
EMI Music Data Science Hackthon: How I Did It

Dell Zhang
DCSIS, Birkbeck, University of London
Malet Street, London WC1E 7HX, UK

dell.z@ieee.org

August 4, 2012

Abstract

This document describes my approach to the EMI Music Data Science
Hackathon, a 24-hour competition aimed at building a predictive model
about how much a user is going to like a new song.

1 Introduction

My entry in the EMI Music Data Science Hackathon1 — zmusic — could simply
be summarised as “chucking everything into a Random Forest”, which is also the
winning strategy used by Ben Hamner in the previous Data Science Hackthdon2.
After the competition, I tried the technique of Factorization Machines and found
that it would be able to achieve a better performance for this task.

I only used Python3 for coding throughout the competition. The 64-bit
edition Python would be needed to handle the dataset and avoid memory errors.
The code for replicating my approach has been made available on GitHub4.

The rest of this document is organized as follows. In Section 2, I describe the
features extracted from the data. In Section 3, I present the learning algorithms
employed to build the predictive model. In Section 4, I report the results of
my submission and my post-competition experiments. In Section 5, I make
concluding remarks.

2 Features

The data used for this competition come from a subset of the EMI One Million
Interview Dataset5. The data files were first cleaned and encoded manually

1http://www.kaggle.com/c/MusicHackathon
2http://goo.gl/V8RIJ
3http://www.python.org/
4https://github.com/dell-zhang/zmusic_code
5http://musicdatascience.com/emi-million-interview-dataset/

1



using Unix tools (cat, cut, split, grep, sort, wc, etc.) and a text editor (search,
replace, etc.). The data files were also pre-processed so that all data could
be saved in binary format and then loaded quickly through Python’s pickle
mechanism.

For each training or test example given in the form of a tuple [artist id,
track id, user id, time id], I expanded it with the attributes describing that
user’s (a) demographics, (b) his preferences for music, and (c) his opinions
about that EMI artist — basically all the information that is provided about
the corresponding user and artist. Then I represented each example as a fea-
ture vector: each numerical attribute was represented as one feature; while each
categorical attribute (including those ids) with k distinctive values was rep-
resented as k binary indicator features. Specifically, the features that I have
used include: artist id (50 binary indicator features), track id (184 binary
indicator features), user id (50928 binary indicator features or 1 real-valued
feature, see the explanation below in Section 3.1), time id (24 binary indica-
tor features), gender (1 integer feature ∈ {−1, 1}), age (1 real-valued feature
∈ [0, 1]), working (13 binary indicator features), region (4 binary indicator
features), music (5 binary indicator features), list own (1 real-valued feature
∈ [0, 1]), list back (1 real-valued feature ∈ [0, 1]), q xx (19 real-valued features
∈ [0, 1] corresponding to that user’s answers to the 19 questions about his pref-
erences for music), heard-of (4 binary indicator features), own-artist-music
(5 binary indicator features), like-artist (1 real-valued feature ∈ [0, 1]), and
w xx (81 integer features ∈ {−1, 1} corresponding to whether each of those 81
words was used by that user to describe that EMI artist).

If a categorical attribute is missing, its binary indicator features are just
all 0. With respect to numerical attributes, the missing values for the integer
features (gender and w xx) are filled as 0; while the missing values for the real-
valued features (age, list own, list back, q xx, and like-artist) are filled
as −1.

Finally, for each example, the user’s rating on the given track is considered
as the target variable. Thus, this predictive modelling task is formulated as a
regression problem.

3 Algorithms

3.1 Random Forest

Random Forest (RF) [1], an ensemble learning method [3,7] for classification or
regression built on top of decision trees, has kept showing best performances on
a variety of real-world data mining problems [2]. If you are not familiar with
this technique, please refer to an explanation of RF in layman’s terms6 and a
demonstration of RF in action7.

6http://goo.gl/3Mdu5
7http://goo.gl/1O5P4

2



Due to the great success of RF in many data mining competitions, I decided
to take it as my first choice for this problem. I used the RF implementation
provided by the Python machine learning library scikit-learn8, with all the fea-
tures described in Section 2. There was one serious obstacle though: that RF
implementation does not support expressing data in a sparse matrix. To get
around of it, I had to represent the categorical attribute user id as one real-
valued feature (user id/50928), though in principle it should be represented as
50928 binary indicator features. Hence in the end a RF with 395 features was
used to make my submissions.

I only tuned two major parameters of RF via cross-validation: one is the the
number of trees in the forest (n estimators), and the other is the size of the
random subsets of features to consider when splitting a node (max features).
For n estimators, the larger the better performance, but also the longer time
the computation will take. A fairly good performance could be achieved by
using 10 trees. I finally settled at a RF with 60 trees, as it took about one
hour to run on my laptop while the performance improvement brought by us-
ing more trees became insignificant. For max features, the lower the greater
the reduction of variance, but also the greater the increase in bias. The rule
of thumb is to use max features = n features for regression problems and
max features =

√
n features for classification problems, where n features

is the number of features in the data. Our task is a regression problem, but
the target variable values, i.e., ratings, turned out to be highly clustered, ash
shown by Figure 1. Therefore it is somewhat similar to a classification problem.
According to the cross-validation experiments and the public leaderboard, set-
ting max features to

√
n features instead of its default value n features did

improve the performance slightly.
I was not able to take advantage of the multi-core parallel computation

functionality provided by the n jobs parameter. Since the main memory could
only hold only one copy of the data, running multiple jobs in parallel would
make the hard disk busy and the speed would actually be slower.

3.2 Factorization Machines

Although the above RF based method has utilised all the attributes, it has
not fully exploited all the information embedded in the data, as it has ignored
the latent factors of user-track interactions, user-artist interactions, and so on.
Such latent factors are known to be very helpful for modelling dyadic data,
e.g., in recommender systems, as demonstrated by the Netflix Prize 9 [5]. So in
the second half of the competition, I was attempting to apply Singular Value
Decomposition (SVD) to this problem. The standard SVD provided by NumPy
or SciPy was not useful as it could not handle incomplete matrices. What I
needed was Simon Funk’s SVD10 that models observed ratings only. However,
I did not get enough time to complete implementing my SVD algorithm.

8http://scikit-learn.org/
9http://www.netflixprize.com/

10http://sifter.org/~simon/journal/20061211.html

3



Figure 1: The histogram of ratings in the training data.

After the competition, I discovered the technique of Factorization Machines
(FM) [6] developed by Steffen Rendle, which is a generic latent factor model
that encompasses most matrix factorization models (incl. SVD) by feature
engineering. Furthermore, a software toolkit for FM, libFM11, is freely available
for academic purposes. Since libFM supports sparse data format, I was able
to represent the the categorical attribute user id as 50928 binary indicator
features, which resulted in 51322 features in total.

I carried out cross-validation experiments using libFM with all those fea-
tures, and found that it would be able to achieve a better performance for this
task. Bayesian inference using Markov Chain Monto Carlo (MCMC) was chosen
to be the optimisation method for training the FM with 100 dimensions in 1000
iterations, and the standard deviation parameter for initialising two-way factors
was set to 0.25 which yielded a good convergence speed.

4 Results

Table 1 shows the performances of RF (n estimators=60, max features=’sqrt’)
and FM (-method mcmc -dim ’1,1,100’ -init stdev 0.25 -iter 1000), mea-
sured by Root Mean Square Error (RMSE).

5 Conclusions

Once again, RF proved to be amazingly powerful, when a predictive model
needed to be built quickly on a complex dataset with many different types of

11http://www.libfm.org/

4



Table 1: The performances of RF and FM.

RMSE 2-fold cross-validation public leaderboard private leaderboard

RF 14.59553 13.76513 13.80559

MF 14.19240 - -

features. It should be considered as the baseline learning algorithm to start
from, for typical classification or regression problems. Moreover, FM exhibited
outstanding performance for this task, suggesting the critical importance of
identifying the latent factors underlying the interactions between users, artists,
and tracks, etc. Since RF and FM address different aspects of the problem, it
is very promising to blend their results [4].

6 Acknowledgement

I thank EMI12 for providing us this valuable dataset and challenging us to this
interesting problem. I am grateful to Data Science London13 and Kaggle14 for
their excellent organisation of this competition.

References

[1] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[2] R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised
learning algorithms. In ICML, pages 161–168, Pittsburgh, PA, USA, 2006.

[3] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2nd edition,
2009.

[4] M. Jahrer, A. Töscher, and R. A. Legenstein. Combining predictions for
accurate recommender systems. In Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD),
pages 693–702, Washington, DC, USA, 2010.

[5] Y. Koren. Factorization meets the neighborhood: a multifaceted collabora-
tive filtering model. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pages 426–
434, Las Vegas, NV, USA, 2008.

[6] S. Rendle. Factorization machines with libFM. ACM Transactions on In-
telligent Systems and Technology (TIST), 3(3):57:1–57:22, May 2012.

12http://www.emimusic.com/
13http://datasciencelondon.org/
14http://www.kaggle.com/

5



[7] G. Seni and J. F. Elder. Ensemble Methods in Data Mining: Improving
Accuracy Through Combining Predictions. Morgan & Claypool Publishers,
2010.

6


