Cloud Computing

Link Analysis in the Cloud

Dell Zhang
Birkbeck, University of London
2018/19
Graph Problems & Representations
What is a Graph?

• $G = (V,E)$, where
 – V represents the set of vertices (nodes)
 – E represents the set of edges (links)
 – Both vertices and edges may contain additional information (e.g., edge weights)

• Different types of graphs:
 – directed vs. undirected edges
 – presence or absence of cycles
We See Graphs Everywhere

• Ubiquitous network (graph) data
 • Technological Network
 • Internet
 • Information Network
 • WWW, Sematic Web/Ontologies, XML/RD
 – Social network
 – Biological Network
 – Financial Network
 – Transportation Network
Some Graph Problems

• Finding shortest paths
 – Routing Internet traffic and UPS trucks

• Finding minimum spanning trees
 – Telecommunication companies laying down fibre

• Finding max flow
 – Airline scheduling
Some Graph Problems

• Identify “special” nodes and communities
 – Breaking up terrorist cells, spread of avian flu
• Bipartite matching
 – Monster.com, Match.com
• And of course... PageRank
Challenge in Dealing with Graph Data

• Flat Files
 – No query support

• RDBMS
 – Can store the graph
 – But limited support for graph query
 • Connect-By (Oracle)
 • Common Table Expressions (CTEs) (Microsoft)
 • Temporal Table
Native Graph Databases

• An Emerging Field

• Storage and Basic Operators
 – Neo4j (an open source graph database), InfiniteGraph, VertexDB, ...

• Distributed Graph Processing (mostly in-memory-only)
 – Google’s Pregel, GraphLab, ...
The Graph Analytics Industry

• Status of Practice
 – Graph data in many industries
 – Graph analytics are powerful and can bring great business values/insights
 – Graph analytics not utilized enough in enterprises due to lack of available platforms/tools (except leading tech companies which have high caliber in house engineering teams and resources)
Graphs and MapReduce

• Graph algorithms typically involve:
 – Performing computations at each node: based on node features, edge features, and local link structure
 – Propagating computations: “traversing” the graph

• Key questions:
 – How do you represent graph data in MapReduce?
 – How do you traverse a graph in MapReduce?
Representing Graphs

• Two common representations
 – Adjacency matrix
 – Adjacency list
Adjacency Matrices

- Represent a graph as an $n \times n$ square matrix M
 - $n = |V|$
 - $M_{ij} = 1$ means a link from node i to j

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Adjacency Matrices: Critique

• Advantages:
 – Amenable to mathematical manipulation
 – Iteration over rows and columns corresponds to computations on out-links and in-links

• Disadvantages:
 – Lots of zeros for sparse matrices
 – Lots of wasted space
Adjacency Lists

- Take adjacency matrices... and throw away all the zeros

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

1: 2, 4
2: 1, 3, 4
3: 1
4: 1, 3
Adjacency Lists: Critique

• Advantages:
 – Much more compact representation
 – Easy to compute over out-links

• Disadvantages:
 – Much more difficult to compute over in-links
Parallel Breadth-First Search
Single Source Shortest Path

• **Problem:** find shortest path from a source node to one or more target nodes
 – “shortest” might also mean lowest weight or cost

• First, a refresher: Dijkstra’s algorithm
Dijkstra’s Algorithm

Example from CLR
Single Source Shortest Path

Problem: find shortest path from a source node to one or more target nodes
- “shortest” might also mean lowest weight or cost

On a single machine: Dijkstra’s algorithm

MapReduce: Parallel Breadth-First Search (BFS)
- Consider simplest case of equal edge weights first
- Solution to the problem can be defined inductively
Finding the Shortest Path

Here’s the intuition:

– Define: \(b \) is reachable from \(a \) if \(b \) is in the adjacency list of \(a \)
– \(\text{DISTANCE}(s) = 0 \)
– For all nodes \(p \) reachable from \(s \):
 \(\text{DISTANCE}(p) = 1 \)
– For all nodes \(n \) reachable from some other set of nodes \(M \):
 \(\text{DISTANCE}(n) = 1 + \min_{m \in M} \text{DISTANCE}(m) \)
Finding the Shortest Path
Visualizing Parallel BFS
From Intuition to Algorithm

• Data representation:
 – Key: node \(n \)
 – Value:
 \(d \) (distance from start), adjacency list (list of nodes reachable from \(n \))
 – Initialization:
 for all nodes except the start node, \(d = \infty \).
From Intuition to Algorithm

• Mapper:
 – \(\forall m \in \text{adjacency list}: \text{emit } (m, \, d + 1) \)

• Sort/Shuffle
 – Groups distances by reachable nodes

• Reducer:
 – Selects the minimum distance path for each reachable node
 – Additional bookkeeping needed to keep track of the actual path
Multiple Iterations Needed

• Each MapReduce iteration advances the “known frontier” by one hop
 – Subsequent iterations include more and more reachable nodes as frontier expands
 – Multiple iterations are needed to explore entire graph

• Preserving graph structure:
 – Problem: Where did the adjacency list go?
 – Solution: mapper emits \((n, \text{adjacency list})\) as well
BFS Pseudo-Code

1: class Mapper
2: method MAP(nid n, node N)
3: d ← N.DISTANCE
4: EMIT(nid n, N) ▶ Pass along graph structure
5: for all nodeid m ∈ N.ADJACENCYLIST do
6: EMIT(nid m, d + 1) ▶ Emit distances to reachable nodes

1: class Reducer
2: method REDUCE(nid m, [d₁, d₂, . . .])
3: d_min ← ∞
4: M ← ∅
5: for all d ∈ counts [d₁, d₂, . . .] do
6: if ISNODE(d) then
7: M ← d ▶ Recover graph structure
8: else if d < d_min then ▶ Look for shorter distance
9: d_min ← d
10: M.DISTANCE ← d_min ▶ Update shortest distance
11: EMIT(nid m, node M)
Stopping Criterion

• How many iterations are needed in parallel BFS (equal edge weight case)?
• Convince yourself: when a node is first “discovered”, we’ve found the shortest path
• Now answer the question...
 – Six degrees of separation?
• Practicalities of implementation in MapReduce
Weighted Edges

• Now add positive weights to the edges
 – Why can’t edge weights be negative?
• Simple change: adjacency list now includes a weight w for each edge
 – In mapper, emit $(m, d + w_p)$ instead of $(m, d + 1)$ for each node m
• That’s it?
Stopping Criterion

• How many iterations are needed in parallel BFS (positive edge weight case)?

• Convince yourself: when a node is first “discovered”, we’ve found the shortest path

\textit{Not true!}
How many iterations are required to discover the shortest distances to all nodes from n_1?
Stopping Criterion

• How many iterations are needed in parallel BFS (positive edge weight case)?
• Practicalities of implementation in MapReduce
Comparison to Dijkstra

• Dijkstra’s algorithm is more efficient
 – At any step it only pursues edges from the minimum-cost path inside the frontier

• MapReduce explores all paths in parallel
 – Lots of “waste”
 – Useful work is only done at the “frontier”

• Why can’t we do better using MapReduce?
Implementation on Hadoop

http://goo.gl/TEoU4
Graphs and MapReduce

• Generic recipe:
 – Represent graphs as adjacency lists
 – Perform local computations in mapper
 – Pass along partial results via out-links, keyed by destination node
 – Perform aggregation in reducer on in-links to a node
 – Iterate until convergence: controlled by external “driver”
 – Don’t forget to pass the graph structure between iterations
PageRank

Diagram showing the concept of PageRank with various smiling faces connected by arrows.
Random Walks over the Web

• Random surfer model:
 – User starts at a random Web page
 – User randomly clicks on links, surfing from page to page

• PageRank
 – Characterizes the amount of time spent on any given page
 – Mathematically, a probability distribution over pages
Random Walks over the Web

• PageRank captures the notion of page importance
 – Correspondence to human intuition?
 – One of thousands of features used in Web search
 – Note: query-independent
PageRank: Simplified
PageRank: Simplified

• Given page x with in-links $t_1 \ldots t_n$, where
 – $C(t)$ is the out-degree of t

$$PR(x) = \sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}$$
Example: the Web in 1839

Yahoo

Amazon

Microsoft

\[
\begin{array}{ccc}
y & a & m \\
y & 1/2 & 1/2 & 0 \\
a & 1/2 & 0 & 1 \\
m & 0 & 1/2 & 0 \\
\end{array}
\]
Simulating a Random Walk

• Start with the vector $\mathbf{v} = [1,1,\ldots,1]$ representing the idea that each Web page is given one unit of \textit{importance}.

• Repeatedly apply the matrix M to \mathbf{v}, allowing the importance to flow like a random walk.

• Limit exists, but about 50 iterations is sufficient to estimate final distribution.
Example: the Web in 1839

- Equations $v = M \cdot v$:

 \[
 y = y / 2 + a / 2 \\
 a = y / 2 + m \\
 m = a / 2
 \]

\[
\begin{array}{ccccccc}
 y & 1 & 1 & 5/4 & 9/8 & \cdots & 6/5 \\
 a & 1 & 3/2 & 1 & 11/8 & \cdots & 6/5 \\
 m & 1 & 1/2 & 3/4 & 1/2 & & 3/5 \\
\end{array}
\]
Solving the Equations

- Because there are no constant terms, these 3 equations in 3 unknowns do not have a unique solution.
- Add in the fact that $y + a + m = 3$ to solve.
- In Web-sized examples, we cannot solve by Gaussian elimination, but we need to use the power method (= iterative solution).
Computing PageRank

• Properties of PageRank
 – Can be computed iteratively
 – Effects at each iteration are local
Computing PageRank

• Sketch of algorithm:
 – Start with seed PR_i values
 – Each page distributes its PR_i “credit” to all of its out-links
 – Each page adds up the “credits” from all of its in-links to compute PR_{i+1}
 – Iterate until the values converge
Sample PageRank Iterations

Iteration 1
Sample PageRank Iterations

Iteration 2

- $n_1 (0.066)$
- $n_2 (0.166)$
- $n_3 (0.166)$
- $n_4 (0.3)$
- $n_5 (0.3)$

- $n_1 (0.1)$
- $n_2 (0.133)$
- $n_3 (0.183)$
- $n_4 (0.2)$
- $n_5 (0.383)$

- Arrows and weights between nodes represent the transition probabilities in the PageRank algorithm.
PageRank in MapReduce
PageRank Pseudo-Code

1: class Mapper
2: method Map(nid n, node N)
3: \[p \leftarrow N.PAGERANK / |N.ADJACENCYLIST| \]
4: Emit(nid n, N) \quad \triangleright \text{Pass along graph structure}
5: for all nodeid \(m \in N.ADJACENCYLIST \) do
6: Emit(nid m, p) \quad \triangleright \text{Pass PageRank mass to neighbors}

1: class Reducer
2: method Reduce(nid m, [p_1, p_2, \ldots])
3: M \leftarrow \emptyset
4: for all \(p \in \text{counts} [p_1, p_2, \ldots] \) do
5: if \text{IsNode}(p) then
6: M \leftarrow p \quad \triangleright \text{Recover graph structure}
7: else
8: s \leftarrow s + p \quad \triangleright \text{Sum incoming PageRank contributions}
9: M.PAGERANK \leftarrow s
10: Emit(nid m, node M)
Real-World Problems

• Some pages are “dead ends” (no out-links).
 – Such a page causes importance to leak out.

• Some other (groups of) pages are *spider traps* (all out-links are within the group).
 – Eventually spider traps absorb all importance.
Microsoft becomes a dead end
Microsoft becomes a dead end

• Equations $v = M v$:

 $y = y/2 + a/2$

 $a = y/2$

 $m = a/2$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>3/4</th>
<th>5/8</th>
<th>...</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>1</td>
<td>3/4</td>
<td>5/8</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>3/8</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>m</td>
<td>1</td>
<td>1/2</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Microsoft becomes a spider trap

Amazon

Microsoft

Yahoo

\[
\begin{pmatrix}
y & a & m \\
y & 1/2 & 1/2 & 0 \\
a & 1/2 & 0 & 0 \\
m & 0 & 1/2 & 1 \\
\end{pmatrix}
\]
Microsoft becomes a spider trap

• Equations \(\mathbf{v} = \mathbf{M} \mathbf{v} : \)

\[
\begin{align*}
y &= y/2 + a/2 \\
a &= y/2 \\
m &= a/2 + m
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>3/4</th>
<th>5/8</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>3/8</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>1</td>
<td>3/2</td>
<td>7/4</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Google’s Solution

• “Tax” each page a fixed percentage at each iteration.
• Add the same constant to all pages.
• Models a random walk with a fixed probability of going to a random place next.
Example: with 20% Tax

• Equations \(v = 0.8(M \ v) + 0.2 \):

\[
\begin{align*}
y &= 0.8(y /2 + a/2) + 0.2 \\
a &= 0.8(y /2) + 0.2 \\
m &= 0.8(a /2 + m) + 0.2
\end{align*}
\]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>1.00</td>
<td>0.84</td>
<td>0.776</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>0.60</td>
<td>0.60</td>
<td>0.536</td>
</tr>
<tr>
<td>m</td>
<td>1</td>
<td>1.40</td>
<td>1.56</td>
<td>1.688</td>
</tr>
</tbody>
</table>
PageRank: Complete

• Two additional complexities
 – What is the proper treatment of dangling nodes (i.e., nodes with no out-links)?
 – How do we factor in the random jump factor?
PageRank: Complete

• Solution:
 – Second pass to redistribute “missing PageRank mass” and account for random jumps

 \[
 p' = \alpha \left(\frac{1}{N} \right) + (1 - \alpha) \left(\frac{m}{N} + p \right)
 \]

• \(p \) is PageRank value from before,
 \(p' \) is updated PageRank value

• \(N \) is the total number of nodes in the graph

• \(m \) is the missing PageRank mass
PageRank Convergence

• Alternative convergence criteria
 – Iterate until PageRank values don’t change
 – Iterate until PageRank rankings don’t change
 – Fixed number of iterations

• Convergence for web graphs?
Beyond PageRank

• Link structure is important for web search
 – PageRank is one of many link analysis algorithms: HITS, SALSA, etc.
 – Used with thousands of other features in ranking...

• Adversarial nature of web search
 – Link spamming
 – Spider traps
 – Keyword stuffing
 – ...

Efficient Graph Algorithms

- Sparse vs. Dense Graphs
- Graph Topologies
Local Aggregation

• Use combiners!
 – In-mapper combining design pattern also applicable

• Maximize opportunities for local aggregation
 – Simple tricks: sorting the dataset in specific ways
Take Home Messages

• Graph Problems and Representations
• Parallel Breadth-First Search
• PageRank: Simplified and Complete