Extensions to Self-Taught Hashing: Kernelisation and Supervision

Dell Zhang, Jun Wang, Deng Cai, Jinsong Lu

Birkbeck, University of London
dell.z@ieee.org

The SIGIR 2010 Workshop on Feature Generation and Selection for Information Retrieval (FGSIR)
23 July 2010, Geneva, Switzerland
Problem

Similarity Search (aka Nearest Neighbour Search)

Given a query document, find its most similar documents from a large document collection

- Information Retrieval tasks
 - near-duplicate detection, plagiarism analysis, collaborative filtering, caching, content-based multimedia retrieval, etc.
- k-Nearest-Neighbours (kNN) algorithm
 - text categorisation, scene completion/recognition, etc.

“The unreasonable effectiveness of data”
If a map could include every possible detail of the land, how big would it be?
A promising way to accelerate similarity search is **Semantic Hashing**

- Design compact *binary* codes for a large number of documents so that semantically similar documents are mapped to similar codes (within a short Hamming distance)
 - Each bit can be regarded as a binary *feature*
 - Generating a few most informative binary features to represent the documents
- Then similarity search can done extremely fast by just checking a few nearby codes (memory addresses)
 - For example, 0000 \rightarrow 0000, 1000, 0100, 0010, 0001.
Problem
Problem
Fast (Exact) Similarity Search in a *Low*-Dimensional Space

- Space-Partitioning Index
 - KD-tree, etc.
- Data Partitioning Index
 - R-tree, etc.
Figure: An example of KD-tree (by Andrew Moore).
Related Work

Fast (Approximate) Similarity Search in a *High*-Dimensional Space

- Data-Oblivious Hashing
 - Locality-Sensitive Hashing (LSH)

- Data-Aware Hashing
 - binarised Latent Semantic Indexing (LSI), Laplacian Co-Hashing (LCH)
 - stacked Restricted Boltzmann Machine (RBM)
 - boosting based Similarity Sensitive Coding (SSC) and Forgiving Hashing (FgH)
 - **Spectral Hashing (SpH) — the state of the art**
 - Restrictive assumption: the data are uniformly distributed in a hyper-rectangle
Table: Typical techniques for accelerating similarity search.

<table>
<thead>
<tr>
<th>low-dimensional space</th>
<th>exact similarity search</th>
<th>data-aware</th>
<th>KD-tree, R-tree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>data-oblivious</td>
<td>LSH</td>
</tr>
<tr>
<td>high-dimensional space</td>
<td>approximate similarity search</td>
<td>data-aware</td>
<td>LSI, LCH, RBM, SSC, FgH, SpH, STH</td>
</tr>
</tbody>
</table>
Outline

1. Problem
2. Related Work
3. Review of STH
4. Extensions to STH
5. Conclusion
Input:
- \(X = \{ x_i \}_{i=1}^n \subset \mathbb{R}^m \)

Output:
- \(f(x) \in \{-1, +1\}^l \): hash function
 - \(-1 = \text{bit off}; +1 = \text{bit on}\)
 - \(l \ll m \)
Figure: The proposed STH approach to semantic hashing.
Stage 1: Learning of Binary Codes

- Let $\mathbf{y}_i \in \{-1, +1\}$ represent the binary code for document vector \mathbf{x}_i.
 - $-1 =$ bit off; $+1 =$ bit on.
- Let $\mathbf{Y} = [\mathbf{y}_1, \ldots, \mathbf{y}_n]^T$
Review of STH

Criterion 1a: Similarity Preserving

- We focus on the *local* structure of data
- $N_k(x)$: the set of k-nearest-neighbours of document x
- The local similarity matrix W
 - i.e., the adjacency matrix of the k-nearest-neighbours graph
 - symmetric and sparse

\[
W_{ij} = \begin{cases}
\left(\frac{x_i^T}{\|x_i\|} \right) \cdot \left(\frac{x_j}{\|x_j\|} \right) & \text{if } x_i \in N_k(x_j) \text{ or } x_j \in N_k(x_i) \\
0 & \text{otherwise}
\end{cases}
\]

\[
W_{ij} = \begin{cases}
\exp \left(-\frac{\|x_i-x_j\|^2}{2\sigma^2} \right) & \text{if } x_i \in N_k(x_j) \text{ or } x_j \in N_k(x_i) \\
0 & \text{otherwise}
\end{cases}
\]
Review of STH

Figure: The local structure of data in a high-dimensional space.
Figure: Manifold analysis: exploiting the local structure of data.
Criterion 1a: Similarity Preserving

- The Hamming distance between two codes y_i and y_j is

$$\frac{||y_i - y_j||^2}{4}$$

- We minimise the weighted total Hamming distance, as it incurs a heavy penalty if two similar documents are mapped far apart

$$\sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} \frac{||y_i - y_j||^2}{4}$$

- The squared error of distance would lead to a non-convex optimisation problem
Review of STH

Spectral Methods for Manifold Analysis
— Minimising Cut-Size

For single-bit codes $f = (y_1, \ldots, y_n)^T$:

$$S = \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} \frac{(y_i - y_j)^2}{4} = \frac{1}{4} f^T L f$$

- Laplacian matrix $L = D - W$
- $D = \text{diag}(k_1, \ldots, k_n)$ where $k_i = \sum_j W_{ij}$
Spectral Methods for Manifold Analysis
— Minimising Cut-Size

Figure: Spectral graph partitioning through *Normalised Cut*.
Review of STH

Spectral Methods for Manifold Analysis
— Minimising Cut-Size

- Real relaxation
 - Requiring $y_i \in \{-1, +1\}$ makes the problem NP hard
 - Substitute $\tilde{y}_i \in \mathbb{R}$ for y_i

- L is positive semi-definite
 - eigenvalues: $0 = \lambda_1 = \ldots = \lambda_z < \lambda_{z+1} \leq \ldots \leq \lambda_n$
 - eigenvectors: $u_1, \ldots, u_z, u_{z+1}, \ldots, u_n$

- Optimal non-trivial division: $f = u_{z+1}$
 - The number of edges across clusters is small
Spectral Methods for Manifold Analysis — Minimising Cut-Size

For l-bit codes $\mathbf{Y} = [y_1, \ldots, y_n]^T$:

$$S = \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} \frac{\|y_i - y_j\|^2}{4} = \frac{1}{4} \text{Tr}(\mathbf{Y}^T \mathbf{L} \mathbf{Y})$$

Let $\tilde{\mathbf{Y}}$ be the real relaxation of \mathbf{Y}
Review of STH

Spectral Methods for Manifold Analysis
— Minimising Cut-Size

- Laplacian Eigenmap (LapEig)

\[
\begin{align*}
\text{arg min} & \quad \text{Tr}(\tilde{Y}^T L \tilde{Y}) \\
\tilde{Y} & \quad \text{subject to} \\
\tilde{Y}^T D \tilde{Y} & = I \\
\tilde{Y}^T D 1 & = 0
\end{align*}
\]

- Generalised Eigenvalue Problem

\[
L v = \lambda D v \tag{1}
\]

\[
\tilde{Y} = [v_1, \ldots, v_l]
\]
Criterion 1b: Entropy Maximising

Best utilisation of the hash table
= Maximum entropy of the codes
= Uniform distribution of the codes (each code has equal probability)

- The p-th bit is on for half of the corpus and off for the other half

\[y_i^{(p)} = \begin{cases} +1 & \tilde{y}_i^{(p)} \geq \text{median}(v_p) \\ -1 & \text{otherwise} \end{cases} \]

- The bits at different positions are almost mutually uncorrelated, as the eigenvectors given by LapEig are orthogonal to each other
Stage 2: Learning of Hash Function

How to get the codes for new documents previously unseen?
— Out-of-Sample Extension

- High computational complexity
 - Nystrom method
 - Linear approximation (e.g., LPI)
- Restrictive assumption about data distribution
 - Eigenfunction approximation (e.g., SpH)
Stage 2: Learning of Hash Function

- We reduce it to a supervised learning problem
 - Think of each bit $y_i^{(p)} \in \{+1, -1\}$ in the binary code for document x_i as a binary class label (class-“on” or class-“off”) for that document
 - Train a binary classifier $y^{(p)} = f^{(p)}(x)$ on the given corpus that has already been “labelled” by the 1st stage
 - Then we can use the learned binary classifiers $f^{(1)}, \ldots, f^{(l)}$ to predict the l-bit binary code $y^{(1)}, \ldots, y^{(l)}$ for any query document x
Review of STH

Kernel Methods for *Pseudo*-Supervised Learning
— Support Vector Machine (SVM)

\[y^{(p)} = f^{(p)}(x) = \text{sgn}(w^T x) \]

\[
\arg \min_{w, \xi_i \geq 0} \frac{1}{2} w^T w + \frac{C}{n} \sum_{i=1}^{n} \xi_i \\
\text{subject to} \quad \forall_{i=1}^{n} : y_i^{(p)} w^T x_i \geq 1 - \xi_i
\]

- large-margin classification \(\rightarrow\) good generalisation
- linear/non-linear kernels \(\rightarrow\) linear/non-linear mapping
- convex optimisation \(\rightarrow\) global optimum
Self-Taught Hashing (STH): The Learning Process

1. Unsupervised Learning of Binary Codes
 - Construct the k-nearest-neighbours graph for the given corpus
 - Embed the documents in an l-dimensional space through LapEig (1) to get an l-dimensional real-valued vector for each document
 - Obtain an l-bit binary code for each document via thresholding the above vectors at their median point, and then take each bit as a binary class label for that document

2. Supervised Learning of Hash Function
 - Train l SVM classifiers (2) based on the given corpus that has been “labelled” as above
Self-Taught Hashing (STH): The **Prediction** Process

1. Classify the query document using those \(l \) learned classifiers
2. Assemble the output \(l \) binary labels into an \(l \)-bit binary code
Extension I: Kernelisation

In the second stage of STH, we rewrite the SVM quadratic optimisation problem (2) into its dual form

\[
\begin{align*}
\text{arg min} \quad & \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i^{(p)} y_j^{(p)} \alpha_i \alpha_j x_i^T x_j \\
\text{subject to} \quad & 0 \leq \alpha_i \leq C, \quad i = 1, \ldots, n \\
& \sum_{i=1}^{n} \alpha_i y_i^{(p)} = 0
\end{align*}
\]

and replace the inner product between \(x_i \) and \(x_j \) by a nonlinear kernel such as the Gaussian kernel:

\[
K(x, x') = \exp \left(-\frac{\|x - x'\|^2}{2\sigma^2} \right)
\]
Then the p-th bit (i.e., binary feature) of the binary code for a query document \mathbf{x} would be given by

$$f^{(p)}(\mathbf{x}) = \text{sgn} \left(\sum_{i=1}^{n} \alpha_i y^{(p)}_i K(\mathbf{x}, \mathbf{x}_i) \right)$$

which is a nonlinear mapping.
For example, using 16-bit binary codes,

- linear hashing: $2^l = 2 \times 16 = 32$ sectors
- nonlinear hashing: $2^l = 2^{16} = 65536$ pieces
Figure: The 16-bit hash function for the pie dataset using SpH.
Figure: The 16-bit hash function for the pie dataset using STH.
Figure: The 16-bit hash function for the two-moon dataset using SpH.
Figure: The 16-bit hash function for the two-moon dataset using STH.
Extension II: Supervision

In the first stage of STH, we make use of the class label information in the construction of k-nearest-neighbour graph for LapEig: a training document x’s k-nearest-neighbourhood $N_k(x)$ would only contain k documents in the same class as x that are most similar to x.

Let \textbf{STHs} denote such a supervised version of STH to distinguish it from the standard unsupervised version of STH.
Extension II: Supervision

Why not use SVMs directly?

kNN still has its advantages over SVMs in some aspects.

- For example, if there are 1000 classes,
 - the multi-class SVM approach may need 1000 binary SVM classifiers using the one-vs-rest ensemble scheme
 - the kNN (on top of STH) approach using 16-bit binary codes would only require 16 binary SVM classifiers
Text Datasets

- **Reuters21578**
 - Top 10 categories
 - 7285 documents
 - ModeApt split: 5228 (75%) training, 2057 (28%) testing

- **20Newsgroups**
 - All 20 categories
 - 18846 documents
 - ‘bydate’ split: 11314 (60%) training, 7532 (40%) testing

- **TDT2 (NIST Topic Detection and Tracking)**
 - Top 30 categories
 - 9394 documents
 - random split (x10): 5597 (60%) training, 3797 (40%) testing
Extension II: Supervision

(a) Reuters21578
(b) 20Newsgroups
(c) TDT2

Figure: The precision-recall curve for retrieving same-topic documents.
Extension II: Supervision

Figure: The accuracy of approximate kNN classification (via hashing).
Outline

1. Problem
2. Related Work
3. Review of STH
4. Extensions to STH
5. Conclusion
Conclusion

- **Major Contribution:** Self-Taught Hashing
 - Unsupervised Learning + Supervised Learning
 - Spectral Method + Kernel Method
- **Extensions** (in the FGSIR Workshop on 23 Jul 2010)
 - Kernelisation
 - Supervision
- **Future Work**
 - Implementation using MapReduce
 - Applications in Multimedia IR
Thanks!
8-}