Big Data Analytics with Spark and Oscar BAO

Tamas Jambor, Lead Data Scientist at Massive Analytic
About me

- Building a scalable Machine Learning platform at MA
- Worked in Big Data and Data Science in the last few years
- Did PhD at UCL in Recommender Systems
Overview

- Introduction to Spark
 - Architecture and internals
 - Setup and basic config
 - Spark SQL
 - Spark MLLIB
 - Spark Streaming
- Oscarbao
 - Analytics platform
 - Data Visualisation
What is Spark?

- **Fast and Expressive** Cluster Computing Engine Compatible with Apache Hadoop
- **Efficient**
 - Up to 10x faster, 100x in memory
 - General execution graphs
 - In-memory storage
- **Usable**
 - 2-5x less code
 - Rich API in Java, Scala and Python
 - Interactive shell
Apache Spark

Spark SQL Spark Streaming MLLIB GraphX

Apache Spark
Components
Spark Internals

Spark Context

Spark client

RDD Graph
Scheduler
Block Tracker
Shuffle Tracker

Spark worker

Task Threads
Block Manager

HDFS, HBase, Hive
Cluster managers

- **Standalone**
 - Ideal for running jobs locally
 - Uses Spark’s own resource manager

- **Apache Mesos**
 - Dynamic partitioning between Spark and others
 - Scalable partitioning between multiple instances of Spark

- **Hadoop YARN**
 - Integrate well with other components of the Hadoop ecosystem
 - Supported by all Hadoop vendors (e.g. Cloudera, Hortonworks)
Spark Setup

- Locally
 - Get prebuild version from (http://spark.apache.org/)
 - Setup configuration file (in ./conf/spark-env.sh)
 - Start spark master and worker (./sbin/start-all.sh)
 - Start spark interactive shell
 - Scala: (.bin/spark-shell --master spark://...)
 - Python (.bin/pyspark --master spark://...)
- EC2 start-up scripts are available (clone https://github.com/apache/spark)
Example Job

sc = SparkContext("spark://…","myJob", home, jars)

file = sc.textFile("hdfs://…")

errors = file.filter(lambda line: line.startswith("Error"))

errors.cache()

errors.count()
Basic Operations - Transformations

- **map**(func)
 - data.map(lambda a: a+1)

- **filter**(func)
 - Data.filter(lambda a: a>1)

- **mapPartitions**(func)
 - Runs separately on each partition (block) of the RDD

- **groupByKey**()
 - When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable<V>) pairs

- **reduceByKey**(func)
 - When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values for each key are aggregated using the given reduce function func

- **join**(otherDataset)
 - When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (V, W)) pairs with all pairs of elements for each key
Basic Operations - Actions

- **reduce(func)**
 - data.reduce(lambda a,b : a+b)
- **collect**
 - Return all the elements of the dataset as an array at the driver program.
- **take(n)**
 - Return an array with the first n elements of the dataset.
- **saveAsTextFile(path)**
 - Write the elements of the dataset as a text file.
Broadcast Variables and Accumulators

- **Broadcast variables**
 - To keep a read-only variable cached on each machine rather than shipping a copy of it with tasks
 - `broadcastVar = sc.broadcast([1,2,3])`

- **Accumulators**
 - Variables that are only added to through an associative operation and can therefore be efficiently supported in parallel
 - `accum = sc.accumulator(0)`
 - `sc.parallelize([1, 2, 3, 4]).foreach(lambda x: accum.add(x))`
Spark SQL

- Enables loading and querying structured data in Spark
 - From Hive:
    ```python
c = HiveContext(sc)
rows = c.sql("select date, value from hivetable")
rows.filter(lambda r: r.value > 2013).collect()
```
 - From JSON:
    ```python
c.jsonFile("account_info.json").registerAsTable("accounts")
c.sql("select surname, address.postcode from accounts")
```

```json
account_info.json:
{"first_name": "Tamas"
 "surname": "Jambor"
 "address": {
   "postcode": "N7 9UP"
 } }
```
Spark SQL

- Integrates closely with Spark’s language APIs
 - c.registerFunction(“hasSpark”, lambda text: “Spark” in text)
 - c.sql(“select * from accounts where hasSpark(text)”)
- Uniform interface for data access
Spark MLLIB

- Standard library of distributed machine learning algorithms
- Provides some of the most common machine learning algorithms
 - Basic Statistics
 - Classification and regression
 - Linear models
 - Naïve Bayes
 - Collaborative Filtering
 - Clustering
 - Dimensionality reduction
 - Optimisers
Spark MLLIB

- Now includes 15+ algorithms
 - New in 1.0
 - Decision trees
 - SVD, PCA, L-BFGS (limited memory parameter estimation method)
 - New in 1.1:
 - Non-negative matrix factorization, ALS
 - Support for common statistical functions
 - Sampling, correlations
 - Statistical hypothesis testing
 - New in 1.2 (to be released):
 - Random forest
from pyspark.mllib.classification import LogisticRegressionWithSGD
from pyspark.mllib.regression import LabeledPoint
from numpy import array

Load and parse the data

def parsePoint(line):
 values = [float(x) for x in line.split(' ')]
 return LabeledPoint(values[0], values[1:]

data = sc.textFile("data/mllib/sample_svm_data.txt")
parsedData = data.map(parsePoint)

Build the model

model = LogisticRegressionWithSGD.train(parsedData)

Evaluating the model on training data

labelsAndPreds = parsedData.map(lambda p: (p.label, model.predict(p.features)))
trainErr = labelsAndPreds.filter(lambda (v, p): v != p).count() / (parsedData.count())
print("Training Error = " + (trainErr))
Spark MLLIB Example (Clustering)

```python
from pyspark.mllib.clustering import KMeans
from numpy import array
from math import sqrt

# Load and parse the data
data = sc.textFile("data/mllib/kmeans_data.txt")
parsedData = data.map(lambda line: array([x for x in line.split(' ')]))

# Build the model (cluster the data)
clusters = KMeans.train(parsedData, 2, maxIterations=10, runs=10,
initializationMode="random")

# Evaluate clustering by computing Within Set Sum of Squared Errors

def error(point):  
    center = clusters.centers[clusters.predict(point)]  
    return sqrt(sum([x**2 for x in (point - center)]))

WSSSE = parsedData.map(lambda point: error(point)).reduce(lambda x, y: x + y)

print("Within Set Sum of Squared Error = " + str(WSSSE))
```
Spark Streaming

- Many big-data applications need to process large data streams in real-time
 - Web-site monitoring
 - Fraud detection

- Batch model for iterative ML algorithms and data processing
- Extends Spark for doing big data stream processing
 - Efficiently recover from failures
Integration with Batch Processing

- Many environments require processing same data in live streaming as well as batch post-processing

- Existing frameworks cannot do both
 - Either, stream processing of 100s of MB/s with low latency
 - Or, batch processing of TBs of data with high latency
Spark Streaming Workflow

- Kafka
- Flume
- HDFS/S3
- Kinesis
- Twitter

- HDFS
- Databases
- Dashboards
Spark Streaming Workflow
import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.streaming.streamingContext_

val conf = new SparkConf().setMaster("spark://…").setAppName("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999, StorageLevel.MEMORY_AND_DISK_SER)
val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()
ssc.start()
ssc.awaitTermination()
Spark Streaming - Word count
Demo
Oscar BAO

- Business analytics optimisation
- Automates certain data science processes
- Runs on Spark
- Visualisation Interface
Oscarbao Architecture

Artificial Precognition
- Data Exploration
- Algorithm Selector Engine
- Machine Learning
- Cognition
- Predictive Analytics
- Rules Engine
- Optimisation & Control
- Search Engine
- Recommender Engine
- Personalisation Engine
- Text Mining

Node.js, backend & MongoDB extensible storage

MS Windows for Hadoop
- Virtual Directories
- Share & Collaboration of Data, Models & Storydashboards
- Security, admin, flags, alerts
- Configuration, job scheduling & Upload

Big Data Analytics Stack (Combining Berkeley & Twitter)
- Spark
- MapReduce
- Spark SQL
- Hadoop/YARN
- MESOS
- Twitter Storm

HTML5, jQuery, D3
- Storydashboards, infographics & dashboards
- Ad hoc queries & analytics
- XML
- PDF reports
- Multi-channel/multi-device
- Automatic language translation

http/ajx
Modules

- Understanding
 - Data exploration
 - Rules engine
 - Cognition
- Predicting
 - Predictive analytics
 - Text mining
 - Personalisation
- Optimising
 - Algorithm selection engine
 - Recommended algorithm
 - Optimisation and control
Big Data Workflow for Predictive Analytics

<table>
<thead>
<tr>
<th>Step</th>
<th>Tasks</th>
</tr>
</thead>
</table>
| Data Ingestion | • Parsing
• Cleansing |
| Data Pre-processing | • Transformation
• Statistics |
| Model Training | • Parameter tuning
• Performance |
| Algorithm Selection | • Evaluation
• Best model for the purpose |
| Visualisation | • Representing results
• Insights |
| Reuse | • Store model
• Apply to new data |
Demo