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Abstract

We present a stochastic model for a social network, where new actors may join the network, existing actors may become
inactive and, at a later stage, reactivate themselves. Our model captures the evolution of the network, assuming that actors
attain new relations or become active according to the preferential attachment rule. We derive the mean-field equations for
this stochastic model and show that, asymptotically, the distribution of actors obeys a power-law distribution. In partic-
ular, the model applies to social networks such as wireless local area networks, where users connect to access points, and
peer-to-peer networks where users connect to each other. As a proof of concept, we demonstrate the validity of our model
empirically by analysing a public log containing traces from a wireless network at Dartmouth College over a period of
three years. Analysing the data processed according to our model, we demonstrate that the distribution of user accesses
is asymptotically a power-law distribution.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We present a stochastic model for a social net-
work [23], where new actors may join the network,
existing actors may become inactive and, at a later
stage, may reactivate themselves. Our model cap-
tures the evolution of the network, assuming that
actors attain new relations or become active accord-
ing to the preferential attachment rule. The concept
of preferential attachment, originating from [19], has
become a common theme in stochastic models of

networks [2,16]. This behaviour often results in the
‘‘rich get richer’’ phenomenon, for example, where
new relations to existing actors are formed in pro-
portion to the number of relations those actors cur-
rently have.

The model presented incorporates the novel
aspect of differentiating between active and inactive
actors, and allowing actors’ status to change
between active and inactive over time. This type of
network dynamics is especially relevant to situations
where actors may connect/disconnect or login/log-
out from the network, in particular, when network
registration is needed as a prior condition to the first
time an actor connects to the network. The network
models proposed so far either assume that all actors
are active, or that when actors leave the network
they do not rejoin it [3].
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By deriving the mean-field equations for this
model of a social network, we obtain the result that,
asymptotically, the distribution of actors obeys a
power law. Power-law distributions taking the form

f ðiÞ ¼ Ci�/;

where C and / are positive constants, are abundant
in nature [22]. The constant / is called the exponent

of the distribution. Examples of such distributions
are: Zipf’s law, which states that the relative fre-
quency of a word in a text is inversely proportional
to its rank, Pareto’s law, which states that the num-
ber of people whose personal income is above a
certain level follows a power-law distribution with
an exponent between 1.5 and 2 (Pareto’s law is also
known as the 80:20 law, stating that about 20% of
the population earn 80% of the income) and Lotka’s

law, which states that the number of authors pub-
lishing a prescribed number of papers is inversely
proportional to the square of the number of
publications.

Recently, several researchers have detected
power-law distributions in the topology of several
networks such as the World-Wide-Web [4], e-mail
networks [5], collaboration networks [8,10] and
peer-to-peer networks [20].

There are several examples of networks that can
be modelled within our formalism. One example is
that of a wireless network [12], where mobile users
having, e.g., a laptop, PDA or mobile phone, con-
nect to access points within a defined region (e.g.,
campus, building or airport). In this case the actors
are the users and the relations are between users and
access points. The user is active during a connection
and inactive otherwise. Another example is that of a
peer-to-peer network [17], where users (referred to
as peers) connect to other peers in order to exchange
information. Peer-to-peer networks are of prime
importance to the future of the Internet, as net-
works such as Bittorrent [18], Kazaa [15] and Skype
[11] are becoming increasingly popular and thus
account for a sizeable amount of all Internet traffic.

Our stochastic model is based on the transfer of
balls (representing actors) between urns (represent-
ing actor states), where we distinguish between
active balls in, regular, unstarred urns and inactive
balls in starred urns. The relationships of a particu-
lar actor are represented as pins attached to the cor-
responding ball.

We note that our urn model is an extension of the
stochastic model proposed by Simon in his vision-
ary paper published in 1955 [24], which was couched

in terms of word frequencies in a text. Previously, in
[8], we considered an alternative extension of
Simon’s model by adding a preferential mechanism
for discarding balls from urns resulting in an expo-
nential cutoff in the power-law distribution.

In the model we present here, at each step of the
stochastic process, with probability p, two events
may happen: either a new active ball is added to
the first unstarred urn with probability r, or with
probability 1 � r an inactive ball is selected prefer-
entially from a starred urn and is activated by mov-
ing it to the corresponding unstarred urn.
Alternatively, with probability 1 � p, an active ball
is selected preferentially from an unstarred urn
and then two further events may happen: it is either
moved along to the next unstarred urn with proba-
bility q, or with probability 1 � q the selected ball
becomes inactive by moving it to the corresponding
starred urn. We assume that a ball in the ith urn has
i pins attached to it (which represents an actor hav-
ing i relations). Our main result is that the steady-
state distribution of this model is an asymptotic
power law, and, moreover, as a proof of concept
we demonstrate the validity of our model by analy-
sing a large data set from a real wireless network.

The rest of the paper is organised as follows. In
Section 2 we present an urn transfer model allowing
balls to be active or inactive by moving from starred
urns to unstarred urns and vice versa. We then
derive in Section 3 the steady-state distribution of
the model, which, as stated earlier, follows an
asymptotic power-law distribution. In Section 4
we show how we can fit the parameters of the model
to data, and in Section 5 we demonstrate how our
model can provide an explanation of the empirical
distributions found in wireless networks. Finally,
in Section 6 we give our concluding remarks.

2. An urn transfer model

We now present an urn transfer model for a sto-
chastic process that emulates the situation where
balls (which might represent actors) become inactive
with a small probability, and can later become
active again with some probability. We assume that
a ball in the ith urn has i pins attached to it (which
might represent the actors’ relations). The model is
an extension of our previous model of exponential
cutoff [6], where balls are discarded with a small
probability.

We assume a countable number of (unstarred)
urns, urn1,urn2,urn3, . . . and correspondingly a
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countable number of starred urns urn�1; urn�2;
urn�3; . . ., where the former contain active balls and
the latter contain the inactive balls. Initially all of
the urns are empty except urn1, which has one ball
in it. Let Fi(k) and F �i ðkÞ be the number of balls in
urni and urn�i , respectively, at stage k of the stochas-
tic process, so F1(1) = 1, all other Fi(1) = 0 and all
F �i ð1Þ ¼ 0. Then, at stage k + 1 of the stochastic
process, where k P 1, one of two events may occur:

(i) with probability p, 0 < p < 1, one of two
events may happen:
(a) with probability r, 0 < r 6 1, a new ball

(with one pin attached to it) is inserted
into urn1, or

(b) with probability 1 � r, a starred urn is
selected, with urn�i being selected with
probability proportional to iF �i ðkÞ, the
number of pins it contains, and a ball
is chosen from the selected urn, urn�i ,
and transferred to urni (this is equivalent
to making the ball active).

(ii) with probability 1 � p an urn is selected, with
urni being selected with probability propor-
tional to iFi(k), the number of pins it contains,
and a ball is chosen from the selected urn, urni;
then,
(a) with probability q, 0 < q 6 1, the chosen

ball is transferred to urni+1, (this is
equivalent to attaching an additional
pin to the ball chosen from urni), or

(b) with probability 1 � q the ball chosen is
transferred to urn�i (this is equivalent to
making the ball inactive).

We note that we have modelled only atomic
events pertaining to one ball or pin, but this could
be generalised in a straightforward manner to com-
posite events by aggregating several atomic events at
any given time. Herein we do not model removal of
pins from balls nor do we allow balls to be removed
from the system; see [7,6], respectively, where we
consider such scenarios with only unstarred urns.
We leave this more complex problem for future
research.

We further remark that we could modify the ini-
tial conditions so that, for example, urn1 and urn�1
initially contained d,d* > 1 balls, respectively,
instead of urn1 having just one ball and urn�1 being
empty. It can be shown, from the development of
the model below, that any change in the initial con-
ditions will have no effect on the asymptotic distri-

bution of the balls in the urns as k tends to
infinity, provided the process does not terminate
with either all of the unstarred urns empty or all
of the starred urns empty (cf. [6]). In the former case
we need to ensure that p > (1 � p) (1 � q), i.e., that
the number of balls going into unstarred urns is
greater than the number of balls going out of them.
In the latter case we need to ensure that
(1 � p)(1 � q) > p(1 � r), i.e., that the number of
balls going into starred urns is greater than the
number of balls going out of them.

More specifically, the probability of termination
must be small, i.e.,

ð1� pÞð1� qÞ
p

� �d

< �

and

pð1� rÞ
ð1� pÞð1� qÞ

� �d�

< �

for some � > 0. We observe that these are the prob-
abilities that the gambler’s fortune will not increase
forever [21].

The expected total number of balls in the
unstarred urns at stage k is given by

E
Xk

i¼1

F iðkÞ
 !

¼ 1þ ðk � 1Þðp � ð1� pÞð1� qÞÞ

¼ ð1� pÞð2� qÞ
þ kðp � ð1� pÞð1� qÞÞ; ð1Þ

and in the starred urns by

E
Xk

i¼1

F �i ðkÞ
 !

¼ ðk � 1Þðð1� pÞð1� qÞ � pð1� rÞÞ:

ð2Þ

The total number of pins attached to balls in urni at
stage k is iFi(k), so the expected total number of pins
in the unstarred urns is given by

E
Xk

i¼1

iF iðkÞ
 !

¼ 1þ ðk � 1Þðrp þ ð1� pÞqÞ þ pð1� rÞ

�
Xk�1

j¼1

wj � ð1� pÞð1� qÞ
Xk�1

j¼1

hj; ð3Þ

where wj, 1 6 j 6 k � 1, is the expectation of W0j, the
number of pins attached to the ball chosen at step
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(ib) of stage j + 1 (i.e., the urn number), and hj, 1 6
j 6 k � 1, is the expectation of H0j, the number of
pins attached to the ball chosen at step (iib) of stage
j + 1 (i.e., the urn number). More specifically,

wj ¼ EðW0jÞ ¼ E

Pj
i¼1i2F �i ðjÞPj
i¼1iF �i ðjÞ

 !
ð4Þ

and

hj ¼ EðH0jÞ ¼ E

Pj
i¼1i2F iðjÞPj
i¼1iF iðjÞ

 !
: ð5Þ

The quotient of sums in the second expectation in
(4) (respectively in (5)), which we denote by Wj

(respectively by Hj), is the expected value of W0j
(respectively of H0j) given the state of the model at
stage j.

Correspondingly, the expected total number of
pins in the starred urns is given by

E
Xk

i¼1

iF �i ðkÞ
 !

¼ ð1� pÞð1� qÞ
Xk�1

j¼1

hj� pð1� rÞ
Xk�1

j¼1

wj:

ð6Þ

Since at stage j + 1 there cannot be more than j pins
in the system, it follows that:

1 6 hj; wj 6 j:

Now let

hðkÞ ¼ 1

k

Xk

j¼1

hj

and

wðkÞ ¼ 1

k

Xk

j¼1

wj:

Since there are at least as many pins (starred pins) in
the system as there are balls (starred balls), it fol-
lows from, (1) and (3), and, (2) and (6), that

ð1� pÞð1� qÞ � pð1� rÞ
6 ð1� pÞð1� qÞhðkÞ � pð1� rÞwðkÞ

6 ð1� pÞ � pð1� rÞ; ð7Þ

which implies that h(k) � w(k) is bounded. This
bounded difference will suffice for the purpose of
the developments in the next section and we will de-
note h(1) by h and w(1) by w.

3. Derivation of the steady-state distribution

Following Simon [24], we now state the mean-
field equations for the urn transfer model. For
i > 1 we have

EkðF iðk þ 1ÞÞ ¼ F iðkÞ þ bkðqði� 1ÞF i�1ðkÞ
� iF iðkÞÞ þ akð1� rÞiF �i ðkÞ; ð8Þ

where Ek(Fi(k + 1)) is the expected value of
Fi(k + 1) given the state of the model at stage k, and

bk ¼
1� pPk
i¼1iF iðkÞ

; ð9Þ

ak ¼
pPk

i¼1iF �i ðkÞ
ð10Þ

are the normalising factors.
Eq. (8) gives the expected number of balls in urni

at stage k + 1. This is equal to the previous number
of balls in urni plus the probability of adding a ball
to urni minus the probability of removing a ball
from urni, and finally plus the probability of trans-
ferring a ball to urni from urn�i .

The first probability is just preferentially choos-
ing a ball from urni�1 and transferring it to urni in
step (iia) of the stochastic process defined in Section
2, the second probability is that of preferentially
choosing a ball from urni in step (iia) of the process,
and the third probability is that of preferentially
transferring a ball from urn�i to urni in step (ib) of
the process. In the boundary case, i = 1, we have

EkðF 1ðkþ1ÞÞ¼ F 1ðkÞþpr�bkF 1ðkÞþakð1� rÞF �1ðkÞ:
ð11Þ

Eq. (11) gives the expected number of balls in urn1

at stage k + 1, which is equal to the previous num-
ber of balls in urn1 plus the probability of inserting
a new ball into this urn in step (ia) of the stochastic
process defined in Section 2 minus the probability of
preferentially choosing a ball from urn1 in step (iia),
and finally plus the probability of preferentially
transferring a ball to urn1 from urn�1 in step (ib) of
the process.

For starred urns, for i P 1, corresponding to (8)
and (11), we have

EkðF �i ðk þ 1ÞÞ ¼ F �i ðkÞ þ bkð1� qÞiF iðkÞ
� akð1� rÞiF �i ðkÞ; ð12Þ

where EkðF �i ðk þ 1ÞÞ is the expected value of
F �i ðk þ 1Þ given the state of the model at stage k.
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Eq. (12) gives the expected number of balls in
urn�i at stage k + 1. This is equal to the previous
number of balls in urn�i plus the probability of pref-
erentially transferring a ball from urni to urn�i in step
(iib) of the stochastic process defined in Section 2
minus the probability of preferentially transferring
a ball from urn�i to urni in step (ib) of the process.

In order to solve the equations of the model,
namely (8), (11) and (12), we make the assumptions
that, for large k, the random variables bk and ak can
be approximated by constants (i.e., non-random)
values depending only on k. To this end we take
the approximations to be

b̂k ¼
1�p

ðk�1Þðrpþð1�pÞqþpð1� rÞwðk�1Þ �ð1�pÞð1�qÞhðk�1ÞÞ
ð13Þ

and

âk ¼
p

ðk � 1Þðð1� pÞð1� qÞhðk�1Þ � pð1� rÞwðk�1ÞÞ
:

ð14Þ

The motivation for the above approximations is
that the denominators in the definitions of bk and
ak have been replaced by asymptotic approxima-
tions of their expectations as given in (3) and (6),
respectively. We note en passant that replacing bk

by b̂k and ak by âk results in an approximation sim-
ilar to that of the ‘‘pk model’’ in [14], which is essen-
tially a ‘‘mean-field’’ approach.

We next take the expectations of (8), (11) and
(12). By the linearity of the expectation operator
E(Æ), we obtain

EðF iðk þ 1ÞÞ ¼ EðF iðkÞÞ þ b̂kðqði� 1ÞEðF i�1ðkÞÞ
� iEðF iðkÞÞÞ þ âkð1� rÞiEðF �i ðkÞÞ;

ð15Þ
EðF 1ðk þ 1ÞÞ ¼ EðF 1ðkÞÞ þ pr � b̂kEðF 1ðkÞÞ

þ âkð1� rÞEðF �1ðkÞÞ ð16Þ

and

EðF �i ðk þ 1ÞÞ ¼ EðF �i ðkÞÞ þ b̂kð1� qÞiEðF iðkÞÞ
� âkð1� rÞiEðF �i ðkÞÞ: ð17Þ

In order to obtain an asymptotic solution of (15)–
(17), we require that E(Fi(k))/k and EðF �i ðkÞÞ=k con-
verge to some values fi and f �i , respectively, as k

tends to infinity. Assume for the moment that this
is the case, then, provided the convergence is fast en-
ough, E(Fi(k + 1)) � E(Fi(k)) tends to fi and
EðF �i ðk þ 1ÞÞ � EðF �i ðkÞÞ tends to f �i as k tends to

infinity. By ‘‘fast enough’’ we mean that �i,k+1 �
�i,k = o(1/k) and ��i;kþ1 � ��i;k ¼ oð1=kÞ for large k,
where

EðF iðkÞÞ ¼ kðfi þ �i;kÞ and

EðF �i ðkÞÞ ¼ kðf �i þ ��i;kÞ:

Now, letting

b ¼ 1� p
rp þ ð1� pÞqþ pð1� rÞw� ð1� pÞð1� qÞh ;

ð18Þ

we see that bkE(Fi(k)) tends to bfi as k tends to infin-
ity, and letting

a ¼ p
ð1� pÞð1� qÞh� pð1� rÞw ; ð19Þ

we correspondingly see that akEðF �i ðkÞÞ tends to af �i
as k tends to infinity.

So, letting k tend to infinity, (15)–(17) yield, for
i > 1,

fi ¼ bðqði� 1Þfi�1 � ifiÞ þ að1� rÞif �i ;

for i = 1,

f1 ¼ pr � bf1 þ að1� rÞf �1
and for i P 1,

f �i ¼ bð1� qÞifi � að1� rÞif �i ;

whence

f �i ¼
bð1� qÞi

1þ að1� rÞi fi ð20Þ

and

f1 ¼
.prðsþ 1Þ

ð.þ 1Þðsþ 1Þ � ð1� qÞ ; ð21Þ

where . = 1/b and s = 1/(a(1 � r)). Hence

fi ¼ bðqði� 1Þfi�1 � ifiÞ þ
abð1� rÞð1� qÞi2

1þ að1� rÞi fi

and thus

fi ¼
qði� 1Þðsþ iÞ

ð.þ iÞðsþ iÞ � ð1� qÞi2
fi�1: ð22Þ

On using (22), repetitively, and (21), the solution to
fi is given by

fi ¼
.prCðiÞCðiþ sþ 1ÞCðxþ y þ 1ÞCðx� y þ 1Þ

Cðsþ 1ÞCðiþ xþ y þ 1ÞCðiþ x� y þ 1Þ ;

ð23Þ
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where

x ¼ .þ s
2q

;

y ¼ðð.þ sÞ2 � 4qs.Þ1=2

2q
;

and C is the gamma function, see Section 6.1 in [1].
Thus for large i, on using the asymptotic expan-

sion of the ratio of two gamma functions, see Sec-
tion 6.1.47 in [1], we obtain

fi �
C

i
.þð1�qÞs

q þ1
; ð24Þ

where � means is asymptotic to and

C ¼ .prCðxþ y þ 1ÞCðx� y þ 1Þ
Cðsþ 1Þ : ð25Þ

Moreover, it can easily be verified from (20) that

f �i ¼
1� q

.ð1=iþ 1=sÞ fi ð26Þ

and, from (24) and (26), it follows that:

fi þ f �i �
C

i
.þð1�qÞs

q þ1
1þ ð1� qÞ

.ð1=iþ 1=sÞ

� �
:

4. Fitting the parameters of the model

In order to validate the model we use the equa-
tions we have derived in Section 3 to fit the param-
eters of the model. As a first step we validate the
model through stochastic simulation, and then, in
Section 5, we provide a proof of concept on a large
data set of a real wireless network.

We note that the full set of parameters will, gen-
erally, be unknown for real data sets. The output
from each simulation run is the set of unstarred
and starred urns, from which we can infer ballsk

and balls�k , the expected number of balls at stage k

in the unstarred and starred urns, respectively, and
pinsk and pins�k , the expected number of pins in the
unstarred and starred urns, respectively. We are also
able to derive approximations for ballsk and balls�k ,
separately, and similarly for pins, based on their
definitions in Section 2.

From the formulation of the model in Section 2,
we have

ballsk þ balls�k
k

� pr; ð27Þ

where the right-hand side of (27) is the limiting va-
lue of the left-hand side as k tends to infinity. Sim-
ilarly, we have,

pinsk þ pins�k
k

� pr þ ð1� pÞq: ð28Þ

As a result, we can compute the branching factor,
bf, as

bf ¼ pinsk þ pins�k
ballsk þ balls�k

;

which eliminates k, and derive

p � 1

r=qðbf � 1Þ þ 1
: ð29Þ

The value of the parameter . can be computed from

. � pinsk

kð1� pÞ ; ð30Þ

which follows from (9) and the fact that . � (kbk)�1.
Similarly, s can be computed from

s � pins�k
kpð1� rÞ ; ð31Þ

which follows from (10) and the fact that
s � (kak(1 � r))�1. Moreover, the value of the con-
stant C can be derived from (25), given p, q, r, .
and s.

To fit the parameters we can now numerically
minimise the least squares ofXm

i

jurnij � Ckfi; ð32Þ

where k is the number of steps in the simulation,
jurnij denotes the number of balls in urni, m denotes
the number of urns over which the minimisation
takes place and fi is given by (23), in order to esti-
mate one or more of the parameters given knowl-
edge of the others. (For a justification of choosing
m to be the first gap in the urn set, i.e., such that
from i = 1 to m urni is non-empty and urnm+1 is
empty, see [7].)

We note that we have chosen to do a direct
numerical minimisation rather than use a regression
tool on the log–log transformation of the urn data
and try to fit a power-law distribution, since fitting
power-law distributions is problematic [9]. More-
over, the fi’s in our model obey only asymptotically
a power-law distribution and therefore we preferred
to fit the ‘‘correct’’ distribution with the ratio of
gamma functions, as given in (23).

T. Fenner et al. / Computer Networks 51 (2007) 4586–4595 4591
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To validate the simulation we fixed the input
parameters p, q, r and k and simulated the model
in Matlab as described at the beginning of Section
2. We fixed q = 0.9 and the number of simulation
steps to be k = 106, and varied p and r.

We first set p = 0.1 and r = 0.5. A typical output
of the simulation run produced ballsk = 10762,
balls�k ¼ 39200, pinsk = 77452 and pins�k ¼ 39200.
The left-hand side of (27) gives an approximation
of pr as 0.05, while its right-hand side gives the same
value. Correspondingly, the left-hand side of (28)
gives an approximation of pr + (1 � p)q as 0.8602,
while its right-hand side gives the value 0.86.
Finally, the left-hand side of (29) is just p, while
its right-hand side gives the approximated value
p = 0.0999.

Computing an estimate of . from (30) gives
0.0861, while an estimation of s from (31) gives
15.6541. In order to estimate . and s from the urn
data, we first fixed all the parameters in (23) apart
from C of (25), which we estimated, using (32), to
be C = 651950. We then fixed C, given in (25),
and numerically estimated . and s in turn obtaining
. = 0.0865 and s = 15.6541.

We next set p = 0.2 and r = 0.7. A typical simula-
tion run produced ballsk = 122179, balls�k ¼ 18997,
pinsk = 658273 and pins�k ¼ 201521. The left-hand
side of (27) gives an approximation of pr as 0.1406,
while its right-hand side gives the value pr = 0.14.
Correspondingly, the left-hand side of (28) gives an
approximation of pr + (1 � p)q as 0.8594, while its
right-hand side gives the value 0.86. Finally, the
left-hand side of (29) is just p, while its right-hand
side gives the approximated value p = 0.2009.

Computing an estimate of . from (30) gives
0.8228, while an estimate of s from (31) gives
3.3587. In order to estimate . and s from the urn
data, we first fixed all the parameters in (23) apart
from C of (25), which we estimated, using (32), to
be C = 15742. We then fixed C in (25) and numeri-
cally estimated . and s in turn obtaining . = 0.7983
and s = 3.35. Additional runs of the simulation
produced similar results in terms of their accuracy.
We note that we limited m in (32) so that its maxi-
mum value was 90, due to numerical overflow of
the product of gamma functions for larger values
of m.

The simulations demonstrate that, given that the
data is consistent with the urn transfer model we
have defined in Section 2, numerical optimisation
can be used to accurately estimate the parameters
of the model.

5. Real social networks

As a proof of concept we made use of a public log
containing traces of the activity of users within a
campus-wide WLAN network recorded by the
Crawdad project (http://crawdad.cs.dartmouth.edu)
at the Centre for Mobile Computing at Dartmouth
College [13]. The data set we elected to work with
was collected during 2001–2003 using the syslog sys-
tem event logging facility available on the wireless
access points. Each access point was configured so
as to transmit a message logged at one of two dedi-
cated servers maintained by the project, every time
a client card authenticated, associated, reassociated,
disassociated or deauthenticated with the access
point. In total, approximately 13.5 million events
have been recorded during this period. To our
knowledge, at the moment, there are no other similar
longitudinal data sets of comparable size.

In the syslog records, client cards are identified
by their MAC addresses. It should be noted that
there is no one-to-one relationship between card
addresses, devices and users, since in some cases
one card may have been used with more than one
device and one device may have been using more
than one card. Moreover, a user may be using more
than one device. Mobility traces were computed
from the raw syslog messages for each device. A spe-
cial access point name signifies that a card is not
connected to the wireless network. This condition
was determined by the syslog message ‘‘Disauthen-
tication’’ from the last associated access point with
reason field ‘‘Inactivity’’. Such messages are com-
monly generated when the card is inactive for 30
minutes. For simplicity, from now on, we will refer
to a client card as a user.

In Fig. 1 we show the log–log plot of the number of
accesses of the active and inactive users at the end of
the trace period. From the figure we may conjec-
ture an asymptotic power-law distribution; but, as
can be seen, the tails are very fuzzy and therefore
regression or maximum likelihood methods are unli-
kely to succeed [9]. For this reason, as mentioned in
Section 4, we preferred to estimate the parame-
ters of the model numerically via least squares
minimisation.

Our model is fully specified by the four input
parameters p, q, r and k, as described in Section 2.
Of particular interest are the following probabilities:

1. pr, which is the rate at which new users join the
network and attain their first wireless connection.
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2. p(1 � r), which is the rate at which inactive users
become active again.

3. (1 � p)q, which is the rate at which active users
attain a new wireless connection without first dis-
connecting from the network.

4. (1 � p)(1 � q), which is the rate at which active
users become inactive.

5. k, which can be viewed as the life of the network,
assuming that the evolution takes place in dis-
crete time steps, where at each time step a single
change occurs in the network according to the
urn transfer model described in Section 2.

We processed the Dartmouth data set so that it
contains pairs of users and their activity, where each
user is identified by a client card and an activity cor-
responds to (1), (2), (3) or (4) above. We then esti-
mated the probabilities p, r and q from the data,
taking k to be the number of pairs processed. From
this we obtained, p = 0.0994, r = 0.0046, q = 0.8897
and k = 13559701.

Next we estimated . from (30) and s from (31),
obtaining . = 0.1244 and s = 6.9704. Using (24)
and (25) we estimated the exponent of the asymp-
totic power-law distribution as

.þ ð1� qÞs
q

þ 1 ¼ 2:0040:

As a validation of the model we populated the
unstarred and starred urns according to the activity

pairs from the processes data set. Then, using the
methodology described in Section 4, we numerically
minimised the least squares of the sum over i of the
differences between the number of balls in urni,
respectively urn�i , and the predicted number of balls
according to (23), respectively (26), in accordance
with (32). The fitted parameters we obtained from
the unstarred urns, using (23), were: q = 0.8901,
. = 0.1101 and s = 6.9648, yielding (. + (1 � q)s)/
q + 1 = 1.9836. The corresponding set of fitted
parameters obtained from the starred urns, using
(26), were: q = 0.8898, . = 0.1385 and s = 6.9473,
yielding (. + (1 � q)s)/q + 1 = 2.0161. As can be
seen the fitted parameters are consistent with the
ones we have mined from the original data set.

As a further validation of the model we ran a
simulation implemented in Matlab according to
the description of the stochastic process in Section
2, with the parameters k = 13559701, p = 0.0994,
r = 0.0046 and q = 0.8897 as mined from the data
set. We note that

p ¼ 0:0994 > ð1� pÞð1� qÞ ¼ 0:0993

and

ð1� pÞð1� qÞ ¼ 0:0993 > pð1� rÞ ¼ 0:0989

as required in the specification of the stochastic pro-
cess in Section 2. So, for the probability of termina-
tion, with either all starred or unstarred urns being
empty, to be less than 0.1 we should set the initial

Fig. 1. Log–log plot of wireless users’ activity.
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number of balls in urn1 to be d = 3600, and the ini-
tial number of balls in urn�1 to be d* = 600. We ver-
ified this by running a simplified version of the
simulation, which only accounts for the total num-
ber of balls in starred and unstarred urns. Out of
ten simplified simulation runs with the above input
parameters, none terminated with all the unstarred
or starred urns being empty.

We decided in our simulation to ignore the prob-
lem of empty urns, the justification being that hav-
ing empty urns at some stage of the stochastic
process does not have much effect on the exponent
of the asymptotic power-law distribution, since by
(30) and (31) the exponent given in (24) is approxi-
mately proportional to pinsk þ pins�k , and by (28) the
total number of pins depends only on the input
parameters through independent random variables.

From pinsk and pins�k output from the simulation,
we computed . = 0.1054 from (30), s = 7.1442 from
(31), and finally the exponent of the asymptotic
power-law distribution was computed as (. +
(1 � q)s)/q + 1 = 2.0042. As can be seen, the output
from the simulation is consistent with the parame-
ters mined from the data; a second simulation with
the same input parameters produced similar results.

Overall, on the evidence from the computational
results , the urn transfer model, described in Section
2, is a viable model for a real social network, specif-
ically for the access patterns of users within the
Dartmouth wireless network.

6. Concluding remarks

We have presented an extension of Simon’s clas-
sical stochastic process where each actor can be
either in an active or an inactive state. Actors, cho-
sen by preferential attachment, may attain a new
relation, become inactive or later become active
again. The system is closed in the sense that once
an actor enters the system he remains within the sys-
tem. We have shown in (24) and (26) that, asymp-
totically, the number of active and inactive actors
having the prescribed number of relations is a
power-law distribution. As a proof of concept we
validated the model on a large real data set of wire-
less accesses over a lengthy period of time. The val-
idation made use of numerical optimisation rather
than using standard regression tools, due to the
known difficulty of detecting asymptotic power-
law distributions in data.

The stochastic model we have presented is rele-
vant to social networks where users may be active

or inactive at different times. Two such real-world
networks are wireless networks and peer-to-peer
networks, although it remains to validate our model
on a real peer-to-peer data set. In fact, our model
could also be used to model user activity in an e-
commerce portal or an online forum, where regis-
tration is required.
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