Information Retrieval and Organisation

Dell Zhang

Birkbeck, University of London

2014/15
Dictionaries and Tolerant Retrieval
Dictionaries

- Dictionary: the data structure for storing the term vocabulary

<table>
<thead>
<tr>
<th></th>
<th>postings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brutus</td>
<td>1 2 4 11 31 45 173 174</td>
</tr>
<tr>
<td>Caesar</td>
<td>1 2 4 5 6 16 57 132</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>2 31 54 101</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

dictionary

postings
Storing Dictionaries

- For each term, we need to store a couple of items:
 - document frequency
 - pointer to postings list
 - ...

- Assume for the time being that
 - we can store this information in a fixed-length entry
 - we store these entries in an array
Storing Dictionaries

<table>
<thead>
<tr>
<th>term</th>
<th>document frequency</th>
<th>pointer to postings list</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>656,265</td>
<td>→</td>
</tr>
<tr>
<td>aachen</td>
<td>65</td>
<td>→</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>zulu</td>
<td>221</td>
<td>→</td>
</tr>
</tbody>
</table>

space needed: 20 bytes 4 bytes 4 bytes

- How do we look up an element in this array at query time?
- Remember: these dictionaries can be huge, scanning is not an option
Data Structures

- Two main classes of data structures: hash tables and trees
 - Some IR systems use hash tables, some use trees.
- Criteria for when to use hash tables vs trees:
 - Is there a fixed number of terms or will it keep growing?
 - What are the relative frequencies with which various keys will be accessed?
 - How many terms are we likely to have?
Hash Tables

- Each vocabulary term is hashed into an integer.
- Try to avoid collisions
- At query time, do the following:
 - hash query term
 - resolve collisions
 - locate entry in fixed-width array
- Pros:
 - Lookup in a hash table is faster than in a tree.
- Cons:
 - no prefix search (all terms starting with automat)
 - need to rehash everything periodically if vocabulary keeps growing
Trees

- Trees solve the prefix problem (find all terms starting with *automat*).
- Simplest tree: binary tree.
- However, binary trees are problematic:
 - Only balanced trees allow efficient retrieval
 - Rebalancing binary trees is expensive
- Use B-trees (the index structure that you know from database lectures)
B-Tree

Taken from documentation for Oracle 10g
Wildcard Queries

- **mon***: find all docs containing any term beginning with *mon*
 - Easy with B-tree dictionary
 - retrieve all terms t in the range: $\text{mon} \leq t < \text{moo}$
- ***mon**: find all docs containing any term ending with *mon*
 - Maintain an additional tree for terms backwards, then
 - retrieve all terms t in the range: $\text{nom} \leq t < \text{non}$
At this point, we have an enumeration of all terms in the dictionary that match the wildcard query.

We still have to look up the postings for each enumerated term.

- e.g., consider the query: gen* AND universit*

This may result in the execution of many Boolean AND queries.
Wildcards in Middle of Term

▶ Example: m*nchen
▶ We could look up m* and *nchen in the B-tree and intersect the two term sets.
 ▶ Expensive (there are probably thousands and thousands of terms beginning with “m”)
▶ Alternative: *permuterm* index
 ▶ Basic idea: Rotate every wildcard query, so that the * occurs at the end.
Permuterm Index

▶ For term hello: add
 hello$, ello$h, llohe, lohel, o$hell, and $hello
to the B-tree where $ is a special symbol
Permuterm Index

- Queries
 - For X, look up X$
 - For X*, look up X
 - For *X, look up X$*
 - For *X*, look up X*
 - For X*Y, look up Y$X*$

- Example:
 - For hel*o, look up o$hel*$

- It’s really a tree and should be called permuterm tree
- But permuterm index is more common name.
Once we modified the query (as shown on last slide), we can do a regular lookup on a B-tree.

This is much faster than looking up X* and *Y and combining results (for query X*Y).

Permuterm index also handles leading wildcards: *X.

It has a disadvantage, though: quadruples the size of the dictionary compared to a regular B-tree (as every term is stored multiple times).
k-gram Index

- More space-efficient than permuterm index
- Enumerate all character k-grams (sequence of k characters) occurring in a term
 - 2-grams are also called bigrams
 - 3-grams are also called trigrams

- Example:
 - from *April is the cruelest month*
 - we get the bigrams:
 a a a a ap ap ap pr pr ri ri il il i i i i is is s s s s t t th th he he e e c c c c cr cr ru ru ue ue e e l l e e l
 es es st st t t sm m m m mo mo mo mo on on nt nt h
 - $<$ is a special word boundary symbol.
- Maintain an inverted index from bigrams to the terms that contain the bigram
Postings List in a 3-gram Index

Note that we now have two different types of inverted indexes

- The term-document inverted index for finding documents based on a query consisting of terms
- The k-gram index for finding terms based on a query consisting of k-grams
Processing Wildcard Queries

- Query `mon*` can now be run as:
 `$m \text{ AND } mo \text{ AND } on$
- Gets us all terms with the prefix `mon` . . .
- . . . but also many “false positives” like `moon`
- We must post-filter these terms against query
- Surviving terms are then looked up in the term-document inverted index.
- k-gram indexes are fast and space efficient (compared to permuterm indexes).
Processing Wildcard Queries

- We must potentially execute a large number of Boolean queries for each enumerated, filtered term (on the term-document index)
 - Recall the query: gen* AND universit*
 - Most straightforward semantics: Conjunction of disjunctions
 - Very expensive

- Users hate to type
 - If abbreviated queries like pyth* theo* for pythagoras’ theorem are legal, users will use them . . .
 - . . . a lot
Spelling Correction

- Two principal uses
 - Correcting documents being indexed
 - Correcting user queries

- Two different methods
 - *Isolated Word* Spelling Correction
 - Check each word on its own for misspelling
 - Will not catch typos resulting in correctly spelled words, e.g., *an asteroid that fell form the sky*
 - *Context-Sensitive* Spelling Correction
 - Look at surrounding words
 - Can correct the *form/from* error above
Correcting Documents

- We’re not interested in interactive spelling correction of documents (e.g., MS Word) in this class.
- In IR, we use document correction primarily for OCR’ed documents (i.e. documents digitized via Optical Character Recognition)
- The general philosophy in IR is: don’t change the documents.
Correcting Queries

- First: isolated word spelling correction
 - Fundamental premise 1: There is a list of “correct words” from which the correct spellings come.
 - Fundamental premise 2: We have a way of computing the distance between a misspelled word and a correct word.

- Simple spelling correction algorithm: return the “correct” word that has the smallest distance to the misspelled word.
 - Example: `informaton` \rightarrow `information`
Correcting Queries

- Can we use the term vocabulary of the inverted index as the list of correct words?
 - It can be very biased
 - It may be missing certain terms

- Alternatives:
 - A standard dictionary
 (Webster’s, Encyclopædia Britannica, etc.)
 - An industry-specific dictionary
 (for specialized IR systems)
 - The term vocabulary of the collection, appropriately weighted
Computing Distance

- How can we compute the distance between words?
- We’ll look at some alternatives:
 - edit distance (Levenshtein distance)
 - weighted edit distance
 - k-gram overlap
The (minimum) edit distance between two strings s_1 and s_2 is the minimum number of basic operations to convert s_1 to s_2.

Levenshtein distance: the admissible basic operations are: insert, delete, and replace

- Levenshtein distance $dog \rightarrow do$: 1 (deletion)
- Levenshtein distance $cat \rightarrow cart$: 1 (insertion)
- Levenshtein distance $cat \rightarrow cut$: 1 (replacement)
- Levenshtein distance $cat \rightarrow act$: 2
 (2 replacements or 1 insertion and 1 deletion)
Computing Distance

Getting from $cats$ to $fast$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>f</th>
<th>a</th>
<th>s</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>→ f</td>
<td>→ fa</td>
<td>→ fas</td>
<td>→ fast</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>→ f</td>
<td>→ fa</td>
<td>→ fas</td>
<td>→ fast</td>
</tr>
<tr>
<td>a</td>
<td>ca</td>
<td>→ f</td>
<td>→ fa</td>
<td>→ fas</td>
<td>→ fast</td>
</tr>
<tr>
<td>t</td>
<td>cat</td>
<td>→ f</td>
<td>→ fa</td>
<td>→ fas</td>
<td>→ fast</td>
</tr>
<tr>
<td>s</td>
<td>cats</td>
<td>→ f</td>
<td>→ fa</td>
<td>→ fas</td>
<td>→ fast</td>
</tr>
</tbody>
</table>

Each cell will contain the (cheapest) cost of getting from the string on the left-hand side to the string on the right-hand side.
Computing Distance

- We know the costs for the uppermost row and the leftmost column:
 - we have to get from "" to fast by inserting characters
 - we have to get from cats to "" by deleting characters

<table>
<thead>
<tr>
<th></th>
<th>""</th>
<th>f</th>
<th>a</th>
<th>s</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>""</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computing Distance

- For other cells, take the minimum of costs
 - Coming from (a):
 - add 1 to cost in (a) — insertion
 - Coming from (b):
 - add 1 to cost in (b) — deletion
 - Coming from (c):
 - if characters in row and column are equal, copy cost from (c)
 - otherwise, add 1 to cost in (c) — replacement
Computing the costs for all cells results in the following matrix:

<table>
<thead>
<tr>
<th></th>
<th>“”</th>
<th>f</th>
<th>a</th>
<th>s</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>“”</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>t</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>s</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

So the Levenshtein distance is 3
Algorithm

\textbf{EDITDISTANCE}(s_1, s_2)

1 \hspace{1em} \textit{int} m[i, j] = 0
2 \hspace{1em} \textbf{for} i \leftarrow 1 \hspace{1em} \textbf{to} \hspace{1em} |s_1| \hspace{1em} \textbf{do} m[i, 0] = i
3 \hspace{1em} \textbf{for} j \leftarrow 1 \hspace{1em} \textbf{to} \hspace{1em} |s_2| \hspace{1em} \textbf{do} m[0, j] = j
4 \hspace{1em} \textbf{for} i \leftarrow 1 \hspace{1em} \textbf{to} \hspace{1em} |s_1| \hspace{1em} \textbf{do} \hspace{1em} \textbf{for} j \leftarrow 1 \hspace{1em} \textbf{to} \hspace{1em} |s_2| \hspace{1em} \textbf{do} m[i, j] = \min\{m[i - 1, j - 1] + \text{ if } (s_1[i] = s_2[j]) \text{ then } 0 \text{ else } 1 \text{ fi, } m[i - 1, j] + 1, m[i, j - 1] + 1\}
5 \hspace{1em} \textbf{return} m[|s_1|, |s_2|]
Weighted Edit Distance

- As Levenshtein distance, but weight of an operation depends on the characters involved.
- Meant to capture keyboard errors
 - e.g., m more likely to be mistyped as n than as q.
 - therefore, replacing m by n is a smaller edit distance than by q.
- We now require a weight matrix as input.
- Modify dynamic programming to handle weights.
Using Edit Distances

- Comparing query term q to all terms in the vocabulary is too expensive
- Solution: use heuristics to determine subset
 - Only compare to terms beginning with the same letter (doesn’t work for typos at beginning)
 - Generate set of rotations for q and use a permuterm index (doesn’t work well for replacements)
 - For each rotation, omit a suffix of l characters before doing lookup in permuterm index
 - Ensures that each term in query rotation shares a substring with retrieved terms
 - The value of l could be fixed to a constant length (e.g. 2), or depend on the length of q
Using a k-gram Index

- Enumerate all k-grams in the query term
- Use the k-gram index to retrieve “correct” words that match query term k-grams
- Threshold by number of matching k-grams
 - e.g., only vocabulary terms that differ by at most 3 k-grams
Example with 2-grams

- Suppose the misspelled word is “bordroom”:
 $b, bo, or, rd, dr, ro, oo, om, m$

```
bo → aboard → about → boardroom → border
or → border → lord → morbid → sordid
rd → aboard → ardent → boardroom → border
```
Example with 3-grams

- Suppose the correct word is “november”:
 $$n, \, no, \, nov, \, ove, \, vem, \, emb, \, mbe, \, ber, \, er, \, r$$

- And the query term is “december”:
 $$d, \, de, \, dec, \, ece, \, cem, \, emb, \, mbe, \, ber, \, er, \, r$$

- So 5 trigrams overlap (out of 10 in each term)

- Issue: Fixed number of k-grams that differ does not work for words of differing length.

- How can we turn this into a normalized measure of overlap?
Jaccard Coefficient

- A commonly used measure of two sets’ overlap
- Let A and B be two sets
- Jaccard coefficient:

$$\frac{|A \cap B|}{|A \cup B|}$$

- A and B don’t have to be the same size.
- Always assigns a number between 0 and 1.

- Application to spelling correction: declare a match if the coefficient is, say, > 0.8.
Context-Sensitive Correction

- Our example was:
 “an asteroid that fell form the sky”
- How can we correct form here?
- One idea: *hit-based* spelling correction
 - We’ll return back to this idea when we talk about the *probabilistic* approach to spelling correction, in the second half of the module.
Context-Sensitive Correction

- Given query “flew form munich”
- Retrieve the correct terms close to each query term
 - flea for flew
 - from for form
 - munch for munch
- Now try all possible resulting phrases as queries, with one word fixed at a time
 - Try query “flea form munich”
 - Try query “flew from munich”
 - Try query “flew form munch”
- The correct query “flew from munich” should have the most hits.
Context-Sensitive Correction

- The hit-based algorithm we just outlined is not very efficient.
 - Suppose we have 7 alternatives for *flew*, 19 for *form* and 3 for *munich*
 - Then we have to test $7 \times 19 \times 3$ different variants
- More efficient alternative: look at the collection of queries, not documents
 - This assumes that we log queries
General Issues

- **User interface**
 - Automatic or suggested correction
 - “Did you mean” only works for one suggestion.
 - What about multiple possible corrections?
 - Tradeoff: simple vs powerful UI

- **Cost**
 - Spelling correction is potentially expensive.
 - Avoid running on every query?
 - Maybe just on queries that match few documents.
Phonetic Matching

- Soundex is the basis for finding *phonetic* (as opposed to orthographic) alternatives.
 - e.g., Chebyshev / Tchebyscheff

- **Algorithm:**
 - Turn every token to be indexed into a 4-character reduced form
 - Do the same with query terms
 - Build and search an index on the reduced forms
Soundex Algorithm

1. Retain the first letter of the term.

2. Change all occurrences of the following letters to 0 (zero):
 - A, E, I, O, U, H, W, Y

3. Change letters to digits as follows:
 - B, F, P, V ⇒ 1
 - C, G, J, K, Q, S, X, Z ⇒ 2
 - D, T ⇒ 3
 - L ⇒ 4
 - M, N ⇒ 5
 - R ⇒ 6

4. Repeatedly remove one out of each pair of consecutive identical digits

5. Remove all 0s from the resulting string; pad the resulting string with trailing 0s, and return the first four positions, which will consist of a letter followed by three digits
Soundex Algorithm

Example

<table>
<thead>
<tr>
<th></th>
<th>difficulty</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>steps 1 and 2</td>
<td>d0ff0c0lt0</td>
<td>d0ff0r0nc0</td>
</tr>
<tr>
<td>step 3</td>
<td>d011020430</td>
<td>d011060520</td>
</tr>
<tr>
<td>step 4</td>
<td>d01020430</td>
<td>d01060520</td>
</tr>
<tr>
<td>step 5</td>
<td>d124</td>
<td>d165</td>
</tr>
</tbody>
</table>

- Vowels are viewed as being interchangeable
- Consonants with similar sounds (e.g. D and T) are put in equivalence classes
- Works fairly well for European languages
Summary

- How to organize a dictionary of an inverted index
- How to do imprecise searches on this dictionary handling
 - wildcards
 - spelling mistakes