QuantityInStock < new.ReorderLevel)

BEGIN

CALL ReorderProduct(:new.ProductID,:new.ReorderLevel);

END;

(Variables declared in a PL/SQL host environment - such as SQL*Plus - and passed to PL/SQL
as arguments must be prefixed with a colon.)

The following, alternative, trigger would be executed before any update of the QuantityInStock or
ReorderLevel attributes of the Products relation. It would print out a warning message for any
record for which the quantity in stock would have fallen below the reorder level and would reinstate
the old values of these two attributes:

CREATE OR REPLACE TRIGGER ReorderTrigger

BEFORE UPDATE OF QuantityInStock OR

ReorderLevel

ON Products

FOR EACH ROW

WHEN (new.QuantityInStock < new.ReorderLevel)

BEGIN

DBMS_OUTPUT.PUT_LINE(’quantity in stock below reorder level for product ’

|| :new.ProductID) ;

DBMS_OUTPUT.PUT_LINE(’ original values reinstated’) ;

:new.QuantityInStock := :old.QuantityInStock ;

:new.ReorderLevel := :old.ReorderLevel ;

END;

3

1.1 Active Databases

Support of triggers turns databases from being passive to being active:

Passive databases execute transactions and queries that are explicitly submitted by users or appli-
cations.

Active databases can automatically react to occurrences of events and carry out appropriate actions.

Users specify the events to react to and the actions to carry out, by defining a set of triggers. A
trigger consists of:

• An event part — the event that activates the trigger.

• A condition part — which is evaluated when the triggered is activated.

• An action part — which is executed if the condition is true.

So triggers are also known as event-condition-action rules (ECA rules).

The kinds of events that are detectable by typical RDBMSs are insertions, deletions, and updates
on relations.

Some systems also support composite events, which are composed from primitive events us-
ing an ‘event language’ in which events can be combined by operators such as AND, OR, NOT,
FOLLOWED BY.

Triggers can be executed BEFORE, AFTER or INSTEAD OF the event that activates them.

Triggers can be:

• statement-level — the action part executes just once, provided the condition is true; or

• row-level — the action part executes for each row that was inserted/deleted/updated, and
for which the condition is true.

The two versions of ReorderTrigger in Section 1 above are row-level triggers.

Here is an example of a statement-level trigger (written in the syntax specified by the SQL stan-
dard), assuming a relation Students(studentId, name, address):

CREATE TRIGGER overRecruited

AFTER INSERT ON Students

REFERENCING NEW TABLE AS NewStudents

OLD TABLE AS OldStudents

FOR EACH STATEMENT

WHEN (20000 < (SELECT COUNT(*)

FROM NewStudents))

DELETE FROM Students

WHERE (studentId,name,address) IN NewStudents

AND (studentId,name,address) NOT IN OldStudents;

4

INSERT INTO WaitingList (NewStudents EXCEPT OldStudents);

Note the use of NEW TABLE and OLD TABLE, and their aliases

The execution of one trigger can activate other triggers. This ‘cascade’ of activations continues
until no more triggers are activated. In current commercial DBMSs there is a predefined limit on
the number of such recursive activations, and if it is exceeded the current transaction is rolled back.

Much research has focussed on developing more sophisticated methods of detecting the termination
properties of triggers, both statically (when triggers are defined) and dynamically (as triggers
execute).

Applications of triggers include:

• detecting violation of complex integrity constraints and undertaking repair operations;

• enforcing complex authorisation restrictions;

• maintaining materialised views and replicas;

• logging particular events for auditing and security purposes;

• gathering statistics about database usage;

• notifying users or DBAs of the occurrence of particular database events.

2 Deductive Databases

Before SQL99, SQL did not support recursively defined relations.

For example, if we have a stored table assembly with attributes Part, Subpart and Quantity,
recording the immediate subparts of parts, then it is not possible to write a (pre-SQL99) SQL
query that returns all the components of a part unless the maximum depth of the part hierarchy
is known, because we don’t know how many times to join the assembly table with itself.

This limitation of SQL has led since the 1980s to research into deductive databases. These are
databases which do support recursively defined derived relations. This research in turn led to the
addition of recursion into SQL99.

The WITH statement in SQL99 allows the definition of derived relations:

WITH r AS d q

where r is the scheme of the derived relation, d is an SQL query defining the contents of r, and q
is an SQL query using r.

If r appears within d (i.e. r is derived recursively), then the keyword RECURSIVE is required after
WITH.

To illustrate, given a stored table assembly(Part,Subpart,Quantity), we can find all the parts
of which P1 is a component as follows:

5

WITH RECURSIVE component(Part,Comp) AS

(SELECT assemply.Part, assembly.Subpart

FROM assembly)

UNION

(SELECT assembly.Part component.Comp

FROM assembly, component

WHERE assembly.Subpart = component.Part)

SELECT * FROM component WHERE Comp=’P1’

Note that SQL’s WITH introduces a relation which is available for use only locally within this
statement — component does not become part of the database schema.

Only stratified definitions (see Section 4.3) are permitted in SQL99, both with respect to negation
(e.g. EXCEPT, NOT IN, NOT EXISTS) and with respect to aggregation functions.

3 More on Deductive Databases

The bulk of research into deductive databases has used a language called Datalog to specify
inference rules — Datalog is a subset of Prolog.

Returning to the example of the assembly(Part,Subpart,Quantity) table, we can specify as
follows in Datalog a relation component that contains all pairs (P,S) such that S is a component
of P, at any level in the parts hierarchy:

component(P,S) :- assembly(P,S,Q)

component(P,S) :- assembly(P,S1,Q), component(S1,S)

A Datalog rule has its antecedents on its right-hand side (RHS), and its consequent on its left-hand
side (LHS). Any variable that appears in the consequent must also appear in the argument list of
a (non-negated) predicate in the antecedent.

The first rule above states that, for every tuple (P,S,Q) in the assembly relation, we can infer
that there is a tuple (P,S) in the component relation.

The second rule above states that, for every pair of tuples (P,S1,Q) in the assembly relation and
(S1,S) in the component relation, we can infer that there is a tuple (P,S) in the component table.

Note that the above is a recursive definition of the derived relation component since the identifier
component appears both on the LHS and the RHS of the second rule.

Other terms used for a stored relation are base relation or extensional relation; a derived
relation is also known as an intentional relation.

A general method for evaluating derived relations in Datalog is as follows:

1. set the derived relation to be the empty set;

2. evaluate the rule(s) defining the relation using the current value of the derived relation in the
RHS of the rule(s)

6

3. if there is any change to the derived relation return to step 2, else stop.

For recursive definitions, this is known as computing the least fixpoint.

To illustrate, suppose the assembly base relation is as follows:

assembly

P5 P2 3

P5 P7 2

P2 P3 1

P2 P4 2

P7 P1 4

P1 P6 3

P1 P8 2

P1 P9 7

Then the first iteration of the evaluation procedure gives this as the definition of the component

relation:

component 1

P5 P2

P5 P7

P2 P3

P2 P4

P7 P1

P1 P6

P1 P8

P1 P9

The second iteration gives:

component 2

P5 P2

P5 P7

P2 P3

P2 P4

P7 P1

P1 P6

P1 P8

P1 P9

P5 P3

P5 P4

P5 P1

P7 P6

P7 P8

P7 P9

The third iteration gives:

7

component 3

P5 P2

P5 P7

P2 P3

P2 P4

P7 P1

P1 P6

P1 P8

P1 P9

P5 P3

P5 P4

P5 P1

P7 P6

P7 P8

P7 P9

P5 P6

P5 P8

P5 P9

The fourth iteration gives the same relation, and the evaluation stops.

3.1 Optimisation

The above evaluation method is rather naive as it performs redundant computations, and improve-
ments are possible. One optimisation is to use semi-naive evaluation where only the new tuples
inferred in each iteration are combined with the existing tuples.

Consider again these rules:

component(P,S) :- assembly(P,S,Q)

component(P,S) :- assembly(P,S1,Q), component(S1,S)

and the assembly base table as given earlier.

Initially, component is empty, so we apply just the first rule to compute the first increment to
component, delta 1:

delta_1(P,S) :- assembly(P,S,Q)

Giving:

8

delta 1

P5 P2

P5 P7

P2 P3

P2 P4

P7 P1

P1 P6

P1 P8

P1 P9

Thereafter, we use the second rule to compute successive increments to component, as follows:

delta_i+1(P,S) :- assembly(P,S1,Q), delta_i(S1,S)

Applying this rule for the first time, gives

delta 2

P5 P3

P5 P4

P5 P1

P7 P6

P7 P8

P7 P9

Applying this rule for the second time, gives

delta 3

P5 P6

P5 P8

P5 P9

Applying this rule for the third time gives delta 4 = {}.

The evaluation therefore ends, giving component = delta 1 ∪ delta 2 ∪ delta 3, which equals:

9

component

P5 P2

P5 P7

P2 P3

P2 P4

P7 P1

P1 P6

P1 P8

P1 P9

P5 P3

P5 P4

P5 P1

P7 P6

P7 P8

P7 P9

P5 P6

P5 P8

P5 P9

3.2 Magic Sets (optional)

Another optimisation is known as Magic Sets and is useful for pushing selection conditions into a
recursive definition to reduce the amount of computation — see Ramakrishnan and Gerhke 24.5.2
- 25.5.3 (optional reading).

For example, suppose we have component relation defined as follows:

component(P,S) :- assembly(P,S,Q)

component(P,S) :- assembly(P,S1,Q), component(S1,S)

The following Datalog queries respectively return: the whole component relation; the parts of which
P3 is a component; the components of P1; and whether P3 is a component of P1:

component(P,S);

component(P,’P3’);

component(’P1’,S);

component(’P1’,’P3’);

The Magic Sets optimisation approach would generate 4 different versions of the definition of
component, each version optimised for a different combination of known/unknown information
about the super-component and the sub-component.

The terms bound and free are used to indicate a known or unknown argument to a derived
relation, respectively.

Here are the four definitions (which can be automatically generated from the original definition
above):

10

Known super-component:

component_bf(P,S) :- assembly(P,S,Q)

component_bf(P,S) :- assembly(P,S1,Q), component_bf(S1,S)

Known sub-component:

component_fb(P,S) :- assembly(P,S,Q)

component_fb(P,S) :- assembly(P,S1,Q), component_bb(S1,S)

Known super-component and sub-component:

component_bb(P,S) :- assembly(P,S,Q)

component_bb(P,S) :- assembly(P,S1,Q), component_bb(S1,S)

Unknown super-component and sub-component:

component_ff(P,S) :- assembly(P,S,Q)

component_ff(P,S) :- assembly(P,S1,Q), component_bf(S1,S)

The 4 queries above can then be optimised by using the appropriate definition:

component_ff(P,S);

component_fb(P,’P3’);

component_bf(’P1’,S);

component_bb(’P1’,’P3’);

3.3 Left, right and nonlinear recursion (optional)

The above definition of the derived relation component is called right-recursive since the base
relation assembly appears first within the second rule:

component(P,S) :- assembly(P,S,Q)

component(P,S) :- assembly(P,S1,Q),component(S1,S)

The following left-recursive definition would give the same answer [exercise for the reader]:

component(P,S) :- assembly(P,S,Q)

component(P,S) :- component(P,S1),assembly(S1,S,Q)

Right- and left-recursion are both examples of linear recursion, where the derived relation appears
only once in the RHS of the definition. Nonlinear recursion is also possible. For example, this
definition gives the same answer as the two above definitions [exercise for the reader]:

component(P,S) :- assembly(P,S,Q)

component(P,S) :- component(P,S1),component(S1,S)

11

3.4 Negation in Recursive Definitions (optional)

Introducing negation into recursive definitions can cause problems. For example, consider the
following definitions:

big(P) :- assembly(P,S,Q), NOT small(P)

small(P) :- assembly(P,S,Q), NOT big (P)

What is the value of big and small ?

Well, following the evaluation method described above,
big0 = small0 = {}
big1 = small1 = assembly
big2 = small2 = {}
big3 = small3 = assembly
etc. and the computation fails to terminate. This is because there is no single least fixpoint answer
for the above definitions.

The solution to this problem is to disallow ambiguous definitions such as that above by requiring
that definitions are stratified:

Construct a graph (known as the dependency graph) whose nodes are the derived relations.
Draw an arc from R to S if S appears in the definition of R. Label this arc with a ’+’ if S appears
non-negated and label it with a ’-’ if S appears negated.

The set of definitions is stratified if there no cycles labelled with ’-’ on any of their arcs.

The relations defined by a stratified set of definitions can be divided into strata 0, 1, 2 ... such that
the relations in stratum i depend positively only on relations in strata j ≤ i and depend negatively
only on relations in strata j < i.

A stratified set of definitions can be evaluated stratum by stratum to give an unambiguous result.

Aggregation functions can pose similar problems to negation in recursive definitions, because the
incremental computation of an aggregation function invalidates the previous iteration’s computa-
tion.

For example, suppose we have a single-column base table p, containing three tuples 1, 2, 3. And a
new derived relation, r, is defined by the following (non-stratified) rules:

r(X) :- p(X)

r(X) :- X is sum(r)

Then: r0 = {}
r1 = {1, 2, 3, 0}
r2 = {1, 2, 3, 6}
r3 = {1, 2, 3, 12}
etc., and the computation never reaches a fixpoint.

In general, derived relations need to be monotonic i.e. only new tuples can be added at each round
of their evaluation and tuples computed in a previous round cannot be made invalid.

12

3.5 Influence

The theoretical foundations of Datalog, together with the semi-native and Magic Sets techniques
pioneered in the context of that language, underlie the evaluation of recursively-defined relations
and queries in modern-day DBMSs, as well as in specialised rule-based systems for reasoning with
data in a variety of settings e.g. systems that combine RDFS/OWL reasoning with relational data
management or with graph data.

Homework 3 (optional)

Consider a database for the London underground and bus network, consisting of two relations:

tube(Station,NextStation,TubeLine)

bus(Station,NextStation,BusLine)

With contents:

tube

finsuryPark manorHouse blueLine

manorHouse finsburyPark blueLine

manorHouse turnpikeLane blueLine

turnpikeLane manorHouse blueLine

turnpikeLane woodGreen blueLine

woodGreen turnpikeLane blueLine

leytonstone snaresbrook redLine

snaresbrook leytonstone redLine

snaresbrook southWoodford redLine

southWoodford snaresboork redLine

southWoodford woodford redLine

woodford southWoodford redLine

bus

manorHouse turnpikeLane greenLine

turnpikeLane manorHouse greenLine

turnpikeLane harringay greenLine

harringay turnpikeLane greenLine

harringay tottenham greenLine

tottenham harringay greenLine

tottenham walthamstow greenLine

walthamstow tottenham greenLine

walthamstow snaresbrook greenLine

snaresbrook walthamstow greenLine

Diagrammatically, we can present this route map as shown in the figure.

13

finsburyPark

manorHouse

turnpikeLane

woodGreen

leytonstone

snaresbrook

southWoodford

woodford

harringay

tottenham

Blue Tube Line Red Tube Line

Green Bus Line

14

Write derived relation definitions in Datalog that give the following:

1. The pairs of stations A,B such that B is reachable from A by tube.

2. The pairs of stations A,B such that B is reachable from A by bus.

3. The pairs of stations A,B such that B is reachable from A by tube but not by bus.

4. The pairs of stations A,B such that B is reachable from A by some combination of tube or
bus.

5. The pairs of stations A,B such that B is reachable from A by some combination of tube or
bus, but not by tube or bus alone.

