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ABSTRACT

Tn this paper we study nonmonotone learning rules,
based on an acceptabilily criterion for the caleulated
learning rate. Morc specifically, we impose that the er-
ror function value at each epoch musl satisfy an Armijo-
type criterion, with respect to the maximum error
function value of a predetermined number of previous
epochs. '[o test this approach, we propose two training
algorithms with adaptive learning rates that cmploy
the above meniioned aceeptability criterion. Experi-
mental results show thal the proposed algorithms have
considerably improved convergence speed, suceess rate,
and generalization, when compared with other classical
neural network training methods.

1. INTRODUCTION

The efficient supervised training of Feedforward Neural
Networks {I'NNs) is a subject of considerable ongoing
research and mumerous algorithms have been proposed
Lo Lhis end. ‘I'he special case of batch training of an
I'NN is consistent with the theory of unconstrained op-
timization, since the information from all the training
set is used.

Let us consider the family of gradient based training
algorithms having the iterative form

Wt = w4 Fdt, k=0,1,2,... (1)

where w* is the current weight vector, d* is a scarch
direction, and 5® is the learning rate. Various choices
of the direction d* give rise to distinct algorithms.
A broad class of methods uses the search direction
d* = —VE(w"), where the gradient VE(w) can be
obtained by means of backpropagalion of the crror
through the layers of the network, [n practice, a small
constant learning rale is chosen (0 < 5 < 1) in order
to secure the convergence ol the BP training algorithm
and to avoid oscillations in a direction where the error
function is steep. Tt is well known that this approach
tends to be inefficient.
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2, NONMONOTONE

BACKPROPAGATION TRAINING
While no learning rate acdaptation strategy will always
be optimal, it does scemn Lo be common sense to require
that E{wFT!) < B(w*). Tt must be noted thal this sim-
ple condition does not guarantee global convergence lor
general [unctions.

The use of learning rate adaptation strategies which
enforce monotonicity can considerably slow the rate of
traluing, or even lead to divergence and to premalure
saburation [6, 15], in cases where inappropriate values
for the eritical heuristic learning parameters arc used.
To alleviate these problems the usage ol monotone line
search stralegies has been suggested [7, 8], A strat-
egy of this kind consists in accepting a learning rate
n"* along the direction ¢* if it satislies the Wolfe condi-
tions:

E(w® + g d*y — B(w®) < oo™ (VE(w*),d"),  (2)
(VEWF + 97 d¥), d¥) > ao(VE@*),d"),  (3)

where 0 < a1 < o2 < 1 and (-, ) stands for the nsual
inner product in 13", The first inequality ensures that
the error is sufficiently reduced at each iteration and
the second prevents the learning rates from being too
smiall,

Although Wolle’s approach provides an eflicient and
effective way to cnsure that the crror function is glob-
ally reduced sulliciently, it possesses the disadvantage
that no information is stored and used thal might ac-
celerate convergence [3].

Thus, we use a diflerent. approach that exploits the
accumulated information regarding the M most re-
cent values of the error function to accelerate conver-
gence [4]. The following condition is used to formulate
the preposed approach and to define a eriterion of ac-
cepbance of any weight iterate [4]:

o OW R 2 I _ . 2 k—j
E(w® ~n"VE(u")) nlﬁl}%}f\{ﬂ(ﬂi )<

—oif HVE(wk)”2 , 1
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where M is a nonnegative integer and 0 < ¢ < 1. The
above coudition allows an increase in the function val-
ues withoui affecting the global convergence properties
as has been proved in [14].

Next, we propose an algorithm maodel that employs
the above acceplability criterion. The kth ileration ol
the algorithn consists of the following steps:

1: Compute the new learning rale 7* using any
learning rate adaptation strategy.

2: Update the weight vector w®+! = wh —
WV B (w).

3; 1l the learning ratc acceplability condition (1) is
fulfilled store w1 and terminale; otherwise go
to the next step.

4: Use a tuning technique for o® and relurn to
Step 3.

Remark 1.: A simple technique to tune %* in Siep 1
is to decrease the learning rate by a reduction factor
1/¢, where ¢ > 1 [11]. This has the offect that each
learning rate is decreased by the largest number in the
sequence {¢7™1%_ . We remarl here that the selec-
tion of q is not critical for successful learning, however
it has an influence on the number of error function eval-
uations required to obiain an acceptable weight vector.
Thus, some training problems respond well to one or
two reductions in the learning rates by modest amounts
{such as 1/2} and others roquire many such reductions,
but might respond well to a more aggressive learning
rale reduction (for example by factors of 1/10, or even
1/20). On the other hand, reducing #* too much can
be costly since the total number of epochs will be in-
creased. The value ¢ = 2 is usually suggested in the
literature [1] and indeed it was found to work without
problems in the experiments reported in the paper.

Remark 2.; The above model constitutes an efficient
method to determine an appropriate learning rate with-
out additional gradient evaluations. As a consequence,
the number of gradient evaluations is, in general, less
than the number of error function evaluations.

3. LEARNING RATE ADAPTATION
STRATEGIES

In this section we briefly deseribe two recently proposed
learning rate adaptation strategiecs which can be suc-
cessfully used for nonmonotone backpropagation train-
ing.

1) Learning rate adaptalion using Lipschitz constang
estimation: In [7] an approach that exploits the Jocal
shape of the error surface using a Lipschitz constant
estimation has been proposed. The corresponding al-
gorithm was named BPVS. The local estimation of the
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Lipschitz constant is delined for the kth iteration as:

1V E(w*) = VEw Y

AF =
Jlwh — wh=1| ’

and the learning rate is 4% = 0.5/A%,

In order to eliminate the possibility ol using an uun-
suilable local estimation of the Lipschitz constant we
use the learning rale tuning technique of Remark 1.
This version of the BPVS that provides nonmonotone
training is named NMBPVS.

2) Learning rate adaptation using the Barzilai and
Borwein formula: 1n a previous work [12] we have pro-
posed a neural network training algorithm called BB,
which is based on the Barzilal and Borwein [2) learn-
ing rate update formula, where »* far the kth epoch is
given by:

nk — <dk71’§k-—l> (6)

(351 =Ty

where 671 = b —wh 1 Fl = VE(ub) - VE(w* 1)
and {-,-) denotes the standard inncr product. Qur ex-
periments in [12, 13], show ihat very ollen the method
escapes from local minima and flat valleys where other
methods are trapped. In order to secure the conver-
gence of the method, even when the above formula
gives unsuitable learning rates, we use the learning rate
tuning technique of Remark 1. We call this modified
training algorithm NMBBP.

4, EXPERIMENTS AND RESULTS

Tt this scclion, we evaluate the performance of our al-
gorithms (BPVS, NMBPVS, BBP, and NMBRP) and
compare them with the batch versions of B, momen-
tum BP (MBP) [5], and adaptive BP (ABP) [17], from
the Matlah Neural Network Toolbox version 2.0.4. For
the NMBPVS and NMBBP algorithms, we have fixed
the values of M = 10 and o = 1073, The algorithms
have been tested using the same initial weights, injtial-
ized by the Nguyen—Widrow method [16], and received
the same sequence of input patterns, The weights of
the network are updaled only afler the entire sct of
patterns to be learned has been presented.

For each of the test problems, a table summarizing
the performance of the algorithms for simulations that
reached solution is presented. The reported parame-
ters are: min the minimum number of epochs, mean
the mean value of epochs, maz the maximum number
of cpochs, s.d. the standard deviation, and suce. the
simulations succeeded out of 1000 trials within the error
function evaluations limit.

We must also note that for the BP, BPM and, ABP
one gradient and one error [unction evaluation are nec-
essary ab cach epoch, while the number of errar func-
tion evaluations (I'E) of BPVS, NMBPVS, BBP, and



NMBEBP 1s, in general, larger than the number of gra-
dient evaluations (GE), due to the learning rate ac-
ceptabilily criterion we use. As a consequence even
when our algorithms fail to converge within the prede-
termined limit of function evalvations, their number of
gracdient evaluations is smaller than the corresponding
number of the other methods. Keeping in mind that a
gradienf, evalualion is more costly than an crror fune-
tion evaluation (see for example [9], where Moller sug-
gesls to count a gradient evaluation three tirmes more
than an error funciion evaluation), one can understand
that our methods require fewer floating point opera-
tions and are actually much fagter. Trom the above
discussion it is clear why in the tables there are two
lines for the BPVS, NMBPVS, BBP, and NMBBP al-
gorithms; the first one indicates the statistics for the
FT and the second for the GE.

4.1 3-Bit Parity

The task is to train a 3-2-1 FNN (eight weights, three
biases) to produce the sum, mod 2, of 3 biuary inputs -
otherwise known as computing the “odd parity” func-
tion. The results are summarized in the following table:

Table 1: Results for the 3-Bit Parity problem.

Algorithm  min  mean max  s.d. suce.
BP - - T 0.0%
MBP 246 1854 973 1954 418.0%
ABP 165 599.2 924 1039 45.0%
104 3142 992 176.6 -
BPVS 01 993F 039 1662 T25%
103 2921 986 161.9
NMBpvs  HE ggel BRE 10R8 Taa%
70 3309 994 200.8
BBP 38 T2 ab7 “g3g O76%
, 17 2989  97R 2124
NMBBP onry U e erom

Despite the ellort we made to clicose its learning rate,
BP failed Lo converge within the error function cvalu-
ations limit in all the simulations, On the other hand,
the MBP and ABI’ algorithms performed much bet-
ter, with MBP slightly outperforming ABI?. The BPVS,
NMBPVS, BBP, and NMBBP algorithms exhibited the
hest performance, as they had the highest success rates
and the least average number of epochs. In this prob-
lem the learning rate acceptability criterion does not
improve the convergence properties of BPVS, but im-
proves the BBP algorithm significantly.

4.2 Continuous function approximation

An 1-15-1 NN (thirty weights, sixteen hiases) is
trained to approximale the continuous function f(z) =
sin{z} cos(2z), where the input valucs are scattered
in the interval [0,27]. The network is trained until
1 < 0.1. The FNN is based on hidden neurons of logis-

tic activations and on a linear output nenron, Compar-
ative results are exhibited in the following table. Once
again, our algorithms exhibited the hest performance
and had the hest success rate. Moreover, there is a re-
markable improvernent of the BBP algorithm when the
learning ratc acceptability criterion is used; the BBP
algorithm has a success rale of 79.6%, while the non-
monotone version NMBBI® has a suceoss rate of 92.2%.

Table 2: Resulls for funciion approximation.

Algorithm  min mean max sd.  succ.
BP 328 T06.7 998 175.6 13.8%
MBP 332 6992 993 1748 13.7%
ABD 166 628,1 991 216.8 26.9%
s 8D 0 B e
- 39 362.1 995 233.5

BBP 57 1864 oz TIL3 796%
e 8 7 B8 ) e

4.3 The Font Learning Problem

Tor this preblem, 26 matrices with the capital lclters of
the Tinglish alphabet are presented to a 35-30-26 FNN
(1830 weights, 56 biases). Each letler has beon defined
in terms of binary values on a grid of size 5 % 7. 'The
network is based oun hidden neurons of logistic activa-
tions and on linear output neurons. In this problem the
acceptability eriterion we imposed accelerated the con-
vergence of both BPVS and BBP methods, as shown
in the following table:

Table 3: Results for the font problem.
Algorithm  min  mean  max  s.d. succ.

B T598 15610 1000 302.8  76.8%

MBI 1142 15191 1931 1693  1.9%

ABD 1110 17730 1999 1689  37.2%
37 6880 1238 136.

BEVS 9% 6303 1156 (386 100:0%
. 337 6694 1112 134.9
nMievs 35 884 10 131 100.0%

, 167 3326 58 704
BBL 90 1668 478 S5g 1000%
e B JRY W B3 e

4,4 Generalization Performance

In order to cvalnate the generalization of the nonmono-
tone algorithms NMBPVS and NMBBP, we have tested
them on the MONI’s problems [10]. These are binary
classification tasks which are used as benchmarks for
testing the generalization performance of learning al-
gorithms. These problems rely on the artificial robot
domain,
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We have tested our methods against the well known
BP, B with weighl decay (BPWD), and Cascade Cor-
relation (CC) methods. Tn our simulation we have used
the same networl topologies as those found in [10] for
the B method. The next table clearly shows that the
NMBPVS and NMBBP algorithms are excellent gen-
eralizers and manage to correctly classify all the input
patterns in all the MONK's prohlems.

Table 4: Results for the MONK’s problems,

Algorithm MONIK-1 MONK-2 MONIK-3
BP 100% 100% 03.1%
BPWD LO0% 100% 97.2%
CC 100% 100% 97.2%
NMBPVS 100% 100% L00%
NMBBP 100% 100% 100%

5. CONCLUDING REMARKS

In this paper we presented a new approach for gener-
ating nonmonotone learning rules based on an accept-
ability criterion. We have tested this approach on two
recently published training algorichms [7, 12] and the
results were satis{actory. The simulalion results suggest
that the use of the acceptability criterion, can signifi-
cantly accelerate the convergence of the training algo-
rithms. Morcover, the use of difficult to tune problem-
dependent heuristic parameters is unnecessary, The
training algorithms we have studied in this paper sue-
ceed to converge faster and more times than the other
algorithms tested. Moreover, the behavior of the non-
monotone algorithms proved to be robust against phe-
nomena such as oscillations due to large learning rates.
TFinally, the nonmonotone algorithms exhibited an ex-
cellent generalization capability, when tested on the
MONK’s problems.
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