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Globally Convergent Algorithms with Local

Learning Rates
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Abstract— In this paper a new generalized theoretical re-
sult is presented that underpins the development of globally
convergent first—order batch training algorithms which em-
ploy local learning rates. This result allows us to equip algo-
rithms of this class with a strategy for adapting the overall
direction of search to a descent one. In this way, a decrease
of the batch—error measure at each training iteration is en-
sured, and convergence of the sequence of weight iterates
to a local minimizer of the batch error function is obtained
from remote initial weights. The effectiveness of the theo-
retical result is illustrated in three application examples by
comparing two well known training algorithms with local
learning rates to their globally convergent modifications.
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ing rate adaptation, batch training, gradient descent, back-
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I. INTRODUCTION

The issue of changing the learning rates dynamically dur-
ing training has been widely investigated and several strate-
gies for learning rate adaptation have been proposed so
far. The use of these strategies aims at finding the proper
learning rate that compensates for a small magnitude of
the gradient in a flat region and dampens a large weight
changes in a highly deep region. To this end, the literature
suggests, for example, to:

(i) start with a small learning rate, n°, and increase it at
the next iteration, k + 1, if successive iterations reduce the
error, or rapidly decrease it if a significant error increase
occurs [2], [29];

(ii) start with a small n° and increase it at the k+1 iter-
ation, if successive iterations keep gradient direction fairly
constant, or rapidly decrease it if the direction of the gra-
dient varies greatly [4];

(iii) use a local learning rate for each weight w! €
R"(i = 1,2,...,n), i.e. nf,n5 ... n* which increases if
the successive corrections of the weights are in the same
direction and decreases otherwise [8], [19], [23], [27].

This paper focuses on the last approach and particularly
on the special class of first—order adaptive training algo-
rithms that employ local learning rates. These algorithms
employ heuristic strategies to adapt the learning rates at
each iteration and require fine tuning additional problem—
dependent learning parameters that help to ensure sub-
minimization of the error func tion along each weight di-
rection. Nevertheless, no guarantee is provided that the
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network error will monotonically decrease at each iteration
and that the weight sequence will converge to a minimizer
of the batch error function E. To alleviate this situation,
we present in this paper a new generalized theoretical re-
sult that underpins the development of globally convergent
training algorithms, i.e. algorithms with the property that
starting from almost any initial weight vector the sequence
of the weights will converge to a local minimizer of the error
function.

Note that, as stated in [5, p.5], the term globally con-
vergent algorithm is used “to denote a method that is de-
signed to converge to a local minimizer of a nonlinear func-
tion, from almost any starting point”. Dennis and Schn-
abel also note that “it might be appropriate to call such
methods local or locally convergent, but these descriptions
are already reserved by tradition for another usage”. Ad-
ditionally, in [17, p.200], Nocedal defines a globally conver-
gent algorithm as an algorithm with iterates that converge
from a remote starting point. Thus, in this context, global
convergence is totally different from global optimization.
In a strict mathematical sense, global optimization means
to find the complete set of the globally optimal solutions
(global minimizers) z* of the objective function f, and the
associated global optimum value f* = f(z*) (for analytical
tractability reasons, it is assumed that z* is at most count-
able). So in this paper, we do not seek global minimizers
of the error function E, but we are interested in develop-
ing algorithms that will converge to a local minimizer with
certainty. The interesting topic of finding global minimiz-
ers in training neural networks is described elsewhere [20],
[21], [22], [28].

The paper is organized as follows. In Section II local
learning rate training algorithms are presented, and their
advantages and disadvantages are discussed. The proposed
approach and the corresponding theoretical convergence re-
sult are presented in Section III. In order to illustrate the
effectiveness of this approach, two algorithms of this class
and their globally convergent modifications are compar-
atively evaluated. Experiments and corresponding results
are reported in Section I'V. Finally, Section V presents con-
cluding remarks.

II. LocAL LEARNING RATE ADAPTATION STRATEGIES

Developments in training algorithms with local learning
rates are mainly motivated by the need to train neural
networks in situations when a learning rate appropriate
for one weight direction is not necessarily appropriate for
other directions [9]. Moreover, in certain cases a learning
rate may not be appropriate for all of the portions of the er-
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ror surface. To this end, a common approach to avoid slow
convergence in flat directions and oscillations in steep di-
rections, as well as to exploit the parallelism inherent in the
evaluation of the error, E(w), and its gradient, VE(w), by
the Back-Propagation (BP) algorithm, consists of using a
different adaptive learning rate for each direction in weight
space.

Batch—type BP training algorithms of this class, [6], [8],
[19], [23], [27], follow the iterative scheme

Wttt = wh — diag{ny,...,nf,...,m} VE@"), (1)

and try to decrease the error by searching a local min-
imum with small weight steps. These steps are usually
constrained by problem—dependent heuristic parameters in
order to avoid oscillations and ensure subminimization of
the error function along each weight direction. This fact
usually results in a trade—off between the convergence speed
and the stability of the training algorithm. For exam-
ple, the delta-bar-delta method [8], the Silva and Almeida’s
method [27] and the Quickprop method [6] introduce ad-
ditional problem—dependent heuristic learning parameters
to alleviate the stability problem. A common approach,
used for example in the Rprop algorithm [23] and in the
BP with adaptive learning rate for each weight [14], is to
employ learning rate lower and upper bounds which are cho-
sen heuristically and help to avoid the usage of an either
extremely small or large learning rate component, which
might misguide the resultant search direction. The learn-
ing rate lower bound helps to avoid unsatisfactory conver-
gence rate while the learning rate upper bound limits the
influence of a large learning rate component on the resul-
tant search direction and depends on the shape of the error
function.

However, the use of additional heuristics for local learn-
ing rates tuning may affect the overall adaptive search di-
rection if the values of the heuristics are not properly cho-
sen. In such case, the training algorithms cannot exploit
the global information obtained by taking into considera-
tion all the directions; furthermore, it is theoretically diffi-
cult to guarantee that the weight updates will converge to
a local minimizer of E [6], [8], [14], [19], [23], [27].

ITII. GLoBAL CONVERGENCE OF ALGORITHMS WITH
LocAL LEARNING RATES

Training of multi-layer feedforward neural networks can
be considered as a highly nonlinear minimization problem,
involving sigmoid functions that have infinitely broad re-
gions with arbitrary small derivative [3], [26].

First—order training algorithms that follow the iterative
scheme (1) usually evaluate the local learning rates by
means of heuristic procedures that exploit information re-
garding the history of the partial derivative of E(w) with
respect to the i-th weight and/or the history of each learn-
ing rate, depending on the algorithm. For example, the
Quickprop, [6], performs independent secant steps in the di-
rection of each weight [31], while the Rprop algorithm, [23],
updates the weights using the learning rate and the sign of

the partial derivative of the error function with respect to
each weight.

Clearly, the weight vector in (1) is not updated in the
direction of the negative of the gradient; instead, an alter-
native adaptive search direction is obtained by taking into
consideration the weight changes. These are evaluated by
multiplying the length of the search step, i.e. the value of
the learning rate along each weight direction, by the par-
tial derivative of E(w) with respect to the corresponding
weight, i.e. —n;0; E(w). This behavior results in decreasing
the error along each direction by performing small steps
in the weight space so as to ensure subminimization of
the error function along each weight direction and, hope-
fully, leads to monotone error reduction along the resul-
tant search direction. To this end, the problem—dependent
heuristic learning parameters, which are employed, act as
constraints on the length of the search step, or on the length
of the subminimization steps. However, enforcing mono-
tone error reduction at each iteration using inappropriate
values for the heuristic learning parameters can consider-
ably slow the rate of training, or even lead to divergence
and to premature saturation, as has been observed in cer-
tain cases [12], [14], [24]. Moreover, it seems that using
heuristics it is not possible to develop globally convergent
algorithms and, thus, guarantee convergence to a local min-
imizer from any initial condition [5].

In the context of optimization theory, the issue of making
an unconstrained minimization iterative scheme globally
convergent is treated as will be described below. Suppose
that f : D C R® — R is the objective function to be
minimized, using the following iterative scheme

o =gk 4 oFdk, (2)

where d* is a descent direction and a* is the step-length
obtained by means of a one—dimensional line search that
satisfies the Wolfe conditions [32], [33]
f@® + ardh) — f(a*) <o1afV f(2*) T dk, (3)
V(" +a*d") d" 200V f(a*)Td", (4)
where V f(x) is the gradient of f at z, and 0 < 01 < 02 < 1.
Then, the following theorem, due to Wolfe [32], [33] and
Zoutendijk [34], can be used to obtain global convergence
results.

Theorem 1 ( [32], [34]) Suppose that f : D C R*” —» R
is bounded below in R™ and that f is continuously differ-
entiable in a neighborhood N of the level set £ = {x :
f(x) < f(2°)}, where z° is the starting point of the itera-
tive scheme (2). Assume also that the gradient is Lipschitz
continuous, i.e. there exists a constant L > 0 such that

IVf(z) = VIl < Lllz -yl
for all z,y € N. Then the Zoutendijk condition

3 cos? 6 |V ()| < oo, (5)
k>1
where Tk
cosfy, = —Vi') d

NI ©)
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is fulfilled.

Remark 1. Suppose that an iterative scheme of the
form (2) follows a descent direction d*, which does not
tend to be orthogonal to the gradient V f(z*), for which

cosf, > (>0,

for all k. Then, from the Zoutendijk condition (5), holds
that

lim [V ()] =0, ™)

which means that the sequence of gradients converges to
Z€ro.

For an iterative scheme of the form (2), the limit (7) is
the best type of global convergence result that can be ob-
tained (see [17] for a detailed discussion). From the above,
it is evident that no guarantee is provided that the itera-
tive scheme (2) will converge to a global minimizer, z*, but
only that it possesses the global convergence property [5],
[17] to a local minimizer.

In neural network training, the sum—of-squared—
differences error function E is bounded from below, since
E(w) > 0. For a finite set of training patterns and a fixed
network architecture, if w* exists such that E(w*) = 0,
then w* is a global minimizer. Otherwise, the weight vec-
tor w with the smallest error function value is the global
minimizer.

For neural networks with smooth enough activation func-
tions (the derivatives of at least order p are available and
continuous), such as the well known hyperbolic tangent,
the logistic activation function etc., the error function E is
also smooth enough.

Although it is possible to verify the assumptions of The-
orem 1, in neural network training this task is considered
to be computationally expensive for large networks, and in
practice is omitted.

In general, any batch—type BP training algorithm of the
form (2) can be made globally convergent if

(i) the adopted search direction d* is a descent direc-
tion and it does not tend to be orthogonal to the gradient
direction (cos#}, in Relation (6) should be positive)

(ii) the learning rate o satisfies the two Wolfe condi-
tions (3)—(4). Notice that, since d* is a descent direction
and F is continuously differentiable and bounded below
along the radius {w* + ad® | @ > 0}, then there always
exist af satisfying the Wolfe’s conditions (3) and (4) [5],
[17].

For example, the well known batch BP algorithm that
employs the steepest descent method with a common learn-
ing rate for all weights that satisfies the Wolfe condi-
tions (3)—(4) is globally convergent because in this case
we have cosf, =1 > 0.

With regards to batch—type BP algorithms with a dif-
ferent learning rate for each weight (local learning rate),
no strategy is available, to the best of our knowledge, to
make these methods globally convergent. Below we present

a strategy that ensures the search direction followed is, in-
deed, a descent one, and a theoretical result for globally
convergent local learning rate algorithms. It is important
to emphasize that this result is independent of the local
learning rates adaptation procedure, and can be used to
prove convergence for any batch—type training algorithm
that adopts the strategy:

(Z) define (n_ 1)7 say {7717 M2y -5 i1 it 15 - - - 77771}7 out
of the n learning rates, {n1,7m2,...,7n}, as computed di-
rectly by an adaptive learning rate evaluation procedure,
and

(#) calculate the remaining one, say 7;, analytically us-
ing the values of the others, {n1,m2, ..., Mi—1,Mit1,---sMn}s
as it will be shown below.

Next we present a theoretical result that applies to adap-
tive training algorithms with local learning rates.

Corollary 1. Suppose that the conditions of Theorem 1
on f(z)and V f(z) are also true for the error function E(w)
and its gradient VE(w). Then, for a given point w® € R”,
the sequence {w*}2° , which is generated by the iterative
scheme:

whtt = wk 4 oF d¥, (8)

where o > 0 satisfies the Wolfe’s conditions (3)-(4),
d* = —diag{nk,...,n¥, ...,nk} VE(w") denotes the search
direction, n¥ for m =1,2,...,i —1,i+1,...,n are arbi-
trarily chosen small positive learning rates, and

1) 1 n
b= — kg, k
= O;E(wk)  9;E(wk) ;77] O E(w"), (9)
J#i
0<dK oo and 8 E(wk) # 0,

is globally convergent to a local minimizer.
Proof:  Evidently, the error function E is bounded
below on R™. The sequence {w*}%2, follows the direction

d* = —diag{nt,....nk, ... .nf} VEW"),
which is a descent direction if n¥,, m = 1,2,...,i —1,i +
1,...,n are arbitrarily chosen learning rates (positive real

numbers) and n¥ is given by Relation (9), since
VE@w*)"d" < 0.
Moreover, in our case Relation (6) becomes

—VE@h)Td 10)

O = ———- .
O = VB )| [|d¥]

Thus, from the previous discussion it is evident that the
sequence {w"}2°  is globally convergent to a local mini-
mizer. |

In Relation (9), we choose a coordinate direction with no
zero partial derivative. Of course always exists such a direc-
tion; otherwise we would have found a minimizer already.
In addition, the parameter ¢, 0 < § < o0, is introduced to
alleviate problems with limited precision that may occur in
simulations. It should take a small value proportional to
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the square root of the relative machine precision. In the ex-
periments reported in the next section the value § = 10~
has been used in an attempt to test the convergence accu-
racy of the proposed strategy.

With regards to the parameter o, the use of a* = 1,
for all k, is suggested in practical applications. This has
the effect that the minimization step along the resultant
search direction is explicitly defined by the values of the
local learning rates. The length of the minimization step
can be regulated through o* tuning so that the Wolfe’s
conditions are satisfied and the weights are updated in a
descent direction. To this end, a simple backtracking strat-
egy could be used to decrease o* by a reduction factor 1/q,
where ¢ > 1. This has the effect that o is decreased by
the largest number in the sequence {¢~™}5°_; [18]. We
remark here that the selection of ¢ is not critical for suc-
cessful learning, however it has an influence on the number
of error function evaluations required to satisfy the Wolfe’s
conditions. A value of ¢ = 2 is generally suggested in the
literature [1], [18] and, indeed, it has been found to work
without problems in our experiments.

In reference to the Wolfe conditions (3)—(4), Inequal-
ity (3) ensures that the error is reduced sufficiently, while
Inequality (4) prevents the minimization step from becom-
ing too small. Consequently, when seeking to satisfy Con-
dition (3) it is important to ensure that of is not reduced
unnecessarily so that Condition (4) is not satisfied. How-
ever, at the k-th training epoch the gradient vector is only
known at the beginning of the iterative search for a new set
of weights, w**1. Thus, Condition (4) cannot be checked
directly, as this task would require additional gradient eval-
uations at each iteration of the training algorithm. This
problem can be easily tackled (see [5]) by replacing In-
equality (4) with relation

E(w* + o*d*) — E(w*) > 020" VE(w*) T d*, (11)
and, thus, avoid the computationally expensive backward
passes.
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Fig. 1. Illustration of the Quickprop method for training a node
with two weights. The modification converges to the desired mini-
mum (left), while the classic method converges to an undesired local
minimum (right).

At this point, it is useful to illustrate the behavior of the
proposed strategy by means of a simple example, which
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Fig. 2. Learning curves for the Quickprop method (solid line) and

the globally convergent Quickprop (dotted line) for the 3-bit parity
problem. Both methods start from the same initial conditions.

concerns the case of a single node with two weights and
logistic activation function [13]. This minimal architecture
is trained using the classic Quickprop method and its glob-
ally convergent modification, which uses a positive learning
rate value n¥ computed by the Quickprop formula and 0%
given by Relation (9). Starting from the same initial con-
ditions, the globally convergent modification successfully
locates the feasible minimum (see Figure 1, left), while the
classic Quickprop generates a discretized path in the weight
space (see Figure 1, right) that leads to an undesired lo-
cal minimum (undesired local minimizers are those having
error function values higher than the desired error goal).

In a more difficult problem, learning the 3-bit parity [7],
[25], a typical run for the Quickprop method and its glob-
ally convergent modification is shown in Figure 2. Start-
ing with the same initial weights and learning parameters,
the modified Quickprop (dotted line) successfully converges
to a feasible solution (E(w) < 10710), while the original
Quickprop (solid line) got stuck in a local minimum with
higher error function value.

IV. EMPIRICAL STUDY

The proposed strategy has been incorporated in
two first-order training algorithms, the Silva—Almeida
method [27] and the Quickprop algorithm [6], to develop
new globally convergent modifications. These modified
schemes have been implemented and tested on different
training problems and have been compared in terms of
gradient and error function evaluations and rate of suc-
cess with the original methods. Note that in training prac-
tice, a gradient evaluation is considered three times more
costly than an error function evaluation for certain classes
of problems [14], [15], [16].

Our experience from the simulations is that the proposed
strategy behaves predictably and reliably. Below, we ex-
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hibit results from 100 runs for the Silva—Almeida method
(SA), the Quickprop algorithm (Qprop) and their globally
convergent modifications in two applications, using initial
weights from the interval [—1,1]. The globally convergent
modifications use the same initial values for the learning
parameters and are tested under the same initial weight
conditions as the original methods.

The heuristic learning parameter mazimum growth fac-
tor of the Quickprop method has been set to the classical
value m = 1.75. The learning rate increment and decre-
ment factors of the Silva—Almeida method have been tuned
appropriately and received the values u = 1.02 and d = 0.5,
respectively. It is worth mentioning that Relation (9) has
been employed cyclically over the local learning rates, i.e.
at the k-th iteration ¢ = kmodn, in all of the experiments
reported in this paper.

In the first experiment, a network with 64 input, 6 hid-
den and 10 output nodes (444 weights, 16 biases) is trained
to recognize 8 x 8 pixel machine printed numerals from 0
to 9 in helvetica italic [13]. The network is based on lo-
gistic activation neurons. The training performance of the
algorithms is shown in Tables I and II, where the follow-
ing notation is adopted: p is the mean number of gra-
dient or error function evaluations, denoted as GRD and
EFE respectively, o is the corresponding standard devia-
tion, Min/Maz denotes the minimum/maximum number
of gradient or error function evaluations, D indicates that
the algorithm diverged, and % is the percentage of simula-
tions that converge to a desired minimum.

The termination conditions for all algorithms tested
were: £ < 1071, in the first case (Table I), and E < 1072,
in the second case (Table II). For both cases, a limit of
5000 error function evaluations was set and the algorithms
were tested under the same initial conditions (learning pa-
rameters and weights).

As shown in Table I, the Globally convergent Quickprop
(G-Qprop) is faster and more reliable than the original
method, which fails to converge in all cases. In the same
problem, the Silva—Almeida method, although it is faster
than the globally convergent modification (G-SA), fails to
converge in 43 out of the 100 runs, due to convergence to
undesired local extrema (points that possess error function
values higher than the desired error goal). The algorithm
exhibits stability problems because the learning rates in-
crease exponentially when many iterations are performed
successively. This behavior results in minimization steps
that increase some weights by large amounts, pushing the
outputs of some neurons into saturation and consequently
into convergence to a local minimum or maximum. On
the other hand, the globally convergent modification over-
comes these problematic situations by exploiting the ana-
lytic evaluation of the ¢-th learning rate. For the globally
convergent modifications, the 1 percent (1%) of failure rep-
resents runs that the algorithm failed to converge to a de-
sired local minimum within the maximum allowed number
of error function evaluations.

By comparing the results of Tables I and IT one can see
that the globally convergent modifications of the tested al-

TABLE I
RESULTS FOR THE NUMERIC FONT LEARNING PROBLEM (E < 1071)

Algorithm 7 o Min/Max %

SA GRD 124.21 10.56 109/151 57
EFE 124.21 10.56 109/151

G-SA GRD 403.21 114.35 145/798 99
EFE 711.92 298.40 148/1428

Qprop GRD D D D 0
EFE D D D

G-Qprop GrRD 82.42 77.30 26/485 99
EFE 172.31 202.85 26/1023

gorithms exhibit consistent behavior. On the other hand,
the performance of the original Silva-Almeida method is
getting worse as the accuracy of the required solution in-
creases. Note that the results of Tables I and II have been
produced by using the same initial weights for all the al-
gorithms tested; only the desired error goal varied from an
E < 107! to an E € 1072 in the two sets of experiments.

Thus, the adaptive learning rate schedule helps SA to
converge very fast in 26 of the runs, but fails to allow the
method to reach the local minimizer with accuracy. Thus,
as shown in Table II, the success percentage of the Silva—
Almeida method reduces as the method gets stuck to un-
desired local minima. A typical run for the Silva—Almeida
method and its globally convergent modification is shown
in Figure 3. In this case, the networks were trained exhaus-
tively to reach an error value E < 1072 starting from the
same initial weights and learning parameters. The modi-
fied Silva—Almeida (dotted line) successfully converges to a
feasible solution (E(w) = 107°), while the original Silva—
Almeida (solid line) gets stuck to a local minimum with
higher error function value.

TABLE II
RESULTS FOR THE NUMERIC FONT LEARNING PROBLEM (E < 1072)

Algorithm 7 o Min/Mazx %

SA GRD  218.23 9.77 204/237 26
EFE  218.23 9.77 204/237

G-SA GRD  712.92 23548  335/1526 99
EFE 1423.41 796.50  335/4556

Qprop GRD D D D 0
EFE D D D

G-Qprop GRD 160.06 147.20 35/641 100
EFE  372.36 443.81 35/1778

In the second experiment, the continuous function
f(x) = sin(z) cos(2x) is approximated by a 1-15-1 neu-
ral network (thirty weights, sixteen biases) using 20 in-
put/output pairs, scattered in the interval [0,27]. The
termination condition is £ < 0.1 within 10000 error func-
tion evaluations, and the network is based on hidden neu-
rons with hyperbolic tangent activations and on a linear
output neuron. Comparative results are exhibited in Ta-
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Fig. 3. Learning curves for the Silva-Almeida method (solid line) and
the globally convergent Silva—Almeida (dotted line) for the numeric
font learning problem. Both methods start from the same initial
conditions.

ble III. The SA method exhibits the highest percentage of
failure due to convergence to undesired local extrema; the
method converges only 11 times (see Table III), although
the best available values for the heuristics have been used.
In the same problem, the G-Qprop outperforms the orig-
inal method in the number of successful runs (99% suc-
cess). On the other hand, the original Quickprop method
succeeded only in 27 runs due to entrapment in neighbor-
hoods of undesired local minima. Although, training was
allowed for 10000 iterations (the worst case run took 953
epochs to converge), this didn’t help Qprop to escape from
the undesired minima.

In additional simulations, keeping initial conditions the
same and changing only the desired error goal to an E <
1072, the algorithms exhibited behavior similar to the one
of the numeric font learning problem, whilst the globally
convergent algorithms exhibited consistent convergence be-
havior and 100% success.

TABLE III
COMPARATIVE RESULTS FOR THE FUNCTION APPROXIMATION
PROBLEM
Algorithm i o Min/Mazx %
SA GRD 23.11 116.18 84/150 11
EFE 23.11 116.18 84/150
G-SA GRD 352.44 105.21 48/764 99
EFE 688.26 197.02 48/2354
Qprop GRD 362.81 268.55 58/953 27
EFE  362.81 268.55 58/953
G-Qprop GrD 17651 119.98  40/694 99
EFE  252.10 179.31 50/1033

The results of the two experiments reported above pro-
vide empirical evidence verifying that the proposed strat-

egy performs in practice reasonably well in different types
of problems. The globally convergent modifications of the
tested algorithms provide stable learning and therefore a
greater possibility of good performance in terms of success-
fully finding a local minimizer; however, in the case of the
Silva—Almeida method its globally convergent modification
requires additional iterations to converge.

To investigate how the distributions of initial weights af-
fect the success of the learning process in large networks,
we have conducted a third experiment. A 16-40-2 (720
weights and 42 biases) network with logistic activations
has been trained to detect two different types of abnormal-
ities in colonoscopy images taken from two different colons.
Image 1 (Figure 4-top left) is considered histologically as a
low grade cancer (a Type-IIIs lesion macroscopically [11]).
Image 2 (Figure 4-top right) is considered histologically
as a moderately differentiated carcinoma (a Type-V lesion
macroscopically). Textures from 10 normal and 10 abnor-
mal tissue samples have been randomly chosen from each
image and used for training the network to discriminate be-
tween malignant and normal regions with 3% classification
error (see [10] for further technical details). We have used
100 initial weight sets generated randomly from uniform
distributions within six different intervals, and we have
trained the networks with the original and the Globally
convergent Quickprop.

S P .
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Fig. 4. Colonoscopy images used in the experiments (top) and per-
centage of success with respect to different initial weights ranges (bot-
tom).

Figure 4 (bottom) shows a plot of the average percent-
age of success with respect to the six initial weight ranges
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(—a,a), where a € {0.2,0.6,1,1.4,1.8,2.2}, for simulations
that reached a desired minimum out of 100 runs. It is ev-
ident that the G-Qprop outperforms the original method.
According to our experience, the improvement obtained
justifies, especially in certain real-life applications, the ad-
ditional programming effort for the implementation of the
proposed strategy.

V. CONCLUDING REMARKS

A theoretical result that underpins the development of
globally convergent batch training algorithms with local
learning rates has been proposed in this paper. This result
allows us to provide conditions under which global conver-
gence is guaranteed and introduce a strategy for adapting
the search direction and tuning the length of the minimiza-
tion step. Two well known training algorithms with local
learning rates have been equipped with the proposed strat-
egy to illustrate its applicability. Their modified versions
exhibit significantly better percentage of success in reach-
ing local minimizers than the original methods, but they
may require additional error function and gradient evalu-
ations depending on the algorithm, as has been observed
with the Globally convergent Silva—Almeida method.

Nevertheless, the issue of developing techniques that will
choose the appropriate i-th local learning rate, n¥, to be
calculated by Relation (9), as well as the optimal value of
0 should be investigated further to fully exploit the poten-
tial of the suggested strategy, and improve the convergence
speed of the globally convergent algorithms.
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