
Pig Latin: A Not-So-Foreign Language for Data Processing

Christopher Olston
∗

Yahoo! Research
Benjamin Reed

†

Yahoo! Research
Utkarsh Srivastava

‡

Yahoo! Research

Ravi Kumar
§

Yahoo! Research
Andrew Tomkins

¶

Yahoo! Research

ABSTRACT
There is a growing need for ad-hoc analysis of extremely
large data sets, especially at internet companies where inno-
vation critically depends on being able to analyze terabytes
of data collected every day. Parallel database products, e.g.,
Teradata, offer a solution, but are usually prohibitively ex-
pensive at this scale. Besides, many of the people who ana-
lyze this data are entrenched procedural programmers, who
find the declarative, SQL style to be unnatural. The success
of the more procedural map-reduce programming model, and
its associated scalable implementations on commodity hard-
ware, is evidence of the above. However, the map-reduce
paradigm is too low-level and rigid, and leads to a great deal
of custom user code that is hard to maintain, and reuse.

We describe a new language called Pig Latin that we have
designed to fit in a sweet spot between the declarative style
of SQL, and the low-level, procedural style of map-reduce.
The accompanying system, Pig, is fully implemented, and
compiles Pig Latin into physical plans that are executed
over Hadoop, an open-source, map-reduce implementation.
We give a few examples of how engineers at Yahoo! are using
Pig to dramatically reduce the time required for the develop-
ment and execution of their data analysis tasks, compared to
using Hadoop directly. We also report on a novel debugging
environment that comes integrated with Pig, that can lead
to even higher productivity gains. Pig is an open-source,
Apache-incubator project, and available for general use.

Categories and Subject Descriptors:
H.2.3 Database Management: Languages

General Terms: Languages.

∗olston@yahoo-inc.com
†breed@yahoo-inc.com
‡utkarsh@yahoo-inc.com
§ravikuma@yahoo-inc.com
¶atomkins@yahoo-inc.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

1. INTRODUCTION
At a growing number of organizations, innovation revolves

around the collection and analysis of enormous data sets
such as web crawls, search logs, and click streams. Inter-
net companies such as Amazon, Google, Microsoft, and Ya-
hoo! are prime examples. Analysis of this data constitutes
the innermost loop of the product improvement cycle. For
example, the engineers who develop search engine ranking
algorithms spend much of their time analyzing search logs
looking for exploitable trends.

The sheer size of these data sets dictates that it be stored
and processed on highly parallel systems, such as shared-
nothing clusters. Parallel database products, e.g., Teradata,
Oracle RAC, Netezza, offer a solution by providing a simple
SQL query interface and hiding the complexity of the phys-
ical cluster. These products however, can be prohibitively
expensive at web scale. Besides, they wrench programmers
away from their preferred method of analyzing data, namely
writing imperative scripts or code, toward writing declara-
tive queries in SQL, which they often find unnatural, and
overly restrictive.

As evidence of the above, programmers have been flock-
ing to the more procedural map-reduce [4] programming
model. A map-reduce program essentially performs a group-
by-aggregation in parallel over a cluster of machines. The
programmer provides a map function that dictates how the
grouping is performed, and a reduce function that performs
the aggregation. What is appealing to programmers about
this model is that there are only two high-level declarative
primitives (map and reduce) to enable parallel processing,
but the rest of the code, i.e., the map and reduce functions,
can be written in any programming language of choice, and
without worrying about parallelism.

Unfortunately, the map-reduce model has its own set of
limitations. Its one-input, two-stage data flow is extremely
rigid. To perform tasks having a different data flow, e.g.,
joins or n stages, inelegant workarounds have to be devised.
Also, custom code has to be written for even the most com-
mon operations, e.g., projection and filtering. These factors
lead to code that is difficult to reuse and maintain, and in
which the semantics of the analysis task are obscured. More-
over, the opaque nature of the map and reduce functions
impedes the ability of the system to perform optimizations.

We have developed a new language called Pig Latin that
combines the best of both worlds: high-level declarative
querying in the spirit of SQL, and low-level, procedural pro-
gramming à la map-reduce.

1099

Example 1. Suppose we have a table urls: (url,

category, pagerank). The following is a simple SQL query
that finds, for each sufficiently large category, the average
pagerank of high-pagerank urls in that category.

SELECT category, AVG(pagerank)

FROM urls WHERE pagerank > 0.2

GROUP BY category HAVING COUNT(*) > 106

An equivalent Pig Latin program is the following. (Pig
Latin is described in detail in Section 3; a detailed under-
standing of the language is not required to follow this exam-
ple.)

good_urls = FILTER urls BY pagerank > 0.2;

groups = GROUP good_urls BY category;

big_groups = FILTER groups BY COUNT(good_urls)>106;
output = FOREACH big_groups GENERATE

category, AVG(good_urls.pagerank);

As evident from the above example, a Pig Latin program
is a sequence of steps, much like in a programming language,
each of which carries out a single data transformation. This
characteristic is immediately appealing to many program-
mers. At the same time, the transformations carried out in
each step are fairly high-level, e.g., filtering, grouping, and
aggregation, much like in SQL. The use of such high-level
primitives renders low-level manipulations (as required in
map-reduce) unnecessary.

In effect, writing a Pig Latin program is similar to specify-
ing a query execution plan (i.e., a dataflow graph), thereby
making it easier for programmers to understand and control
how their data processing task is executed. To experienced
system programmers, this method is much more appealing
than encoding their task as an SQL query, and then coerc-
ing the system to choose the desired plan through optimizer
hints. (Automatic query optimization has its limits, espe-
cially with uncataloged data, prevalent user-defined func-
tions, and parallel execution, which are all features of our
target environment; see Section 2.) Even with a Pig Latin
optimizer in the future, users will still be able to request con-
formation to the execution plan implied by their program.

Pig Latin has several other unconventional features that
are important for our setting of casual ad-hoc data analy-
sis by programmers. These features include support for a
flexible, fully nested data model, extensive support for user-
defined functions, and the ability to operate over plain input
files without any schema information. Pig Latin also comes
with a novel debugging environment that is especially use-
ful when dealing with enormous data sets. We elaborate on
these features in Section 2.

Pig Latin is fully implemented by our system, Pig, and is
being used by programmers at Yahoo! for data analysis. Pig
Latin programs are currently compiled into (ensembles of)
map-reduce jobs that are executed using Hadoop, an open-
source, scalable implementation of map-reduce. Alternative
backends can also be plugged in. Pig is an open-source
project in the Apache incubator1.

The rest of the paper is organized as follows. In the next
section, we describe the various features of Pig, and the
underlying motivation for each. In Section 3, we dive into
the Pig Latin data model and language. In Section 4, we

1http://incubator.apache.org/pig

describe the current implementation of Pig. We describe
our novel debugging environment in Section 5, and outline
a few real usage scenarios of Pig in Section 6. Finally, we
discuss related work in Section 7, and conclude.

2. FEATURES AND MOTIVATION
The overarching design goal of Pig is to be appealing to

experienced programmers for performing ad-hoc analysis of
extremely large data sets. Consequently, Pig Latin has a
number of features that might seem surprising when viewed
from a traditional database and SQL perspective. In this
section, we describe the features of Pig, and the rationale
behind them.

2.1 Dataflow Language
As seen in Example 1, in Pig Latin, a user specifies a se-

quence of steps where each step specifies only a single, high-
level data transformation. This is stylistically different from
the SQL approach where the user specifies a set of declara-
tive constraints that collectively define the result. While the
SQL approach is good for non-programmers and/or small
data sets, experienced programmers who must manipulate
large data sets often prefer the Pig Latin approach. As one
of our users says,

“I much prefer writing in Pig [Latin] versus SQL.
The step-by-step method of creating a program
in Pig [Latin] is much cleaner and simpler to use
than the single block method of SQL. It is eas-
ier to keep track of what your variables are, and
where you are in the process of analyzing your
data.” – Jasmine Novak, Engineer, Yahoo!

Note that although Pig Latin programs supply an explicit
sequence of operations, it is not necessary that the oper-
ations be executed in that order. The use of high-level,
relational-algebra-style primitives, e.g., GROUP, FILTER, al-
lows traditional database optimizations to be carried out, in
cases where the system and/or user have enough confidence
that query optimization can succeed.

For example, suppose one is interested in the set of urls of
pages that are classified as spam, but have a high pagerank
score. In Pig Latin, one can write:

spam_urls = FILTER urls BY isSpam(url);

culprit_urls = FILTER spam_urls BY pagerank > 0.8;

where culprit_urls contains the final set of urls that the
user is interested in.

The above Pig Latin fragment suggests that we first find
the spam urls through the function isSpam, and then filter
them by pagerank. However, this might not be the most
efficient method. In particular, isSpam might be an expen-
sive user-defined function that analyzes the url’s content for
spaminess. Then, it will be much more efficient to filter the
urls by pagerank first, and invoke isSpam only on the pages
that have high pagerank.

With Pig Latin, this optimization opportunity is available
to the system. On the other hand, if these filters were buried
within an opaque map or reduce function, such reordering
and optimization would effectively be impossible.

2.2 Quick Start and Interoperability
Pig is designed to support ad-hoc data analysis. If a user

has a data file obtained, say, from a dump of the search

1100

engine logs, she can run Pig Latin queries over it directly.
She need only provide a function that gives Pig the ability to
parse the content of the file into tuples. There is no need to
go through a time-consuming data import process prior to
running queries, as in conventional database management
systems. Similarly, the output of a Pig program can be
formatted in the manner of the user’s choosing, according
to a user-provided function that converts tuples into a byte
sequence. Hence it is easy to use the output of a Pig analysis
session in a subsequent application, e.g., a visualization or
spreadsheet application such as Excel.

It is important to keep in mind that Pig is but one of many
applications in the rich “data ecosystem” of a company like
Yahoo! By operating over data residing in external files, and
not taking over control over the data, Pig readily interoper-
ates with other applications in the ecosystem.

The reasons that conventional database systems do re-
quire importing data into system-managed tables are three-
fold: (1) to enable transactional consistency guarantees, (2)
to enable efficient point lookups (via physical tuple identi-
fiers), and (3) to curate the data on behalf of the user, and
record the schema so that other users can make sense of the
data. Pig only supports read-only data analysis workloads,
and those workloads tend to be scan-centric, so transactional
consistency and index-based lookups are not required. Also,
in our environment users often analyze a temporary data set
for a day or two, and then discard it, so data curating and
schema management can be overkill.

In Pig, stored schemas are strictly optional. Users may
supply schema information on the fly, or perhaps not at all.
Thus, in Example 1, if the user knows the the third field of
the file that stores the urls table is pagerank but does not
want to provide the schema, the first line of the Pig Latin
program can be written as:

good_urls = FILTER urls BY $2 > 0.2;

where $2 uses positional notation to refer to the third field.

2.3 Nested Data Model
Programmers often think in terms of nested data struc-

tures. For example, to capture information about the posi-
tional occurrences of terms in a collection of documents, a
programmer would not think twice about creating a struc-
ture of the form Map< documentId, Set<positions> > for
each term.

Databases, on the other hand, allow only flat tables, i.e.,
only atomic fields as columns, unless one is willing to violate
the First Normal Form (1NF) [7]. To capture the same in-
formation about terms above, while conforming to 1NF, one
would need to normalize the data by creating two tables:

term_info: (termId, termString, ...)

position_info: (termId, documentId, position)

The same positional occurence information can then be
reconstructed by joining these two tables on termId and
grouping on termId, documentId.

Pig Latin has a flexible, fully nested data model (described
in Section 3.1), and allows complex, non-atomic data types
such as set, map, and tuple to occur as fields of a table.
There are several reasons why a nested model is more ap-
propriate for our setting than 1NF:

• A nested data model is closer to how programmers think,
and consequently much more natural to them than nor-
malization.

• Data is often stored on disk in an inherently nested fash-
ion. For example, a web crawler might output for each
url, the set of outlinks from that url. Since Pig oper-
ates directly on files (Section 2.2), separating the data
out into normalized form, and later recombining through
joins can be prohibitively expensive for web-scale data.

• A nested data model also allows us to fulfill our goal of
having an algebraic language (Section 2.1), where each
step carries out only a single data transformation. For
example, each tuple output by our GROUP primitive has
one non-atomic field: a nested set of tuples from the
input that belong to that group. The GROUP construct is
explained in detail in Section 3.5.

• A nested data model allows programmers to easily write
a rich set of user-defined functions, as shown in the next
section.

2.4 UDFs as First-Class Citizens
A significant part of the analysis of search logs, crawl data,

click streams, etc., is custom processing. For example, a user
may be interested in performing natural language stemming
of a search term, or figuring out whether a particular web
page is spam, and countless other tasks.

To accommodate specialized data processing tasks, Pig
Latin has extensive support for user-defined functions
(UDFs). Essentially all aspects of processing in Pig Latin in-
cluding grouping, filtering, joining, and per-tuple processing
can be customized through the use of UDFs.

The input and output of UDFs in Pig Latin follow our
flexible, fully nested data model. Consequently, a UDF to
be used in Pig Latin can take non-atomic parameters as
input, and also output non-atomic values. This flexibility is
often very useful as shown by the following example.

Example 2. Continuing with the setting of Example 1,
suppose we want to find for each category, the top 10 urls
according to pagerank. In Pig Latin, one can simply write:

groups = GROUP urls BY category;

output = FOREACH groups GENERATE

category, top10(urls);

where top10() is a UDF that accepts a set of urls (for each
group at a time), and outputs a set containing the top 10
urls by pagerank for that group.2 Note that our final output
in this case contains non-atomic fields: there is a tuple for
each category, and one of the fields of the tuple is the set of
the top 10 urls in that category.

Due to our flexible data model, the return type of a UDF
does not restrict the context in which it can be used. Pig
Latin has only one type of UDF that can be used in all the
constructs such as filtering, grouping, and per-tuple process-
ing. This is in contrast to SQL, where only scalar functions
may be used in the SELECT clause, set-valued functions can
only appear in the FROM clause, and aggregation functions
can only be applied in conjunction with a GROUP BY or a
PARTITION BY.

Currently, Pig UDFs are written in Java. We are building
support for interfacing with UDFs written in arbitrary lan-

2In practice, a user would probably write a more generic
function than top10(): one that takes k as a parameter to
find the top k tuples, and also the field according to which
the top k must be found (pagerank in this example).

1101

guages, including C/C++, Java, Perl and Python, so that
users can stick with their language of choice.

2.5 Parallelism Required
Since Pig Latin is geared toward processing web-scale

data, it does not make sense to consider non-parallel eval-
uation. Consequently, we have only included in Pig Latin
a small set of carefully chosen primitives that can be easily
parallelized. Language primitives that do not lend them-
selves to efficient parallel evaluation (e.g., non-equi-joins,
correlated subqueries) have been deliberately excluded.

Such operations can of course, still be carried out by writ-
ing UDFs. However, since the language does not provide
explicit primitives for such operations, users are aware of
how efficient their programs will be and whether they will
be parallelized.

2.6 Debugging Environment
In any language, getting a data processing program right

usually takes many iterations, with the first few iterations
usually having some user-introduced erroneous processing.
At the scale of data that Pig is meant to process, a single
iteration can take many minutes or hours (even with large-
scale parallel processing). Thus, the usual run-debug-run
cycle can be very slow and inefficient.

Pig comes with a novel interactive debugging environment
that generates a concise example data table illustrating the
output of each step of the user’s program. The example data
is carefully chosen to resemble the real data as far as possible
and also to fully illustrate the semantics of the program.
Moreover, the example data is automatically adjusted as
the program evolves.

This step-by-step example data can help in detecting er-
rors early (even before the first iteration of running the pro-
gram on the full data), and also in pinpointing the step that
has errors. The details of our debugging environment are
provided in Section 5.

3. PIG LATIN
In this section, we describe the details of the Pig Latin

language. We describe our data model in Section 3.1, and
the Pig Latin statements in the subsequent subsections. The
emphasis of this section is not on the syntactical details of
Pig Latin, but on how it meets the design goals and features
laid out in Section 2. Also, this section only focusses on
the language primitives, and not on how they can be imple-
mented to execute in parallel over a cluster. Implementation
is covered in Section 4.

3.1 Data Model
Pig has a rich, yet simple data model consisting of the

following four types:

• Atom: An atom contains a simple atomic value such as
a string or a number, e.g., ‘alice’.

• Tuple: A tuple is a sequence of fields, each of which can
be any of the data types, e.g., (‘alice’, ‘lakers’).

• Bag: A bag is a collection of tuples with possible dupli-
cates. The schema of the constituent tuples is flexible,
i.e., not all tuples in a bag need to have the same number
and type of fields, e.g.,

(‘alice’, ‘lakers’)`
‘alice’, (‘iPod’, ‘apple’)

´ ff

t =

„
‘alice’,

(‘lakers’, 1)
(‘iPod’, 2)

ff
,
ˆ
‘age’→ 20

˜«
Let fields of tuple t be called f1, f2, f3

Expression Type Example Value for t

Constant ‘bob’ Independent of t
Field by position $0 ‘alice’

Field by name f3
ˆ
‘age’ → 20

˜
Projection f2.$0

(‘lakers’)
(‘iPod’)

ff
Map Lookup f3#‘age’ 20

Function Evaluation SUM(f2.$1) 1 + 2 = 3

Conditional
Expression

f3#‘age’>18?
‘adult’:‘minor’

‘adult’

Flattening FLATTEN(f2)
‘lakers’, 1

‘iPod’, 2

Table 1: Expressions in Pig Latin.

The above example also demonstrates that tuples can be
nested, e.g., the second tuple of the bag has a nested
tuple as its second field.

• Map: A map is a collection of data items, where each
item has an associated key through which it can be
looked up. As with bags, the schema of the constituent
data items is flexible, i.e., all the data items in the map
need not be of the same type. However, the keys are re-
quired to be data atoms, mainly for efficiency of lookups.
The following is an example of a map:24 ‘fan of’→

(‘lakers’)

(‘iPod’)

ff
‘age’→ 20

35
In the above map, the key ‘fan of’ is mapped to a bag
containing two tuples, and the key ‘age’ is mapped to
an atom 20.

A map is especially useful to model data sets where
schemas might change over time. For example, if web
servers decide to include a new field while dumping logs,
that new field can simply be included as an additional
key in a map, thus requiring no change to existing pro-
grams, and also allowing access of the new field to new
programs.

Table 1 shows the expression types in Pig Latin, and how
they operate. (The flattening expression is explained in de-
tail in Section 3.3.) It should be evident that our data model
is very flexible and permits arbitrary nesting. This flexibil-
ity allows us to achieve the aims outlined in Section 2.3,
where we motivated our use of a nested data model. Next,
we describe the Pig Latin commands.

3.2 Specifying Input Data: LOAD
The first step in a Pig Latin program is to specify what

the input data files are, and how the file contents are to be
deserialized, i.e., converted into Pig’s data model. An input
file is assumed to contain a sequence of tuples, i.e., a bag.
This step is carried out by the LOAD command. For example,

queries = LOAD ‘query_log.txt’

USING myLoad()

AS (userId, queryString, timestamp);

1102

Figure 1: Example of flattening in FOREACH.

The above command specifies the following:

• The input file is query_log.txt.

• The input file should be converted into tuples by using
the custom myLoad deserializer.

• The loaded tuples have three fields named userId,
queryString, and timestamp.

Both the USING clause (the custom deserializer) and the
AS clause (the schema information) are optional. If no de-
serializer is specified, a default one, that expects a plain
text, tab-delimited file, is used. If no schema is specified,
fields must be referred to by position instead of by name
(e.g., $0 for the first field). The ability to operate over plain
text files, and the ability to specify schema information on
the fly or not at all, allows the user to get started quickly
(Section 2.2). To aid readability, it is desirable to include
schemas while writing large Pig Latin programs.

The return value of a LOAD command is a handle to a
bag which, in the above example, is assigned to the variable
queries. This variable can then be used as an input in sub-
sequent Pig Latin commands. Note that the LOAD command
does not imply database-style loading into tables. Bag han-
dles in Pig Latin are only logical—the LOAD command merely
specifies what the input file is, and how it should be read.
No data is actually read, and no processing carried out, until
the user explicitly asks for output (see STORE command in
Section 3.8).

3.3 Per-tuple Processing: FOREACH
Once input data file(s) have been specified through LOAD,

one can specify the processing that needs to be carried out
on the data. One of the basic operations is that of applying
some processing to every tuple of a data set. This is achieved
through the FOREACH command. For example,

expanded_queries = FOREACH queries GENERATE

userId, expandQuery(queryString);

The above command specifies that each tuple of the bag
queries (loaded in the previous section) should be processed
independently to produce an output tuple. The first field of
the output tuple is the userId field of the input tuple, and
the second field of the output tuple is the result of applying
the UDF expandQuery to the queryString field of the input
tuple. Suppose the UDF expandQuery generates a bag of
likely expansions of a given query string. Then an exam-
ple transformation carried out by the above statement is as
shown in the first step of Figure 1.

Note that the semantics of the FOREACH command are such
that there can be no dependence between the processing of
different tuples of the input, thereby permitting an efficient
parallel implementation. These semantics conform to our
goal of only having parallelizable operations (Section 2.5).

In general, the GENERATE clause can be followed by a list of
expressions that can be in any of the forms listed in Table 1.
Most of the expression forms shown are straightforward, and
have been included here only for completeness. The last
expression type, i.e., flattening, deserves some attention.

Often, we want to eliminate nesting in data. For example,
in Figure 1, we might want to flatten the set of possible
expansions of a query string into separate tuples, so that
they can be processed independently. We could also want
to flatten the final result just prior to storing it. Nesting
can be eliminated by the use of the FLATTEN keyword in the
GENERATE clause. Flattening operates on bags by extracting
the fields of the tuples in the bag, and making them fields
of the tuple being output by GENERATE, thus removing one
level of nesting. For example, the output of the following
command is shown as the second step in Figure 1.

expanded_queries = FOREACH queries GENERATE

userId, FLATTEN(expandQuery(queryString));

3.4 Discarding Unwanted Data: FILTER
Another very common operation is to retain only some

subset of the data that is of interest, while discarding the
rest. This operation is done by the FILTER command. For
example, to get rid of bot traffic in the bag queries:

real_queries = FILTER queries BY userId neq ‘bot’;

The operator neq in the above example is used to signify
string comparison, as opposed to numeric comparison which
is specified via ==. Filtering conditions in Pig Latin can
involve a combination of expressions (Table 1), comparison
operators such as ==, eq, !=, neq, and the logical connec-
tors AND, OR, and NOT.

Since arbitrary expressions are allowed, it follows that we
can use UDFs while filtering. Thus, in our less ideal world,
where bots don’t identify themselves, we can use a sophisti-
cated UDF (isBot) to perform the filtering, e.g.,

real_queries =

FILTER queries BY NOT isBot(userId);

3.5 Getting Related Data Together: COGROUP
Per-tuple processing only takes us so far. It is often nec-

essary to group together tuples from one or more data sets,
that are related in some way, so that they can subsequently
be processed together. This grouping operation is done by
the COGROUP command. For example, suppose we have two
data sets that we have specified through a LOAD command:

results: (queryString, url, position)

revenue: (queryString, adSlot, amount)

results contains, for different query strings, the urls shown
as search results, and the position at which they were shown.
revenue contains, for different query strings, and different

1103

Figure 2: COGROUP versus JOIN.

advertisement slots, the average amount of revenue made by
the advertisements for that query string at that slot. Then
to group together all search result data and revenue data for
the same query string, we can write:

grouped_data = COGROUP results BY queryString,

revenue BY queryString;

Figure 2 shows what a tuple in grouped_data looks like.
In general, the output of a COGROUP contains one tuple for
each group. The first field of the tuple (named group) is the
group identifier (in this case, the value of the queryString

field). Each of the next fields is a bag, one for each input
being cogrouped, and is named the same as the alias of that
input. The ith bag contains all tuples from the ith input
belonging to that group. As in the case of filtering, grouping
can also be performed according to arbitrary expressions
which may include UDFs.

The reader may wonder why a COGROUP primitive is needed
at all, since a very similar primitive is provided by the fa-
miliar, well-understood, JOIN operation in databases. For
comparison, Figure 2 also shows the result of joining our
data sets on queryString. It is evident that JOIN is equiv-
alent to COGROUP, followed by taking a cross product of the
tuples in the nested bags. While joins are widely applicable,
certain custom processing might require access to the tuples
of the groups before the cross-product is taken, as shown by
the following example.

Example 3. Suppose we were trying to attribute search
revenue to search-result urls to figure out the monetary worth
of each url. We might have a sophisticated model for doing
so. To accomplish this task in Pig Latin, we can follow the
COGROUP with the following statement:

url_revenues = FOREACH grouped_data GENERATE

FLATTEN(distributeRevenue(results, revenue));

where distributeRevenue is a UDF that accepts search re-
sults and revenue information for a query string at a time,
and outputs a bag of urls and the revenue attributed to them.
For example, distributeRevenue might attribute revenue
from the top slot entirely to the first search result, while the
revenue from the side slot may be attributed equally to all
the results. In this case, the output of the above statement
for our example data is shown in Figure 2.

To specify the same operation in SQL, one would have
to join by queryString, then group by queryString, and
then apply a custom aggregation function. But while doing
the join, the system would compute the cross product of the
search and revenue information, which the custom aggre-
gation function would then have to undo. Thus, the whole
process become quite inefficient, and the query becomes hard
to read and understand.

To reiterate, the COGROUP statement illustrates a key dif-
ference between Pig Latin and SQL. The COGROUP state-
ments conforms to our goal of having an algebraic language,
where each step carries out only a single transformation
(Section 2.1). COGROUP carries out only the operation of
grouping together tuples into nested bags. The user can
subsequently choose to apply either an aggregation function
on those tuples, or cross-product them to get the join result,
or process it in a custom way as in Example 3. In SQL,
grouping is available only bundled with either aggregation
(group-by-aggregate queries), or with cross-producting (the
JOIN operation). Users find this additional flexibility of Pig
Latin over SQL quite attractive, e.g.,

“I frankly like pig much better than SQL in some
respects (group + optional flatten works better
for me, I love nested data structures).”
– Ted Dunning, Chief Scientist, Veoh Networks

Note that it is our nested data model that allows us to
have COGROUP as an independent operation—the input tu-
ples are grouped together and put in nested bags. Such
a primitive is not possible in SQL since the data model is
flat. Of course, such a nested model raises serious concerns
about efficiency of implementation: since groups can be very
large (bigger than main memory, perhaps), we might build
up gigantic tuples, which have these enormous nested bags
within them. We address these efficiency concerns in our
implementation section (Section 4).

3.5.1 Special Case of COGROUP: GROUP
A common special case of COGROUP is when there is only

one data set involved. In this case, we can use the alter-
native, more intuitive keyword GROUP. Continuing with our
example, if we wanted to find the total revenue for each
query string, (a typical group-by-aggregate query), we can
write it as follows:

1104

grouped_revenue = GROUP revenue BY queryString;

query_revenues = FOREACH grouped_revenue GENERATE

queryString,

SUM(revenue.amount) AS totalRevenue;

In the second statement above, revenue.amount refers
to a projection of the nested bag in the tuples of
grouped_revenue. Also, as in SQL, the AS clause is used
to assign names to fields on the fly.

To group all tuples of a data set together (e.g., to com-
pute the overall total revenue), one uses the syntax GROUP

revenue ALL.

3.5.2 JOIN in Pig Latin
Not all users need the flexibility offered by COGROUP. In

many cases, all that is required is a regular equi-join. Thus,
Pig Latin provides a JOIN keyword for equi-joins. For ex-
ample,

join_result = JOIN results BY queryString,

revenue BY queryString;

It is easy to verify that JOIN is only a syntactic shortcut
for COGROUP followed by flattening. The above join command
is equivalent to:

temp_var = COGROUP results BY queryString,

revenue BY queryString;

join_result = FOREACH temp_var GENERATE

FLATTEN(results), FLATTEN(revenue);

3.5.3 Map-Reduce in Pig Latin
With the GROUP and FOREACH statements, it is trivial to

express a map-reduce [4] program in Pig Latin. Converting
to our data-model terminology, a map function operates on
one input tuple at a time, and outputs a bag of key-value
pairs. The reduce function then operates on all values for a
key at a time to produce the final result. In Pig Latin,

map_result = FOREACH input GENERATE FLATTEN(map(*));

key_groups = GROUP map_result BY $0;

output = FOREACH key_groups GENERATE reduce(*);

The first line applies the map UDF to every tuple on the
input, and flattens the bag of key value pairs that it pro-
duces. (We use the shorthand * as in SQL to denote that
all the fields of the input tuples are passed to the map UDF.)
Assuming the first field of the map output to be the key, the
second statement groups by key. The third statement then
passes the bag of values for every key to the reduce UDF to
obtain the final result.

3.6 Other Commands
Pig Latin has a number of other commands that are very

similar to their SQL counterparts. These are:

1. UNION: Returns the union of two or more bags.

2. CROSS: Returns the cross product of two or more bags.

3. ORDER: Orders a bag by the specified field(s).

4. DISTINCT: Eliminates duplicate tuples in a bag. This
command is just a shortcut for grouping the bag by all
fields, and then projecting out the groups.

These commands are used as one would expect. For exam-
ple, continuing with the example of Section 3.5.1, to order
the query strings by their revenue:

ordered_result = ORDER query_revenues BY

totalRevenue;

3.7 Nested Operations
Each of the Pig Latin processing commands described so

far operate over one or more bags of tuples as input. As
illustrated in the previous sections, these commands collec-
tively form a very powerful language. When we have nested
bags within tuples, either as a result of (co)grouping, or due
to the base data being nested, we might want to harness the
same power of Pig Latin to process even these nested bags.
To allow such processing, Pig Latin allows some commands
to be nested within a FOREACH command.

For example, continuing with the data set of Section 3.5,
suppose we wanted to compute for each queryString, the
total revenue due to the ‘top’ ad slot, and also the overall
total revenue. This can be written in Pig Latin as follows:

grouped_revenue = GROUP revenue BY queryString;

query_revenues = FOREACH grouped_revenue{

top_slot = FILTER revenue BY

adSlot eq ‘top’;

GENERATE queryString,

SUM(top_slot.amount),

SUM(revenue.amount);

};

In the above Pig Latin fragment, revenue is first grouped
by queryString as before. Then each group is processed
by a FOREACH command, within which is a FILTER com-
mand that operates on the nested bags on the tuples of
grouped_revenue. Finally the GENERATE statement within
the FOREACH outputs the required fields.

At present, we only allow FILTER, ORDER, and DISTINCT

to be nested within FOREACH. In the future, as need arises,
we might allow other constructs to be nested as well.

3.8 Asking for Output: STORE
The user can ask for the result of a Pig Latin expression

sequence to be materialized to a file, by issuing the STORE

command, e.g.,

STORE query_revenues INTO ‘myoutput’

USING myStore();

The above command specifies that bag query_revenues

should be serialized to the file myoutput using the custom
serializer myStore. As with LOAD, the USING clause may be
omitted for a default serializer that writes plain text, tab-
delimited files. Our system also comes with a built-in serial-
izer/deserializer that can load/store arbitrarily nested data.

4. IMPLEMENTATION
Pig Latin is fully implemented by our system, Pig. Pig

is architected to allow different systems to be plugged in as
the execution platform for Pig Latin. Our current imple-
mentation uses Hadoop [10], an open-source, scalable imple-
mentation of map-reduce [4], as the execution platform. Pig
Latin programs are compiled into map-reduce jobs, and exe-
cuted using Hadoop. Pig, along with its Hadoop compiler, is

1105

an open-source project in the Apache incubator, and hence
available for general use.

We first describe how Pig builds a logical plan for a Pig
Latin program. We then describe our current compiler, that
compiles a logical plan into map-reduce jobs executed using
Hadoop. Last, we describe how our implementation avoids
large nested bags, and how it handles them if they do arise.

4.1 Building a Logical Plan
As clients issue Pig Latin commands, the Pig interpreter

first parses it, and verifies that the input files and bags be-
ing referred to by the command are valid. For example, if
the user enters c = COGROUP a BY . . ., b BY . . ., Pig veri-
fies that the bags a and b have already been defined. Pig
builds a logical plan for every bag that the user defines.
When a new bag is defined by a command, the logical plan
for the new bag is constructed by combining the logical plans
for the input bags, and the current command. Thus, in the
above example, the logical plan for c consists of a cogroup
command having the logical plans for a and b as inputs.

Note that no processing is carried out when the logical
plans are constructed. Processing is triggered only when the
user invokes a STORE command on a bag. At that point, the
logical plan for that bag is compiled into a physical plan,
and is executed. This lazy style of execution is beneficial
because it permits in-memory pipelining, and other opti-
mizations such as filter reordering across multiple Pig Latin
commands.

Pig is architected such that the parsing of Pig Latin and
the logical plan construction is independent of the execu-
tion platform. Only the compilation of the logical plan into
a physical plan depends on the specific execution platform
chosen. Next, we describe the compilation into Hadoop
map-reduce, the execution platform currently used by Pig.

4.2 Map-Reduce Plan Compilation
Compilation of a Pig Latin logical plan into map-reduce

jobs is fairly simple. The map-reduce primitive essentially
provides the ability to do a large-scale group by, where the
map tasks assign keys for grouping, and the reduce tasks
process a group at a time. Our compiler begins by converting
each (CO)GROUP command in the logical plan into a distinct
map-reduce job with its own map and reduce functions.

The map function for (CO)GROUP command C initially just
assigns keys to tuples based on the BY clause(s) of C; the
reduce function is initially a no-op. The map-reduce bound-
ary is the cogroup command. The sequence of FILTER, and
FOREACH commands from the LOAD to the first COGROUP op-
eration C1, are pushed into the map function corresponding
to C1 (see Figure 3). The commands that intervene between
subsequent COGROUP commands Ci and Ci+1 can be pushed
into either (a) the reduce function corresponding to Ci, or
(b) the map function corresponding to Ci+1. Pig currently
always follows option (a). Since grouping is often followed
by aggregation, this approach reduces the amount of data
that has to be materialized between map-reduce jobs.

In the case of a COGROUP command with more than one
input data set, the map function appends an extra field to
each tuple that identifies the data set from which the tuple
originated. The accompanying reduce function decodes this
information and uses it to insert the tuple into the appro-
priate nested bag when cogrouped tuples are formed (recall
Figure 2).

Figure 3: Map-reduce compilation of Pig Latin.

Parallelism for LOAD is obtained since Pig operates over
files residing in the Hadoop distributed file system. We also
automatically get parallelism for FILTER and FOREACH oper-
ations since for a given map-reduce job, several map and re-
duce instances are run in parallel. Parallelism for (CO)GROUP
is achieved since the output from the multiple map instances
is repartitioned in parallel to the multiple reduce instances.

The ORDER command is implemented by compiling into
two map-reduce jobs. The first job samples the input to
determine quantiles of the sort key. The second job range-
partitions the input according to the quantiles (thereby en-
suring roughly equal-sized partitions), followed by local sort-
ing in the reduce phase, resulting in a globally sorted file.

The inflexibility of the map-reduce primitive results in
some overheads while compiling Pig Latin into map-reduce
jobs. For example, data must be materialized and replicated
on the distributed file system between successive map-reduce
jobs. When dealing with multiple data sets, an additional
field must be inserted in every tuple to indicate which data
set it came from. However, the Hadoop map-reduce im-
plementation does provide many desired properties such as
parallelism, load-balancing, and fault-tolerance. Given the
productivity gains to be had through Pig Latin, the asso-
ciated overhead is often acceptable. Besides, there is the
possibility of plugging in a different execution platform that
can implement Pig Latin operations without such overheads.

4.3 Efficiency With Nested Bags
Recall Section 3.5. Conceptually speaking, our (CO)GROUP

command places tuples belonging to the same group into
one or more nested bags. In many cases, the system can
avoid actually materializing these bags, which is especially
important when the bags are larger than one machine’s main
memory.

One common case is where the user applies a distribu-
tive or algebraic [8] aggregation function over the result of
a (CO)GROUP operation. (Distributive is a special case of
algebraic, so we will only discuss algebraic functions.) An
algebraic function is one that can be structured as a tree
of subfunctions, with each leaf subfunction operating over a
subset of the input data. If nodes in this tree achieve data
reduction, then the system can keep the amount of data
materialized in any single location small. Examples of al-
gebraic functions abound: COUNT, SUM, MIN, MAX, AVERAGE,
VARIANCE, although some useful functions are not algebraic,
e.g., MEDIAN.

When Pig compiles programs into Hadoop map-reduce
jobs, it uses Hadoop’s combiner feature to achieve a two-tier
tree evaluation of algebraic functions. Pig provides a special
API for algebraic user-defined functions, so that custom user
functions can take advantage of this important optimization.

1106

Figure 4: Pig Pen screenshot; displayed program finds users who tend to visit high-pagerank pages.

Nevertheless, there still remain cases where (CO)GROUP is
followed by something other than an algebraic UDF, e.g.,
the program in Example 3.5, where distributeRevenue is
not algebraic. To cope with these cases, our implementation
allows for nested bags to spill to disk. Our disk-resident
bag implementation comes with database-style external sort
algorithms to do operations such as sorting and duplicate
elimination of the nested bags (recall Section 3.7).

5. DEBUGGING ENVIRONMENT
The process of constructing a Pig Latin program is typ-

ically an iterative one: The user makes an initial stab at
writing a program, submits it to the system for execution,
and inspects the output to determine whether the program
had the intended effect. If not, the user revises the program
and repeats this process. If programs take a long time to
execute (e.g., because the data is large), this process can be
inefficient.

To avoid this inefficiency, users often create a side data set
consisting of a small sample of the original one, for experi-
mentation. Unfortunately this method does not always work
well. As a simple example, suppose the program performs
an equijoin of tables A(x,y) and B(x,z) on attribute x. If
the original data contains many distinct values for x, then
it is unlikely that a small sample of A and a small sample
of B will contain any matching x values [3]. Hence the join
over the sample data set may well produce an empty result,
even if the program is correct. Similarly, a program with a
selective filter executed on a sample data set may produce
an empty result. In general it can be difficult to test the
semantics of a program over a sample data set.

Pig comes with a debugging environment called Pig Pen,
which creates a side data set automatically, and in a manner
that avoids the problems outlined in the previous paragraph.

To avoid these problems successfully, the side data set must
be tailored to the particular user program at hand. We refer
to this dynamically-constructed side data set as a sandbox
data set; we briefly describe how it is created in Section 5.1.

Pig Pen’s user interface consists of a two-panel window as
shown in Figure 4. The left-hand panel is where the user
enters her Pig Latin commands. The right-hand panel is
populated automatically, and shows the effect of the user’s
program on the sandbox data set. In particular, the interme-
diate bag produced by each Pig Latin command is displayed.

Suppose we have two data sets: a log of page visits, vis-
its: (user, url, time), and a catalog of pages and their
pageranks, pages: (url, pagerank). The program shown
in Figure 4 finds web surfers who tend to visit high-pagerank
pages. The program joins the two data sets after first run-
ning the log entries through a UDF that converts urls to a
canonical form. After the join, the program groups tuples
by user, computes the average pagerank for each user, and
then filters users by average pagerank.

The right-hand panel of Figure 4 shows a sandbox data
set, and how it is transformed by each successive command.
The main semantics of each command are illustrated via the
sandbox data set: We see that the JOIN command matches
visits tuples with pages tuples on url. We also see that
grouping by user creates one tuple per group, possibly con-
taining multiple nested tuples as in the case of Amy. Lastly
we see that the FOREACH command eliminates the nesting via
aggregation, and that the FILTER command eliminates Fred,
whose average pagerank is too low.

If one or more commands had been written incorrectly,
e.g., if the user had forgotten to include group following
FOREACH, the problem would be apparent in the right-hand
panel. Similarly, if the program contains UDFs (as is com-
mon among real Pig users), the right-hand panel indicates
whether the correct UDF is being applied, and whether it

1107

is behaving as intended. The sandbox data set also helps
users understand the schema at each step, which is espe-
cially helpful in the presence of nested data.

In addition to helping the user spot bugs, this kind of in-
terface facilitates writing a program in an incremental fash-
ion: We write the first three commands and inspect the
right-hand panel to ensure that we are joining the tables
properly. Then we add the GROUP command and use the
right-hand panel to help understand the schema of its out-
put tuples. Then we proceed to add the FOREACH and FIL-

TER commands, one at a time, until we arrive at the desired
result. Once we are convinced the program is correct, we
submit it for execution over the real data.

5.1 Generating a Sandbox Data Set
Pig Pen’s sandbox data set generator takes as input a Pig

Latin program P consisting of a sequence of n commands,
where each command consumes one or more input bags and
produces an output bag. The output of the data set gen-
erator is a set of example bags {B1, B2, . . . , Bn}, one corre-
sponding to the output of each command in P , as illustrated
in Figure 4. The set of example bags is required to be consis-
tent, meaning that the example output bag of each operator
is exactly the bag produced by executing the command over
its example input bag(s). The example bags that correspond
to the LOAD commands comprise the sandbox data set.

There are three primary objectives in selecting a sandbox
data set:

• Realism. The sandbox data set should be a subset of
the actual data set, if possible. If not, then to the extent
possible the individual data values should be ones found
in the actual data set.

• Conciseness. The example bags should be as small as
possible.

• Completeness. The example bags should collectively
illustrate the key semantics of each command.

As an example of what is meant by the completeness ob-
jective, the example bags before and after the GROUP com-
mand in Figure 4 serve to illustrate the semantics of group-
ing by user, namely that input tuples about the same user
are placed into a single output tuple. As another exam-
ple, the example bags before and after the FILTER com-
mand illustrate the semantics of filtering by average pager-
ank, namely that input tuples with low average pagerank
are not propagated to the output.

The procedure used in Pig Pen to generate a sandbox
database starts by taking small random samples of the base
data. Then, Pig Pen synthesizes additional data tuples to
improve completeness. (When possible, the synthetic tuples
are populated with real data values from the underlying do-
main, to minimize the impact on realism.) A final pruning
pass eliminates redundant example tuples to improve con-
ciseness. The details of the algorithm are beyond the scope
of this paper.

6. USAGE SCENARIOS
In this section, we describe a sample of data analysis tasks

that are being carried out at Yahoo! with Pig. Due to con-
fidentiality reasons, we describe these tasks only at a high-
level, and are not able to provide real Pig Latin programs.
The use of Pig Latin ranges from group-by-aggregate and
rollup queries (which are easy to write in SQL, and simple

ones are also easy to write in map-reduce) to more complex
tasks that use the full flexibility and power of Pig Latin.

Rollup aggregates: A common category of processing
done using Pig involves computing various kinds of rollup
aggregates against user activity logs, web crawls, and other
data sets. One example is to calculate the frequency of
search terms aggregated over days, weeks, or months, and
also over geographical location as implied by the IP ad-
dress. Some tasks require two or more successive aggre-
gation passes, e.g., count the number of searches per user,
and then compute the average per-user count. Other tasks
require a join followed by aggregation, e.g., match search
phrases with n-grams found in web page anchortext strings,
and then count the number of matches per page. In such
cases, Pig orchestrates a sequence of multiple map-reduce
jobs on the user’s behalf.

The primary reason for using Pig rather than a
database/OLAP system for these rollup analyses, is that the
search logs are too big and continuous to be curated and
loaded into databases, and hence are just present as (dis-
tributed) files. Pig provides an easy way to compute such
aggregates directly over these files, and also makes it easy to
incorporate custom processing, such as IP-to-geo mapping
and n-gram extraction.

Temporal analysis: Temporal analysis of search logs
mainly involves studying how search query distributions
change over time. This task usually involves cogrouping
search queries of one period with those of another period
in the past, followed by custom processing of the queries in
each group. The COGROUP command is a big win here since
it provides access to the set of search queries in each group
(recall Figure 2), making it easy and intuitive to write UDFs
for custom processing. If a regular join were carried out in-
stead, a cross product of search queries in the same group
would be returned, leading to problems as in Example 3.

Session analysis: In session analysis, web user sessions,
i.e., sequences of page views and clicks made by users, are
analyzed to calculate various metrics such as: how long is
the average user session, how many links does a user click
on before leaving a website, how do click patterns vary in
the course of a day/week/month. This analysis task mainly
consists of grouping the activity logs by user and/or web-
site, ordering the activity in each group by timestamp, and
then applying custom processing on this sequence. In this
scenario, our nested data model provides a natural abstrac-
tion for representing and manipulating sessions, and nested
declarative operations such as order-by (Section 3.7) help
minimize custom code and avoid the need for out-of-core
algorithms inside UDFs in case of large groups.

7. RELATED WORK
We have discussed the relationship of Pig Latin to SQL

and map-reduce throughout the paper. In this section, we
compare Pig against other data processing languages and
systems.

Pig is meant for offline, ad-hoc, scan-centric workloads.
There is a family of recent, large-scale, distributed systems
that provide database-like capabilites, but are geared toward
transactional workloads and/or point lookups. Amazon’s
Dynamo [5], Google’s BigTable [2], and Yahoo!’s PNUTS [9]
are examples. Unlike Pig, these systems are not meant for

1108

data analysis. BigTable does have hooks through which data
residing in BigTable can be analyzed using a map-reduce job,
but in the end, the analysis engine is still map-reduce.

A variant of map-reduce that deals well with joins has
been proposed [14], but it still does not deal with multi-
stage programs.

Dryad [12] is a distributed platform that is being de-
veloped at Microsoft to provide large-scale, parallel, fault-
tolerant execution of processing tasks. Dryad is more flexible
than map-reduce as it allows the execution of arbitrary com-
putation that can be expressed as directed acyclic graphs.
Map-reduce, on the other hand, can only execute a simple,
two-step chain of a map followed by a reduce. As men-
tioned in Section 4, Pig Latin is independent of the choice
of the execution platform. Hence in principle, Pig Latin
can be compiled into Dryad jobs. As with map-reduce, the
Dryad layer is hard to program to. Hence Dryad has its own
high-level language called DryadLINQ [6]. Little is known
publicly about the language except that it is “SQL-like.”

Sawzall [13] is a scripting language used at Google on top
of map-reduce. Like map-reduce, a Sawzall program also
has a fairly rigid structure consisting of a filtering phase
(the map step) followed by an aggregation phase (the reduce
step). Furthermore, only the filtering phase can be written
by the user, and only a pre-built set of aggregations are
available (new ones are non-trivial to add). While Pig Latin
has similar higher level primitives like filtering and aggrega-
tion, an arbitrary number of them can be flexibly chained
together in a Pig Latin program, and all primitives can use
user-defined functions with equal ease. Further, Pig Latin
has additional primitives such as cogrouping, that allow op-
erations such as joins (which require multiple programs in
Sawzall) to be written in a single line in Pig Latin.

We are certainly not the first to consider nested data mod-
els. Nested data models have been explored before in the
context of object-oriented databases [11]. The programming
languages community has explored data-parallel languages
over nested data, e.g., NESL [1], to which Pig Latin bears
some resemblance. Just as with map-reduce and Sawzall,
NESL lacks support for combining multiple data sets (e.g.,
cogroup and join).

As for our debugging environment, we are not aware of any
prior work on automatically generating intermediate exam-
ple data for the purpose of illustrating processing semantics.

8. FUTURE WORK
Pig is a project under active development. We are con-

tinually adding new features to improve the user experience
and yield even higher productivity gains. There are a num-
ber of promising directions that are yet unexplored in the
context of the Pig system.

“Safe” optimizer: One of the arguments that we have put
forward in the favor of Pig Latin is that due to its procedural
nature, users have tighter control over how their programs
are executed. However, we do not want to ignore database-
style optimization altogether since it can often lead to huge
improvements in performance. What is needed is a “safe”
optimizer that will only perform optimizations that almost
surely yield a performance benefit. In other cases, when the
performance benefit is uncertain, or depends on unknown
data characteristics, it should simply follow the Pig Latin
sequence written by the user.

User interfaces: The productivity obtained by Pig can
be enhanced through the right user interfaces. Pig Pen is
a first step in that direction. Another idea worth explor-
ing is to have a “boxes-and-arrows” GUI for specifying and
viewing Pig Latin programs, in addition to the current tex-
tual language. A boxes-and-arrows paradigm illustrates the
data flow structure of a program very explicitly, as reveals
dependencies among the various computation steps. The
UI should also promote sharing and collaboration, e.g., one
should easily be able to link to a fragment of another user’s
program, and incorporate UDFs provided by other users.

External functions: Pig programs currently run as Java
map-reduce jobs, and consequently only support UDFs writ-
ten in Java. However, for quick, ad-hoc tasks, the average
user wants to write UDFs in a scripting language such as Perl
or Python, instead of in a full-blown programming language
like Java. Support for such functions requires a light-weight
serialization/deserialization layer with bindings in the lan-
guages that we wish to support. Pig can then serialize data
using this layer and pass it to the external process that runs
the non-Java UDF, where it can be deserialized into that
language’s data structures. We are in the process of build-
ing such a layer and integrating it with Pig.

Unified environment: Pig Latin does not have control
structures like loops and conditionals. If those are needed,
Pig Latin, just like SQL, can be embedded in Java with a
JDBC-style interface. However, as with SQL, this embed-
ding can be awkward and difficult to work with. For ex-
ample, all Pig Latin programs must be enclosed in strings,
thus preventing static syntax checking. Results need to be
converted back and forth between Java’s data model and
that of Pig. Moreover, the user now has to deal with three
distinct environments: (a) the program in which the Pig
Latin commands are embedded, (b) the Pig environment
that understands Pig Latin commands, and (c) the pro-
gramming language environment used to write the UDFs.
We are exploring the idea of having a single, unified envi-
ronment that supports development at all three levels. For
this purpose, rather than designing yet another language,
we want to embed Pig Latin in established languages such
as Perl and Python3 by making the language parsers aware
of Pig Latin and able to package executable units for remote
execution.

9. SUMMARY
We described a new data processing environment being

deployed at Yahoo! called Pig, and its associated language,
Pig Latin. Pig’s target demographic is experienced proce-
dural programmers who prefer map-reduce style program-
ming over the more declarative, SQL-style programming,
for stylistic reasons as well as the ability to control the ex-
ecution plan. Pig aims for a sweet spot between these two
extremes, offering high-level data manipulation primitives
such as projection and join, but in a much less declarative
style than SQL.

We also described a novel debugging environment we are
developing for Pig, called Pig Pen. In conjunction with
the step-by-step nature of our Pig Latin language, Pig Pen

3Such variants would obviously be called Erlpay and Ython-
pay.

1109

makes it easy and fast for users to construct and debug their
programs in an incremental fashion. The user can write a
prefix of their overall program, examine the output on the
sandbox data set, and iterate until the output matches what
they intended. At this point the user can “freeze” the pro-
gram prefix, and begin to append further commands, with-
out worrying about regressing on the progress made so far.

While Pig Pen is still in early stages of development, the
core Pig system is fully implemented and available as an
open-source Apache incubator project. The Pig system com-
piles Pig Latin expressions into a sequence of map-reduce
jobs, and orchestrates the execution of these jobs on Hadoop,
an open-source scalable map-reduce implementation. Pig
has an active and growing user base inside Yahoo!, and with
our recent open-source release we are beginning to attract
users in the broader community.

Acknowledgments
We are grateful to the Hadoop and Pig engineering teams
at Yahoo! for helping us make Pig real. In particular we
would like to thank Alan Gates and Olga Natkovich, the
Pig engineering leads, for their invaluable contributions.

10. REFERENCES
[1] G. E. Blelloch. Programming parallel algorithms.

Communications of the ACM, 39(3):85–97, March
1996.

[2] F. Chang et al. Bigtable: A distributed storage system
for structured data. In Proc. OSDI, pages 205–218.
USENIX Association, 2006.

[3] S. Chaudhuri, R. Motwani, and V. Narasayya. On
random sampling over joins. In Proc. ACM SIGMOD,
1999.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In Proc. OSDI, 2004.

[5] G. DeCandia et al. Dynamo: Amazon’s highly
available key-value store. In Proc. SOSP, 2007.

[6] Dryad LINQ.
http://research.microsoft.com/research/sv/DryadLINQ/,
2007.

[7] R. Elmasri and S. Navathe. Fundamentals of Database
Systems. Benjamin/Cummings, 1989.

[8] J. Gray et al. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub
totals. Data Min. Knowl. Discov., 1(1):29–53, 1997.

[9] C. S. Group. Community Systems Research at Yahoo!
SIGMOD Record, 36(3):47–54, September 2007.

[10] Hadoop. http://lucene.apache.org/hadoop/, 2007.

[11] R. Hull. A survey of theoretical research on typed
complex database objects. In XP7.52 Workshop on
Database Theory, 1986.

[12] M. Isard et al. Dryad: Distributed data-parallel
programs from sequential building blocks. In European
Conference on Computer Systems (EuroSys), pages
59–72, Lisbon, Portugal, March 21-23 2007.

[13] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the data: Parallel analysis with Sawzall.
Scientific Programming Journal, 13(4), 2005.

[14] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker.
Map-reduce-merge: Simplified relational data
processing on large clusters. In Proc. ACM SIGMOD,
2007.

1110

