Scoring, Term Weighting, and the Vector Space Model
Problems with Boolean Queries

- Thus far, our queries have all been Boolean.
 - Documents either match or don’t.
- Good
 - for expert users with precise understanding of their needs and the collection; and
 - for software applications which can easily consume 1000s of results.
- Not good
 - for the majority of users, as
 (1) they are unable or unwilling to write Boolean queries; and
 (2) they don’t want to wade through 1000s of results, which is particularly true of web search.
Boolean queries often result in either too few (≈0) or too many (1000s) results.

- Query 1: “standard user dlink 650”
 → 200,000 hits
- Query 2: “standard user dlink 650 no card found”
 → 0 hits

It takes a lot of skill to come up with a query that produces a manageable number of hits.

With a ranked list of documents, it does not matter how large the retrieved set is.
Scoring Documents

- We wish to return in order the documents most likely to be useful to the searcher.
- How can we rank-order the documents in the collection with respect to a query?
- We need a way of assigning a score to a query/document pair.
- This score measures how well document and query “match”.
Let’s start with a simple approach

Count how many of the query terms appear in a document:

\[\text{score}(Q, D) = |Q \cap D| \]

It can be computed easily

However, it is very biased towards large documents

- Large documents have a greater chance of getting a higher score (they just contain more terms)
- Bigger is not always better . . .
Jaccard Coefficient

- We need some way of normalizing the score
- Why not use Jaccard coefficient?

\[
\text{Jaccard}(A, B) = \frac{|A \cap B|}{|A \cup B|}
\]

- A and B don’t have to be the same size.
- Always assigns a number between 0 and 1.
 - Jaccard\((A, B) = 1\) if \(A = B\)
 - Jaccard\((A, B) = 0\) if \(A \cap B = 0\)
Jaccard Coefficient

What’s wrong with Jaccard coefficient?
- Having a higher term frequency makes a document more relevant
 - How many occurrences does a term have in a document?
- Rare terms are more informative than frequent terms
 - How often does a term occur in a document collection?

Jaccard coefficient doesn’t consider such information.

We need a more sophisticated way of normalizing for length.
Up to now, we used a binary incidence matrix. Each document represented by a binary vector $\in \{0, 1\}^{|V|}$.

<table>
<thead>
<tr>
<th></th>
<th>Anthony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthony</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Brutus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>worser</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Term Frequency Matrix

We will now use a matrix containing the term frequencies:

- Each document represented by count vector $\in \mathbb{N}^{|V|}$

<table>
<thead>
<tr>
<th></th>
<th>Anthony and Caesar</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthony</td>
<td>157</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Brutus</td>
<td>4</td>
<td>157</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Caesar</td>
<td>232</td>
<td>227</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cleopatra</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>mercy</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>worser</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bag of Words Model

- For now, we do not consider the order of words in a document.
 - “John is quicker than Mary” and “Mary is quicker than John” are represented the same way.
- This is called a **bag of words model**.
 - In a sense, this is a step back: The positional index was able to distinguish these two documents.
 - We will look at recovering positional information later in this module.
Term Frequency TF

- The term frequency $tf_{t,d}$ of term t in document d is defined as:
 the number of times that t occurs in d.
- We want to use tf when computing query-document match scores.
- However, raw term frequency is often not what we want.
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term, but not 10 times more relevant.
 - Relevance does not increase proportionally with term frequency.
The effect of non-proportional increases can be seen in other areas as well

- Economics: The law of diminishing returns (e.g., sowing)
- Biology: Human senses operate logarithmically (e.g., 10 times increase in sound volume is perceived as being twice as loud)

The term frequencies can be weighted in a similar way.
Log Frequency Weighting

The log frequency weight of term t in d is defined as follows:

$$w_{t,d} = \begin{cases}
1 + \log_{10} \text{tf}_{t,d} & \text{if } \text{tf}_{t,d} > 0 \\
0 & \text{otherwise}
\end{cases}$$

- $0 \rightarrow 0$, $1 \rightarrow 1$, $2 \rightarrow 1.3$, $10 \rightarrow 2$, $1000 \rightarrow 4$, etc.
- The score for a document-query pair: sum over terms t in both q and d:
 $$\text{matching-score} = \sum_{t \in q \cap d}(1 + \log \text{tf}_{t,d})$$
- The score is 0 if none of the query terms is present in the document.
Document Frequency

- A document containing a query term is more likely to be relevant than a document that doesn’t, but that’s not the whole story.
- Rare terms are more informative than frequent terms.
 - For instance, a collection of documents on the auto industry is likely to have the term auto in almost every document: a document containing the term auto is not very relevant for a query containing the term auto.
 - Now, consider a term in the query that is rare in the collection (e.g., arachnocentric): a document containing this term is very likely to be relevant.
Document Frequency

- We want to have high weights for rare terms; and low weights (but still larger than 0) for common terms.
- We will use document frequency to factor this into computing the matching score.
- The higher the document frequency, the lower the weight (and vice versa)
Inverse Document Frequency

- The document frequency df_t of term t is the number of documents that t occurs in (with N documents in the collection).
 - df_t is an inverse measure of t’s informativeness.

- We define the idf weight of term t as follows (note the logarithmic weighting):

$$idf_t = \log_{10} \frac{N}{df_t}$$

- idf_t is a measure of t’s informativeness.
Effect on Ranking

- The idf affects the ranking of documents only if the query has at least two terms.
 - For example, in the query “arachnocentric line”, idf weighting increases the relative weight of ‘arachnocentric’ and decreases the relative weight of ‘line’.

- The idf has no effect on ranking for one-term queries.
TF-IDF Weighting

- The tf-idf weight of a term is the product of its tf weight and its idf weight:

\[w_{t,d} = (1 + \log \text{tf}_{t,d}) \cdot \log \frac{N}{\text{df}_t} \]

- One of the best known weighting schemes in information retrieval
- Note: the “-” in tf-idf is a hyphen, not a minus sign!
- Alternative names: tf.idf, tfxidf
We will now use a matrix containing the tf-idf weights:

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.

<table>
<thead>
<tr>
<th></th>
<th>Anthony and Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthony</td>
<td>5.25</td>
<td>3.18</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.35</td>
</tr>
<tr>
<td>Brutus</td>
<td>1.21</td>
<td>6.10</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Caesar</td>
<td>8.59</td>
<td>2.54</td>
<td>0.0</td>
<td>1.51</td>
<td>0.25</td>
<td>0.0</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0.0</td>
<td>1.54</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>2.85</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>mercy</td>
<td>1.51</td>
<td>0.0</td>
<td>1.90</td>
<td>0.12</td>
<td>5.25</td>
<td>0.88</td>
</tr>
<tr>
<td>worser</td>
<td>1.37</td>
<td>0.0</td>
<td>0.11</td>
<td>4.15</td>
<td>0.25</td>
<td>1.95</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Documents as Vectors

- So we have a $|V|$-dimensional real-valued vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.
 - Very high-dimensional: tens of millions of dimensions when you apply this to web search.
 - Very sparse vector — most entries are zero.
Queries as Vectors

- Key idea 1: do the same for queries: represent them as vectors in the space
- Key idea 2: rank documents according to their proximity to the query (proximity = similarity)
 - Recall: we’re doing this because we want to get away from the you’re-either-in-or-out Boolean model.
 - Instead: rank more relevant documents higher than less relevant documents
Formalizing Vector Space Similarity

- First cut: the distance between two points (i.e., the end points of the two vectors)
- Euclidean distance?
 - Euclidean distance is a bad idea . . .
 - . . . because Euclidean distance is large for vectors of different lengths.
Why Distance is a Bad Idea

The Euclidean distance of \vec{q} and \vec{d}_2 is large although the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.
Use Angle Instead of Distance

- Rank the documents according to their *angles* with the query
 - Thought experiment: take a document d and append it to itself, call this document d'
 - “Semantically” d and d' have the same content.
 - The angle between the two documents is 0, corresponding to maximal similarity.
 - The Euclidean distance between the two documents can be quite large.
 - Thus, measuring the angle θ between the query vector and a document vector is much better.
Illustration

The diagram illustrates vectors $\vec{v}(d_1)$, $\vec{v}(q)$, $\vec{v}(d_2)$, and $\vec{v}(d_3)$ in a 2D coordinate system with axes labeled 'gossip' and 'jealous'. The angle θ is marked between $\vec{v}(d_1)$ and $\vec{v}(q)$. The origin is at the bottom left corner.
From Angles to Cosines

- As all vector components are ≥ 0, all vectors are in the same quadrant
- We only have angles between 0° and 90°
- The cosine is a monotonically decreasing function of the angle for the interval $[0^\circ, 90^\circ]$
 - The larger the angle θ, the smaller the cosine of θ
 - The smaller the angle θ, the larger the cosine of θ
From Angles to Cosines

- The following two notions are equivalent.
 - Rank documents according to the *angle* between query and document in increasing order
 - Rank documents according to the *cosine* of the angle(query,document) in decreasing order

- The cosine of an angle can be computed more easily than the angle itself
Computing the Cosine

The cosine between a vector \(\vec{x} \) and a vector \(\vec{y} \) is computed as follows:

\[
\cos \theta = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}| \cdot |\vec{y}|}
\]

where \(\cdot \) is the dot product (or inner product) of vectors \(\vec{x} \cdot \vec{y} = \sum_{i=1}^{k} x_i y_i \) and \(|\vec{x}| = \sqrt{\sum_{i=1}^{k} x_i^2} \) is the length of a vector.
Computing the Cosine

- So the matching-score of a document d_j with regard to a query q is

$$\frac{\vec{q} \cdot \vec{d}_j}{|\vec{q}| \cdot |\vec{d}_j|}$$

- The vectors \vec{q} and \vec{d}_j are made up of tf-idf weights
- The length is used for normalization purposes
 (every matching-score is between 0 and 1)
Algorithm

```plaintext
COSINESCORE(q)
1  float Scores[N] = 0
2  Initialize Length[N]
3  for each query term t
4    do calculate \( w_{t,q} \) and fetch postings list for t
5      for each pair \( (d, \text{tf}_{t,d}) \) in postings list
6        do Scores[d] += \( \text{tf}_{t,d} \times w_{t,q} \)
7  Read the array Length[d]
8  for each \( d \)
9    do Scores[d] = Scores[d] / Length[d]
10   return Top K components of Scores[]
```

- The array \(\text{Length} \) contains the lengths of each document (used for normalization)
- We don’t need to divide by the query length (as this is just a constant factor)
Variants

- There are variants for tf-idf factors: a ranking is called a tf-idf ranking, when the importance of a document
 - increases with the number of occurrences within a document
 - decreases with the number of occurrences of the term in the collection
Variants

<table>
<thead>
<tr>
<th>Term frequency</th>
<th>Document frequency</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (natural)</td>
<td>tf<sub>t,d</sub></td>
<td>n (no)</td>
</tr>
<tr>
<td>l (logarithm)</td>
<td>1 + log(tf<sub>t,d</sub>)</td>
<td>t (idf) log<sub>df</sub><sub>t</sub></td>
</tr>
<tr>
<td>a (augmented)</td>
<td>0.5 + \frac{0.5 \times tf<sub>t,d</sub>}{\max_i(t_f,i,d)}</td>
<td>p (prob idf) max{0, \log \frac{N - df_t}{df_t}}</td>
</tr>
<tr>
<td>b (boolean)</td>
<td>\begin{cases} 1 & \text{if } tf_{t,d} > 0 \ 0 & \text{otherwise} \end{cases}</td>
<td>u (pivoted unique) 1/u (Section 6.4.4)</td>
</tr>
<tr>
<td>L (log ave)</td>
<td>\frac{1 + \log(tf_{t,d})}{1 + \log(\text{ave}{i \in d}(tf{i,d}))}</td>
<td>b (byte size) \frac{1}{\text{CharLength}^\alpha}, \alpha < 1</td>
</tr>
</tbody>
</table>

- The logarithmic one is most popular
- According to Zobel and Moffat, there is no big difference in terms of quality for most tf-idf heuristics
Variants

- We often use *different weightings* for queries and documents.
- Notation: qqq.ddd
 - Example: ltn.lnc
 - query: logarithmic tf, idf, no normalization
 - document: logarithmic tf, no df weighting, cosine normalization
- bnn.ltc can be computed quite efficiently
 - Only multiplication with 0 or 1 in line 6 of the algorithm
Summary

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity between the query vector and each document vector
- Rank documents with respect to the query
- Return the top k (e.g., $k = 20$) to the user