Information Retrieval and Organisation

Dell Zhang

Birkbeck, University of London
Dictionaries and Tolerant Retrieval
Dictionaries

Dictionary: the data structure for storing the term vocabulary

Brutus → 1 2 4 11 31 45 173 174
Caesar → 1 2 4 5 6 16 57 132 ...
Calpurnia → 2 31 54 101

... dictionary postings
Storing Dictionaries

- For each term, we need to store a couple of items:
 - document frequency
 - pointer to postings list
 - ...

- Assume for the time being that
 - we can store this information in a fixed-length entry
 - we store these entries in an array
Storing Dictionaries

<table>
<thead>
<tr>
<th>term</th>
<th>document frequency</th>
<th>pointer to postings list</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>656,265</td>
<td>→</td>
</tr>
<tr>
<td>aachen</td>
<td>65</td>
<td>→</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>zulu</td>
<td>221</td>
<td>→</td>
</tr>
</tbody>
</table>

space needed: 20 bytes 4 bytes 4 bytes

- How do we look up an element in this array at query time?
- Remember: these dictionaries can be huge, scanning is not an option
Two main classes of data structures: hash tables and trees

Some IR systems use hash tables, some use trees.

Criteria for when to use hash tables vs trees:

- Is there a fixed number of terms or will it keep growing?
- What are the relative frequencies with which various keys will be accessed?
- How many terms are we likely to have?
Hash Tables

- Each vocabulary term is hashed into an integer.
- Try to avoid collisions
- At query time, do the following:
 - hash query term
 - resolve collisions
 - locate entry in fixed-width array
- Pros:
 - Lookup in a hash table is faster than in a tree.
- Cons:
 - no prefix search (all terms starting with *automat*)
 - need to rehash everything periodically if vocabulary keeps growing
Trees

- Trees solve the prefix problem (find all terms starting with *automat*).
- Simplest tree: binary tree.
- However, binary trees are problematic:
 - Only balanced trees allow efficient retrieval
 - Rebalancing binary trees is expensive
- Use B-trees (the index structure that you know from database lectures)
B-Tree

Taken from documentation for Oracle 10g
Wildcard Queries

- mon*: find all docs containing any term beginning with *mon
 - Easy with B-tree dictionary
 - retrieve all terms t in the range: $\text{mon} \leq t < \text{moo}$

- *mon: find all docs containing any term ending with *mon
 - Maintain an additional tree for terms backwards, then
 - retrieve all terms t in the range: $\text{nom} \leq t < \text{non}$
Query Processing

- At this point, we have an enumeration of all terms in the dictionary that match the wildcard query.
- We still have to look up the postings for each enumerated term.
 - e.g., consider the query: gen* AND universit*
- This may result in the execution of many Boolean AND queries.
Wildcards in Middle of Term

- Example: m*nchen
- We could look up m* and *nchen in the B-tree and intersect the two term sets.
 - Expensive (there are probably thousands and thousands of terms beginning with “m”)
- Alternative: *permute*erm index
 - Basic idea: Rotate every wildcard query, so that the * occurs at the end.
For term hello: add hello$, ello$h, llohe, lohel, o$hell, and $hello to the B-tree where $ is a special symbol
Permuterm Index

Queries

- For X, look up X$
- For X*, look up $X*
- For *X, look up X$*
- For *X*, look up X*
- For X*Y, look up Y$X*$

Example:

- For hel*o, look up o$hel*

It’s really a tree and should be called permuterm tree

But permuterm index is more common name.
Query Processing

- Once we modified the query (as shown on last slide), we can do a regular lookup on a B-tree.
- This is much faster than looking up X* and *Y and combining results (for query X*Y).
- Permuterm index also handles leading wildcards: *X.
- It has a disadvantage, though: quadruples the size of the dictionary compared to a regular B-tree (as every term is stored multiple times).
k-gram Index

- More space-efficient than permuterm index
- Enumerate all character k-grams (sequence of k characters) occurring in a term
 - 2-grams are also called *bigrams*
 - 3-grams are also called *trigrams*
- Example:
 - from *April is the cruelest month*
 - we get the bigrams:
 - $a \ ap \ pr \ ri \ il \ l$
 - $i \ is \ s$
 - $t \ th \ he \ e$
 - $c \ cr \ ru \ ue \ el \ le$
 - $es \ st \ t$
 - $m \ mo \ on \ nt \ th \ h$
 - $\$ is a special word boundary symbol.
- Maintain an inverted index from bigrams to the terms that contain the bigram
Note that we now have two different types of inverted indexes:

- The term-document inverted index for finding documents based on a query consisting of terms.
- The k-gram index for finding terms based on a query consisting of k-grams.
Processing Wildcard Queries

- Query mon* can now be run as: $m \ AND \ mo \ AND \ on$
- Gets us all terms with the prefix mon . . .
- . . . but also many “false positives” like moon
- We must post-filter these terms against query
- Surviving terms are then looked up in the term-document inverted index.
- k-gram indexes are fast and space efficient (compared to permuterm indexes).
Processing Wildcard Queries

- We must potentially execute a large number of Boolean queries for each enumerated, filtered term (on the term-document index)
 - Recall the query: gen* AND universit*
 - Most straightforward semantics: Conjunction of disjunctions
 - Very expensive

- Users hate to type
 - If abbreviated queries like pyth* theo* for pythagoras’ theorem are legal, users will use them . . .
 - . . . a lot
Spelling Correction

- Two principal uses
 - Correcting documents being indexed
 - Correcting user queries

- Two different methods
 - *Isolated Word* Spelling Correction
 - Check each word on its own for misspelling
 - Will not catch typos resulting in correctly spelled words, e.g., *an asteroid that fell form the sky*
 - *Context-Sensitive* Spelling Correction
 - Look at surrounding words
 - Can correct the *form/from* error above
We’re not interested in interactive spelling correction of documents (e.g., MS Word) in this class.

In IR, we use document correction primarily for OCR’ed documents (i.e. documents digitized via Optical Character Recognition)

The general philosophy in IR is: don’t change the documents.
Correcting Queries

First: isolated word spelling correction

Fundamental premise 1: There is a list of “correct words” from which the correct spellings come.

Fundamental premise 2: We have a way of computing the distance between a misspelled word and a correct word.

Simple spelling correction algorithm: return the “correct” word that has the smallest distance to the misspelled word.

Example: informaton \rightarrow information
Correcting Queries

- Can we use the term vocabulary of the inverted index as the list of correct words?
 - It can be very biased
 - It may be missing certain terms

- Alternatives:
 - A standard dictionary (Webster’s, Encyclopædia Britannica, etc.)
 - An industry-specific dictionary (for specialized IR systems)
 - The term vocabulary of the collection, appropriately weighted
Computing Distance

▶ How can we compute the distance between words?
▶ We’ll look at some alternatives:
 ▶ edit distance (Levenshtein distance)
 ▶ weighted edit distance
 ▶ k-gram overlap
Edit Distance

- The (minimum) edit distance between two strings s_1 and s_2 is the minimum number of basic operations to convert s_1 to s_2.

- Levenshtein distance: the admissible basic operations are: insert, delete, and replace
 - Levenshtein distance $dog \rightarrow do$: 1 (deletion)
 - Levenshtein distance $cat \rightarrow cart$: 1 (insertion)
 - Levenshtein distance $cat \rightarrow cut$: 1 (replacement)
 - Levenshtein distance $cat \rightarrow act$: 2 (2 replacements or 1 insertion and 1 deletion)
Computing Distance

Getting from cats to fast

<table>
<thead>
<tr>
<th></th>
<th>“”</th>
<th>f</th>
<th>a</th>
<th>s</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>“”</td>
<td>“” → “”</td>
<td>“” → f</td>
<td>“” → fa</td>
<td>“” → fas</td>
<td>“” → fast</td>
</tr>
<tr>
<td>c</td>
<td>c → “”</td>
<td>c → f</td>
<td>c → fa</td>
<td>c → fas</td>
<td>c → fast</td>
</tr>
<tr>
<td>a</td>
<td>ca → “”</td>
<td>ca → f</td>
<td>ca → fa</td>
<td>ca → fas</td>
<td>ca → fast</td>
</tr>
<tr>
<td>t</td>
<td>cat → “”</td>
<td>cat → f</td>
<td>cat → fa</td>
<td>cat → fas</td>
<td>cat → fast</td>
</tr>
<tr>
<td>s</td>
<td>cats → “”</td>
<td>cats → f</td>
<td>cats → fa</td>
<td>cats → fas</td>
<td>cats → fast</td>
</tr>
</tbody>
</table>

Each cell will contain the (cheapest) cost of getting from the string on the left-hand side to the string on the right-hand side.
Computing Distance

We know the costs for the uppermost row and the leftmost column:

- we have to get from "" to fast by inserting characters
- we have to get from cats to "" by deleting characters

<table>
<thead>
<tr>
<th></th>
<th>""</th>
<th>f</th>
<th>a</th>
<th>s</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>""</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computing Distance

- For other cells, take the minimum of costs
 - Coming from (a):
 - add 1 to cost in (a) — insertion
 - Coming from (b):
 - add 1 to cost in (b) — deletion
 - Coming from (c):
 - if characters in row and column are equal, copy cost from (c)
 - otherwise, add 1 to cost in (c) — replacement
Computing the costs for all cells results in the following matrix:

<table>
<thead>
<tr>
<th></th>
<th>""</th>
<th>f</th>
<th>a</th>
<th>s</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>""</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>t</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>s</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

So the Levenshtein distance is 3
Algorithm

\textbf{EDITDISTANCE}(s_1, s_2)

1 \hspace{1em} \text{int } m[i, j] = 0
2 \hspace{1em} \text{for } i \leftarrow 1 \text{ to } |s_1|
3 \hspace{1em} \text{do } m[i, 0] = i
4 \hspace{1em} \text{for } j \leftarrow 1 \text{ to } |s_2|
5 \hspace{1em} \text{do } m[0, j] = j
6 \hspace{1em} \text{for } i \leftarrow 1 \text{ to } |s_1|
7 \hspace{1em} \text{do for } j \leftarrow 1 \text{ to } |s_2|
8 \hspace{1em} \text{do } m[i, j] = \min\{m[i - 1, j - 1] + \text{if } (s_1[i] = s_2[j]) \text{ then } 0 \text{ else } 1\text{fi,}
9 \hspace{1em} \hspace{1em} m[i - 1, j] + 1, \\
10 \hspace{1em} \hspace{1em} m[i, j - 1] + 1\}
11 \hspace{1em} \text{return } m[|s_1|, |s_2|]
Weighted Edit Distance

- As Levenshtein distance, but weight of an operation depends on the characters involved.
- Meant to capture keyboard errors
 - e.g., \(m \) more likely to be mistyped as \(n \) than as \(q \).
 - therefore, replacing \(m \) by \(n \) is a smaller edit distance than by \(q \).
- We now require a weight matrix as input.
- Modify dynamic programming to handle weights.
Using Edit Distances

- Comparing query term q to all terms in the vocabulary is too expensive
- Solution: use heuristics to determine subset
 - Only compare to terms beginning with the same letter (doesn’t work for typos at beginning)
 - Generate set of rotations for q and use a permuterm index (doesn’t work well for replacements)
 - For each rotation, omit a suffix of l characters before doing lookup in permuterm index
 - Ensures that each term in query rotation shares a substring with retrieved terms
 - The value of l could be fixed to a constant length (e.g. 2), or depend on the length of q
Using a \textit{k}-gram Index

- Enumerate all \textit{k}-grams in the query term
- Use the \textit{k}-gram index to retrieve “correct” words that match query term \textit{k}-grams
- Threshold by number of matching \textit{k}-grams
 - e.g., only vocabulary terms that differ by at most 3 \textit{k}-grams
Example with 2-grams

Suppose the misspelled word is “bordroom”:
$b, bo, or, rd, dr, ro, oo, om, m$

- bo → aboard → about → boardroom → border
- or → border → lord → morbid → sordid
- rd → aboard → ardent → boardroom → border
Example with 3-grams

- Suppose the correct word is "november":
 $$n, \text{no}, \text{nov}, \text{ove}, \text{vem}, \text{emb}, \text{ber}, \text{er}$, r$$

- And the query term is "december":
 $$d, \text{de}, \text{dec}, \text{ece}, \text{cem}, \text{emb}, \text{ber}, \text{er}$, r$$

- So 5 trigrams overlap (out of 10 in each term)

- Issue: Fixed number of k-grams that differ does not work for words of differing length.

- How can we turn this into a normalized measure of overlap?
Jaccard Coefficient

- A commonly used measure of two sets’ overlap
- Let A and B be two sets
- Jaccard coefficient:

$$\frac{|A \cap B|}{|A \cup B|}$$

- A and B don’t have to be the same size.
- Always assigns a number between 0 and 1.

- Application to spelling correction: declare a match if the coefficient is, say, > 0.8.
Context-Sensitive Correction

➢ Our example was:
 “an asteroid that fell form the sky”
➢ How can we correct form here?
➢ One idea: hit-based spelling correction
 ➢ We’ll return back to this idea when we talk about the probabilistic approach to spelling correction, in the second half of the module.
Context-Sensitive Correction

- Given query “flew form munich”
- Retrieve the correct terms close to each query term
 - flea for flew
 - from for form
 - munch for munich
- Now try all possible resulting phrases as queries, with one word fixed at a time
 - Try query “flea form munich”
 - Try query “flew from munich”
 - Try query “flew form munch”
- The correct query “flew from munich” should have the most hits.
Context-Sensitive Correction

- The *hit-based* algorithm we just outlined is not very efficient.
 - Suppose we have 7 alternatives for *flew*, 19 for *form* and 3 for *munich*
 - Then we have to test $7 \times 19 \times 3$ different variants

- More efficient alternative: look at the collection of queries, not documents
 - This assumes that we log queries
General Issues

- User interface
 - Automatic or suggested correction
 - “Did you mean” only works for one suggestion.
 - What about multiple possible corrections?
 - Tradeoff: simple vs powerful UI

- Cost
 - Spelling correction is potentially expensive.
 - Avoid running on every query?
 - Maybe just on queries that match few documents.
Phonetic Matching

▶ Soundex is the basis for finding **phonetic** (as opposed to orthographic) alternatives.
 ▶ e.g., Chebyshev / Tchebyscheff

▶ Algorithm:
 ▶ Turn every token to be indexed into a 4-character reduced form
 ▶ Do the same with query terms
 ▶ Build and search an index on the reduced forms
Soundex Algorithm

1. Retain the first letter of the term.
2. Change all occurrences of the following letters to 0 (zero):
 - A, E, I, O, U, H, W, Y
3. Change letters to digits as follows:
 - B, F, P, V ⇒ 1
 - C, G, J, K, Q, S, X, Z ⇒ 2
 - D, T ⇒ 3
 - L ⇒ 4
 - M, N ⇒ 5
 - R ⇒ 6
4. Repeatedly remove one out of each pair of consecutive identical digits
5. Remove all 0s from the resulting string; pad the resulting string with trailing 0s, and return the first four positions, which will consist of a letter followed by three digits
Soundex Algorithm

Example

<table>
<thead>
<tr>
<th>steps 1 and 2</th>
<th>difficulty</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d0ff0c0lt0</td>
<td>d0ff0r0nc0</td>
</tr>
<tr>
<td>step 3</td>
<td>d011020430</td>
<td>d011060520</td>
</tr>
<tr>
<td>step 4</td>
<td>d01020430</td>
<td>d01060520</td>
</tr>
<tr>
<td>step 5</td>
<td>d124</td>
<td>d165</td>
</tr>
</tbody>
</table>

- Vowels are viewed as being interchangeable
- Consonants with similar sounds (e.g. D and T) are put in equivalence classes
- Works fairly well for European languages
Summary

- How to organize a dictionary of an inverted index
- How to do imprecise searches on this dictionary handling
 - wildcards
 - spelling mistakes