Cloud Computing

Data Management in the Cloud

Dell Zhang
Birkbeck, University of London
2018/19
Data Management in Today’s Organisations
Big Data Analysis

• Peta-scale datasets are everywhere:
 – Facebook: 2.5PB of user data + 15TB/day (4/2009)
 – eBay: 6.5PB of user data + 50TB/day (5/2009)
 – ...

• A lot of these datasets are (mostly) structured
 – Query logs
 – Point-of-sale records
 – User data (e.g., demographics)
 – ...
Big Data Analysis

• How do we perform data analysis at scale?
 – Relational databases (RDBMS)
 – MapReduce (Hadoop)
RDBMS vs MapReduce

• Relational databases
 – Multipurpose
 • transactions & analysis
 • batch & interactive
 – Data integrity via ACID transactions
 – Lots of tools in software ecosystem
 • for ingesting, reporting, etc.
 – Supports SQL (and SQL integration, e.g., JDBC)
 – Automatic SQL query optimization

Source: O’Reilly Blog post by Joseph Hellerstein (11/19/2008)
RDBMS vs MapReduce

• MapReduce (Hadoop):
 – Designed for large clusters, fault tolerant
 – Data is accessed in “native format”
 – Supports many query languages
 – Programmers retain control over performance
 – Open source

Source: O’Reilly Blog post by Joseph Hellerstein (11/19/2008)
Database Workloads

• Online Transaction Processing (OLTP)
 – Typical applications:
 • e-commerce, banking, airline reservations
 – User facing:
 • real-time, low latency, highly-concurrent
 – Tasks:
 • relatively small set of “standard” transactional queries
 – Data access pattern:
 • random reads, updates, writes (involving relatively small amounts of data)
Database Workloads

• Online Analytical Processing (OLAP)
 – Typical applications:
 • business intelligence, data mining
 – Back-end processing:
 • batch workloads, less concurrency
 – Tasks:
 • complex analytical queries, often ad hoc
 – Data access pattern:
 • table scans, large amounts of data involved per query
One Database or Two?

• Downsides of co-existing OLTP and OLAP workloads
 – Poor memory management
 – Conflicting data access patterns
 – Variable latency

• Solution: separate databases
 – OLTP database for user-facing transactions
 – OLAP database for data warehousing

• How do we connect the two?
OLTP/OLAP Architecture

OLTP

ETL
(Extract, Transform, and Load)

OLAP
OLTP/OLAP Integration

• Extract-Transform-Load (ETL)
 – Extract records from OLTP database
 – Transform records
 • clean data, check integrity, aggregate, etc.
 – Load records into OLAP database
OLTP/OLAP Integration

• OLTP database for user-facing transactions
 – Retain records of all activity
 – Periodic ETL (e.g., nightly)

• OLAP database for data warehousing
 – Business intelligence
 • reporting, ad hoc queries, data mining, etc.
 – Feedback to improve OLTP services
Business Intelligence

• Premise: more data leads to better business decisions
 – Periodic reporting as well as ad hoc queries
 – Analysts, not programmers
 • Importance of tools and dashboards
Business Intelligence

• Examples:
 – Slicing-and-dicing activity by different dimensions to better understand the marketplace
 – Analyzing log data to improve OLTP experience
 – Analyzing log data to better optimize ad placement
 – Analyzing purchasing trends for better supply-chain management
 – Mining for correlations between otherwise unrelated activities
OLTP/OLAP Architecture: Hadoop?

ETL (Extract, Transform, and Load)

What about here?

Hadoop here?
OLTP/OLAP/Hadoop Architecture

OLTP → ETL (Extract, Transform, and Load) → Hadoop → OLAP

Why does this make sense?
ETL Bottleneck

• Reporting is often a nightly task:
 – ETL is often slow: why?
 – What happens if processing 24 hours of data takes longer than 24 hours?
ETL Bottleneck

• Hadoop is perfect:
 – Most likely, you already have some data warehousing solution
 – Ingestion is limited by the speed of HDFS
 – Scales out with more nodes
 – Massively parallel
 – Ability to use any processing tool
 – Much cheaper than parallel databases
 – ETL is a batch process anyway!
MapReduce Algorithms for Processing Relational and Matrix Data
Working Scenario

• Two tables:
 – User demographics (gender, age, income, etc.)
 – User page visits (URL, time spent, etc.)

• Analyses we might want to perform:
 – Statistics on demographic characteristics
 – Statistics on page visits
 – Statistics on page visits by URL
 – Statistics on page visits by demographic characteristic
Relational Algebra

• Primitives
 – Projection (π)
 – Selection (σ)
 – Cartesian product (\times)
 – Set union (\cup)
 – Set difference (\neg)
 – Rename (ρ)
 – ...
Relational Algebra

• Other operations
 – Join (⋈)
 – Group by... aggregation
 – ...

Projection

$\pi_{\square\circ}$
Projection in MapReduce

• Easy!
 – Map over tuples, emit new tuples with appropriate attributes
 – No reducers
 • unless for regrouping or resorting tuples
 – Alternatively: perform in reducer, after some other processing
Projection in MapReduce

• Basically limited by HDFS streaming speeds
 – Speed of encoding/decoding tuples becomes important
 – Relational databases take advantage of compression
 – Semi-structured data? No problem!
Selection

R₁ R₂ R₃ R₄ R₅

R₁ R₃

σ
Selection in MapReduce

• Easy!
 – Map over tuples, emit only tuples that meet criteria
 – No reducers
 • unless for regrouping or resorting tuples
 – Alternatively: perform in reducer, after some other processing
Selection in MapReduce

- Basically limited by HDFS streaming speeds
 - Speed of encoding/decoding tuples becomes important
 - Relational databases take advantage of compression
 - Semi-structured data? No problem!
Group by... Aggregation

• What is the average time spent per URL?
• In SQL:
 – SELECT url, AVG(time) FROM visits GROUP BY url
• In MapReduce:
 – Map over tuples, emit time, keyed by url
 – Framework automatically groups values by keys
 – Compute average in reducer
 – Optimize with combiners
Relational Joins
Natural Join: Example

Table R

<table>
<thead>
<tr>
<th>sid</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

Table S

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>

\[
R \bowtie S =
\]

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>101</td>
<td>10/10/96</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>103</td>
<td>11/12/96</td>
</tr>
</tbody>
</table>
Types of Relationships

- Many-to-Many
- One-to-Many
- One-to-One
Join Algorithms in MapReduce

• Reduce-side join
• Map-side join
• In-memory join
 – Striped variant
 – Memcached variant
Reduce-side Join

• Basic idea: group by join key
 – Map over both sets of tuples
 – Emit tuple as value with join key as the intermediate key
 – Execution framework brings together tuples sharing the same key
 – Perform actual join in reducer
 – Similar to a “sort-merge join” in database terminology
Reduce-side Join

• Two variants
 – 1-to-1 joins
 – 1-to-many and many-to-many joins
Reduce-side Join: 1-to-1

Map

Reduce

Note: no guarantee if R is going to come first or S
Reduce-side Join: 1-to-many

Map

<table>
<thead>
<tr>
<th>R₁</th>
<th>S₂</th>
<th>S₃</th>
<th>S₉</th>
</tr>
</thead>
</table>

Reduce

<table>
<thead>
<tr>
<th>keys</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁</td>
<td>S₂</td>
</tr>
<tr>
<td>S₂</td>
<td>S₃</td>
</tr>
<tr>
<td>S₉</td>
<td>...</td>
</tr>
</tbody>
</table>

What's the problem?
Reduce-side Join: 1-to-many

In reducer...

<table>
<thead>
<tr>
<th>keys</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁</td>
<td></td>
</tr>
<tr>
<td>S₂</td>
<td></td>
</tr>
<tr>
<td>S₃</td>
<td></td>
</tr>
<tr>
<td>S₉</td>
<td></td>
</tr>
<tr>
<td>R₄</td>
<td></td>
</tr>
<tr>
<td>S₃</td>
<td></td>
</tr>
<tr>
<td>S₇</td>
<td></td>
</tr>
</tbody>
</table>

Value-to-Key Conversion

- New key encountered: hold in memory
- Cross with records from other set
Reduce-side Join: many-to-many

In reducer...

- **keys**: R_1, R_5, R_8, S_2, S_3, S_9
- **values**

- **Hold in memory**
- **Cross with records from other set**

What’s the problem?
Map-side Join: Basic Idea

Assume two datasets are sorted by the join key:

A *sequential* scan through both datasets to join (called a “merge join” in database terminology)
Map-side Join: Parallel Scans

• If datasets are sorted by join key, join can be accomplished by a scan over both datasets

• How can we accomplish this in parallel?
 – Partition and sort both datasets in the same manner
Map-side Join: Parallel Scans

• In MapReduce:
 – Map over one dataset, read from other corresponding partition
 – No reducers necessary
 • unless to repartition or resort

• Consistently partitioned datasets: realistic to expect?
In-Memory Join

• Basic idea: load one dataset into memory, stream over other dataset
 – Works if $R << S$ and R fits into memory
 – Called a “hash join” in database terminology
In-Memory Join

• MapReduce implementation
 – Distribute R to all nodes
 – Map over S, each mapper loads R in memory, hashed by join key
 – For every tuple in S, look up join key in R
 – No reducers
 • unless for regrouping or resorting tuples
In-Memory Join: Variants

• Striped variant:
 – R too big to fit into memory?
 – Divide R into R_1, R_2, R_3, \ldots s.t. each R_n fits into memory
 – Perform in-memory join: $\forall n, R_n \bowtie S$
 – Take the union of all join results
In-Memory Join: Variants

• Memcached join:
 – Load R into memcached
 – Replace in-memory hash lookup with memcached lookup
Memcached

Caching servers:
15 million requests per second, 95% handled by memcache (15 TB of RAM)

Database layer:
800 eight-core Linux servers running MySQL (40 TB user data)

Source: Technology Review (July/August, 2008)
Memcached Join

• Capacity and Scalability?
 – Memcached capacity >> RAM of individual node
 – Memcached scales out with cluster

• Latency?
 – Memcached is fast (basically, speed of network)
 – Batch requests to amortize latency costs

Source: See tech report by Lin et al. (2009)
Which join to use?

• In-memory join > Map-side join > Reduce-side join
 – Why?

• Limitations of each?
 – In-memory join: memory
 – Map-side join: sort order and partitioning
 – Reduce-side join: general purpose
Processing Relational Data

• Summary: MapReduce algorithms for processing relational data
 – Group by, sorting, partitioning are handled automatically by shuffle/sort in MapReduce
 – Selection, projection, and other computations (e.g., aggregation), are performed either in mapper or reducer
 – Multiple strategies for relational joins
Processing Relational Data

• Complex operations require multiple MapReduce jobs
 – Example: top 10 URLs in terms of average time spent
 – Opportunities for automatic optimisation
Matrix-Vector Multiplication

• Suppose we have an $n \times n$ matrix M, whose element in row i and column j is denoted m_{ij}.
• Suppose we also have a vector v of length n, whose jth element is v_j.
• Then the matrix-vector product is the vector x of length n, whose ith element x_i is given by

$$x_i = \sum_{j=1}^{n} m_{ij} v_j$$
Matrix-Vector Multiplication

\[
\begin{bmatrix}
1 & 4 \\
0 & 3 \\
\end{bmatrix} \begin{bmatrix}
3 \\
1 \\
\end{bmatrix} = \begin{bmatrix}
1*3 + 4*1 \\
0*3 + 3*1 \\
\end{bmatrix} = \begin{bmatrix}
7 \\
3 \\
\end{bmatrix}
\]
Matrix-Vector Multiplication

- If v can fit in main memory
Matrix-Vector Multiplication

• If \(\mathbf{v} \) can fit in main memory:
 – Each Map task will operate on a chunk of the matrix \(\mathbf{M} \).
 – At the compute node executing a Map task, \(\mathbf{v} \) is first read (in its entirety) into main memory, and subsequently it will be available to all applications of the Map function performed at this Map task.
Matrix-Vector Multiplication

• If v can fit in main memory
 – **The Map Function:** For each matrix element m_{ij} it produces the key-value pair $(i, m_{ij}v_j)$.
 – **The Reduce Function:** It simply sums all the values associated with a given key i, thus the result will be a pair (i, x_i).
Matrix-Vector Multiplication

• If \mathbf{v} cannot fit in main memory
 – To avoid excessive disk access, we can divide the matrix into *vertical stripes* of equal width and divide the vector into an equal number of *horizontal stripes*, of the same height, so that the portion of the vector in one stripe can fit into main memory at a compute node.
Matrix-Vector Multiplication

• If v cannot fit in main memory
Matrix-Vector Multiplication

• If v cannot fit in main memory
 – The ith stripe of the matrix multiplies only components from the ith stripe of the vector.
 – Thus, we can divide the matrix into one file for each stripe, and do the same for the vector.
 – Each Map task is assigned a chunk from one of the stripes of the matrix and gets the entire corresponding stripe of the vector.
Matrix Multiplication

- If M is a matrix with element m_{ij} in row i and column j, and N is a matrix with element n_{jk} in row j and column k, then the product $P = MN$ is the matrix P with element p_{ik} in row i and column k, where

$$p_{ik} = \sum_j m_{ij} n_{jk}$$
Matrix Multiplication

\[
\begin{bmatrix}
1 & 4 \\
0 & 3 \\
2 & 1 & 4
\end{bmatrix}
\times
\begin{bmatrix}
0 & 3 & 0 \\
2 & 1 & 4
\end{bmatrix}
=
\begin{bmatrix}
1\times0 + 4\times2 & 1\times3 + 4\times1 & 1\times0 + 4\times4 \\
0\times0 + 3\times2 & 0\times3 + 3\times1 & 0\times0 + 3\times4
\end{bmatrix}
=
\begin{bmatrix}
8 & 7 & 16 \\
6 & 3 & 12
\end{bmatrix}
\]
Matrix Multiplication

• A matrix = a relation with three attributes: the row number, the column number, and the value at that row and column.
 – $M \rightarrow$ relation $M(I, J, V)$, with tuples (i, j, m_{ij})
 – $N \rightarrow$ relation $N(J, K, W)$, with tuples (j, k, n_{jk})

• The product MN is almost a natural join (on attribute J) followed by grouping and aggregation.
Matrix Multiplication

• With two MapReduce steps (1/2)
 – The Map Function: For each matrix element m_{ij}, produce the key-value pair $(j, (M, i, m_{ij}))$. Likewise, for each matrix element n_{jk}, produce the key-value pair $(j, (N, k, n_{jk}))$.
 – The Reduce Function: For each key j, examine its list of associated values. For each value from M, say (M, i, m_{ij}), and each value from N, say (N, k, n_{jk}), produce a key-value pair $((i, k), m_{ij}n_{jk})$.
Matrix Multiplication

• With two MapReduce steps (2/2)

 – **The Map Function:** This function is just the identity.

 – **The Reduce Function:** For each key \((i, k)\), produce the sum of the list of values associated with this key. The result is a pair \(((i, k), v)\), where \(v\) is the value of the element in row \(i\) and column \(k\) of the matrix \(P = MN\).
Matrix Multiplication

• With one MapReduce step
 – **The Map Function**: For each element m_{ij} of M, produce all the key-value pairs $((i, k), (M, j, m_{ij}))$ for $k = 1, 2, \ldots$, up to the number of columns of N. Similarly, for each element n_{jk} of N, produce all the key-value pairs $((i, k), (N, j, n_{jk}))$ for $i = 1, 2, \ldots$, up to the number of rows of M.
Matrix Multiplication

• With one MapReduce step
 – **The Reduce Function**: Each key \((i, k)\) has an associated list with all the values \((M, j, m_{ij})\) and \((N, j, n_{jk})\), for all possible values of \(j\). To connect the two values on the list that have the same value of \(j\) for each \(j\), we can sort by \(j\) the values beginning with \(M\) and the values beginning with \(N\), in separate lists. The \(j\)th values on each list must have their third components \(m_{ij}\) and \(n_{jk}\) extracted and multiplied. Then, these products are summed and the paired with \((i, k)\) in the output.
Evolving Roles for Relational Database and MapReduce
Need for High-Level Languages

• Hadoop is great for large-data processing!
 – But writing Java programs for everything is verbose and slow
 – Analysts don’t want to (or can’t) write Java

• Solution: develop higher-level data processing languages
 – Hive: HQL is like SQL
 – Pig: Pig Latin is a bit like Perl
Hive and Pig

• Common idea:
 – Provide higher-level language to facilitate large-data processing
 – Higher-level language “compiles down” to Hadoop jobs
Hive

- Hive: data warehousing application in Hadoop
 - Query language is HQL, variant of SQL
 - Tables stored on HDFS as flat files
 - Developed by Facebook, now open source
Hive: Example

• Hive looks similar to an SQL database
• Relational join on two tables:
 – Table of word counts from Shakespeare collection
 – Table of word counts from the Bible
SELECT s.word, s.freq, k.freq
FROM shakespeare s JOIN bible k ON (s.word = k.word)
WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

<table>
<thead>
<tr>
<th></th>
<th>s.freq</th>
<th>k.freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>25848</td>
<td>62394</td>
</tr>
<tr>
<td>l</td>
<td>23031</td>
<td>8854</td>
</tr>
<tr>
<td>and</td>
<td>19671</td>
<td>38985</td>
</tr>
<tr>
<td>to</td>
<td>18038</td>
<td>13526</td>
</tr>
<tr>
<td>of</td>
<td>16700</td>
<td>34654</td>
</tr>
<tr>
<td>a</td>
<td>14170</td>
<td>8057</td>
</tr>
<tr>
<td>you</td>
<td>12702</td>
<td>2720</td>
</tr>
<tr>
<td>my</td>
<td>11297</td>
<td>4135</td>
</tr>
<tr>
<td>in</td>
<td>10797</td>
<td>12445</td>
</tr>
<tr>
<td>is</td>
<td>8882</td>
<td>6884</td>
</tr>
</tbody>
</table>

Source: Material drawn from Cloudera training VM
Hive: Behind the Scenes

SELECT s.word, s.freq, k.freq
FROM shakespeare s JOIN bible k ON (s.word = k.word)
WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

(Abstract Syntax Tree)

(one or more of MapReduce jobs)
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-2 depends on stages: Stage-1
Stage-0 is a root stage

STAGE PLANS:
Stage: Stage-1
Map Reduce
Alias -> Map Operator Tree:
 s
 TableScan
 alias: s
 Filter Operator
 predicate:
 expr: (freq >= 1)
 type: boolean
 Reduce Output Operator
 key expressions:
 expr: word
 type: string
 sort order: +
 Map-reduce partition columns:
 expr: word
 type: string
 tag: 0
 value expressions:
 expr: freq
 type: int
 expr: word
 type: string
Reduce Operator Tree:
 Join Operator
 condition map:
 Inner Join 0 to 1
 condition expressions:
 0 {VALUE._col0} {VALUE._col1}
 1 {VALUE._col0}
 outputColumnNames: _col0, _col1, _col2
 Filter Operator
 predicate:
 expr: (_col0 >= 1) and (_col2 >= 1)
 type: boolean
 Select Operator
 expressions:
 expr: _col1
 type: string
 expr: _col0
 type: int
 expr: _col2
 type: int
 outputColumnNames: _col0, _col1, _col2
File Output Operator
compressed: false
GlobalTableId: 0
table:
 input format: org.apache.hadoop.mapred.TextInputFormat
 output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

Stage: Stage-2
Map Reduce
Alias -> Map Operator Tree:
hdfs://localhost:8022/tmp/hive-training/364214370/10002
 Reduce Output Operator
 key expressions:
 expr: _col1
 type: int
 sort order: -
 tag: -1
 value expressions:
 expr: _col0
 type: string
 expr: _col1
 type: int
 expr: _col2
 type: int
Reduce Operator Tree:
 Extract
 Limit
 File Output Operator
 compressed: false
 GlobalTableId: 0
 table:
 input format: org.apache.hadoop.mapred.TextInputFormat
 output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

Stage: Stage-0
Fetch Operator
limit: 10
Pig

- Pig: large-scale data processing system
 - Scripts are written in Pig Latin, a dataflow language
 - Developed by Yahoo!, now open source
 - Roughly 1/3 of all Yahoo! internal jobs
Pig: Example

Task: Find the top 10 most visited pages in each category

<table>
<thead>
<tr>
<th>Visits</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
</tr>
<tr>
<td>Amy</td>
</tr>
<tr>
<td>Amy</td>
</tr>
<tr>
<td>Amy</td>
</tr>
<tr>
<td>Fred</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Url Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Url</td>
</tr>
<tr>
<td>cnn.com</td>
</tr>
<tr>
<td>bbc.com</td>
</tr>
<tr>
<td>flickr.com</td>
</tr>
<tr>
<td>espn.com</td>
</tr>
</tbody>
</table>

Pig Slides adapted from Olston et al. (SIGMOD 2008)
Pig Query Plan

1. **Load** Visits
2. **Group** by url
 - **Foreach** url **generate** count
3. **Load** Url Info
4. **Join** on url
5. **Group** by category
6. **Foreach** category **generate** top10(urls)

Pig Slides adapted from Olston et al. (SIGMOD 2008)
Pig Script

visits = load ‘/data/visits’ as (user, url, time);
gVisits = group visits by url;
visitCounts = foreach gVisits generate url, count(visits);
urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);
visitCounts = join visitCounts by url, urlInfo by url;
gCategories = group visitCounts by category;
topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Pig Slides adapted from Olston et al. (SIGMOD 2008)
Pig Script in Hadoop

Load Visits

Group by url

Foreach url generate count

Reduce _1

Load Url Info

Join on url

Group by category

Foreach category generate top10(urls)

Reduce _2

Reduce _3

Pig Slides adapted from Olston et al. (SIGMOD 2008)
Parallel Databases ↔ MapReduce

• Lots of synergy between parallel databases and MapReduce
• Communities have much to learn from each other
• Bottom line: use the right tool for the job!
Take Home Messages

• Data management in today’s organisations
 – Where does MapReduce fit in?

• MapReduce algorithms for processing relational and matrix data
 – How do I perform a join, etc.?

• Evolving roles of relational databases and MapReduce
 – What’s in store for the future?