Cloud Computing

Beyond MapReduce

Dell Zhang
Birkbeck, University of London
2014/15
Is MapReduce enough?

• MapReduce is a functional-like easy-to-understand paradigm
• Complex programs are not easily portable in MapReduce
• Other programming models exists
Is MapReduce enough?

• MapReduce is ill-suited for graph processing
 – Data dependencies are difficult to express
 • Substantial data transformations
 • User managed graph structure
 • Costly data replication
 – Iterative computation is difficult to optimise
 • Many iterations are needed for parallel graph processing, but Materializations of intermediate results at every MapReduce iteration harm performance.
Data dependencies are difficult
Iterative computation is difficult

- Iterations
 - CPU 1
 - CPU 2
 - CPU 3
 - Disk Penalty
 - Startup Penalty
 - Data
Example: Label Propagation

- Social Arithmetic:

 50% What I list on my profile
 40% Sue Ann Likes
 10% Carlos Like

 I Like: 60% Cameras, 40% Biking

- Recurrence Algorithm:

 \[\text{Likes}[i] = \sum_{j \in \text{Friends}[i]} W_{ij} \cdot \text{Likes}[j] \]

 – iterate until convergence

- Parallelism:

 – Compute all \(\text{Likes}[i] \) in parallel

Graph Parallel Algorithms

Dependency Graph

Local Updates

Iterative Computation

My Interests

Friends Interests
Bulk Synchronous Parallel

- The Bulk Synchronous Parallel (BSP) computing model was developed during 1980s by Leslie G. Valiant (2010 Turing Award winner)
- The definitive article:
The BSP Model

• A BSP computer consists of *processors* connected by a communication network.
• Each processor has a fast local memory, and may follow different threads of computation.
• A BSP computation proceeds in a series of global *supersteps*.
The BSP Model

- A superstep consists of three components:
 - Concurrent computation
 - Communication
 - Barrier synchronisation
The BSP Model

Processors

Local Computation

Communication

Barrier Synchronisation
The BSP Applications

• The BSP model has been used in the creation of a number of programming models
 – Google Pregel, Apache Giraph, Golden Orb
 – Apache Hama
• An asynchronous variant:
 – GraphLab
Pregel

• Inside Google,
 – MapReduce is used for about **80%** of all the data processing needs:
 • indexing web content, running the clustering engine for news articles, generating reports for popular queries, processing satellite imagery, language model processing for statistical machine translation, and even mundane tasks like data backup and restore.
 – The other **20%** is handled by a lesser known infrastructure called “Pregel”
 • optimized to mine relationships from graphs.
Pregel

• This system views its data as a graph
 – Each node of the graph corresponds roughly to a task (although in practice many nodes of a large graph would be bundled into a single task).
 – Each graph node generates output messages that are destined for other nodes of the graph.
 – Each graph node processes the inputs it receives from other nodes.
Pregel: Example

- All-pairs shortest path
 - Suppose our data is a collection of weighted arcs of a graph, and we want to find, for each node of the graph, the length of the shortest path to each of the other nodes.
 - Initially, each graph node \(a \) stores the set of pairs \([b: w]\) such that there is an arc from \(a \) to \(b \) of weight \(w \).
 - These facts are first sent to all other nodes, as triples \((a, b, w)\).
• All-pairs shortest path (continued)
 – When the node \(a \) receives a triple \((c, d, w)\), it looks up its current distance to \(c \); that is, it finds the pair \([c: v]\) stored locally, if there is one. It also finds the pair \([d: u]\) if there is one.
 – If \(w+v < u \), then the pair \([d: u]\) is replaced by \([d: w+v]\); and if there was no pair \([d: u]\), then the pair \([d: w+v]\) is stored at the node \(a \).
 – Also, the other nodes are sent the message \((a, d, w+v)\) in either of these two cases.
public void compute(Iterator<DoubleWritable> msgIterator) {

double sum = 0;
while (msgIterator.hasNext())
 sum += msgIterator.next().get();
DoubleWritable vertexValue =
 new DoubleWritable(0.15 + 0.85 * sum);
setVertexValue(vertexValue);

if (getSuperstep() < getConf().getInt(MAX_STEPS, -1)) {
 long edges = getOutEdgeMap().size();
sentMsgToAllEdges(
 new DoubleWritable(getVertexValue().get() / edges));
} else voteToHalt();

Sum PageRank over incoming messages

Pregel: Supersteps

• Computations in Pregel are organized into supersteps

• In one superstep:
 – all the messages that were received by any of the nodes at the previous superstep (or initially, if it is the first superstep) are processed,
 – all the messages generated by those nodes are sent to their destination.
Pregel: Supersteps

Compute

Communicate

Barrier

http://dl.acm.org/citation.cfm?id=1807184
Pregel: Checkpoints

• Pregel *checkpoints* its entire computation after some of the supersteps.
 – The probability of a failure during that number of supersteps should be low.
 – A checkpoint consists of making a copy of the entire state of each task.
 – In case of a compute-node failure, the entire job (rather than the failed tasks) is restarted from the most recent checkpoint.
Pregel: Checkpoints

Tradeoff:

- **Short** T_i: Checkpoints become too costly

 ![Checkpoint Timeline Short](image)

- **Long** T_i: Failures become too costly

 ![Checkpoint Timeline Long](image)
Pregel: Checkpoints

- Optimal Checkpoint Intervals

\[T_i \approx \sqrt{2T_c T_{mtbf}} \]

- For example:
 - 64 machines with a per machine MTBF of 1 year
 - \(T_{mtbf} = \frac{1 \text{ year}}{64} \approx 130 \text{ Hours} \)
 - \(T_c = \text{of 4 minutes} \)
 - \(T_i \approx \text{of 4 hours} \)

http://dl.acm.org/citation.cfm?id=361115
GraphLab

• It addresses the limitations of BSP (Pregel)
 – Use graph structure
 • Automatically manage the movement of data
 – Focus on Asynchrony
 • Computation runs as resources become available
 • Use the most recent information
 – Support Adaptive/Intelligent Scheduling
 • Focus computation to where it is needed
 – Preserve Serializability
 • Provide the illusion of a sequential execution
 • Eliminate “race-conditions”
Take Home Messages

• Bulk Synchronous Parallel (BSP)
 – Google Pregel