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1. INTRODUCTION

Counsider a Feedforward Neural Network (FNN) whose /th layer contains N, neurons, for/ = 2,..., M.
The neurons operate according to the following equation:
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where yé is the output of the jth neuron that belongs to the Ith layer, wfj'l’! denotes a weight from

the ith neuron at the (I — 1) layer to the jth neuron at the /th layer and o(z) = (1 + e7%)7! is the
jth’s neuron activation function.

The FNN learns to map input patterns to appropriate output patterns. The training is accom-
plished by modifying the weights of neurons in such a way as to improve the desired mapping between
input and output patterns. If there is a fixed, finite set of mput—output cases, the square error over
the training set which contains P representative cases is:
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This equation formulates the objective function to be minimized, in which t;, specifies the desired
response at the jth neuron of the output layer at the input pattern p and y%, is the output at the
jth neuron of the output layer M.

To simplify the formulation of the equations throughout the paper we use a umified notation for
the weights. Thus, for an FNN with a total of n weights, R" is the n—dimensional real space of
column weight vectors w with components w;,ws,...,w, and w* the optimal weight vector with
components w},w3,...,wh; 0;F(w) denotes the partial derivative of E(w) with respect to the ith
variable w;; g(w) = (gl(w), - ,gn(w)) defines the gradient VE(w) of the objective function E at w
while H = [H;;] defines the Hessian V2E(w) of E at w. Also, throughout this paper diag{e;,...,e,}
defines the n x n diagonal matrix with elements ey, ..., é€x.

In this paper, we present a new method for dynamically adapting the stepsize in FNN training.
This method allows us to give an individual stepsize for each weight. We illustrate its performance
in training FNNs for two problems and we compare it with some popular training methods.

4551



4552 Second World Congress of Nonlinear Analysts
2. BACK-PROPAGATION TRAINING AND STEEPEST DESCENT

It is well known that the minimization of the error function E requires a sequence of weight vectors
o0
{w"}o , where k indicates iterations, which converges to the point w* that minimizes E.

The most popular supervised training method is the Back-Propagation (BP)[1]. The BP minimizes
the objective function F using the following Steepest Descent method (SD) with constant stepsize A:

whtl = wk — Ag(w¥), k=0,1,.... (2.1)

The optimal value of the stepsize A depends on the morphology of the error function. The gradient,
g(w), is computed by applying the chain rule on the layers of the FNN (see [1]).

The BP approximates a local minimum of £ and always converges when A is chosen to satisfy the
relation sup ||H(w)|| < A7! < o in some bounded region where the relation F(w) < E(wP) holds
for some initial weight vector w? [2]. In the neural network implementation, the manipulation of the
Hessian is too expensive in computation and storage and the stepsize is usually chosen according
to the relation 0 < A < 1 in such a way that successive steps in weight space do not overshoot
the minimum of the error surface. Although BP has proved to be efficient in many applications, it
requires a constant stepsize, its convergence tends to be very slow and it often yields suboptimal
solutions [3].

A reason why BP may be slow to converge is that a stepsize appropriate in one weight direction is
not necessarily appropriate for other weight directions. Furthermore, it may not be appropriate for
all portions of the error surface [5].

3. ACCELERATING BACK-PROPAGATION TRAINING BY ADAPTING THE STEPSIZE IN EACH WEIGHT
DIRECTION

Several techniques [4,5,6] have been suggested to accelerate training speed. However, these ap-
proaches employ heuristic factors and they do not guarantee that the weight updates will converge
to a minimizer of E.

In the sequel we briefly present a different approach that eliminates the aforementioned deficiencies.
Our method exploits all the local information regarding the direction and the stepsize. The weight
updates are based on the 9; E(w) and on the following estimates of each weight direction:

AF = |BE@*) — 8 Ewt)|/|wf — wh ). (3.1)

Relation (3.1) can be considered as a local estimation of the Lipschitz constant A in the ith direction
and its inverse can be used in order to estimate the stepsize in this direction. This means that for a
large value of A; a small stepsize is used and vice versa.

As a consequence, we rewrite the BP weight update equation (2.1) in the form:

whtl = wb — diag{A7',..., A7} g(w), k=o0,1,.... (3.2)

Clearly, this iterative scheme coincides with the one-step Jacobi—secant method. For convergence
properties of this method see [7,89].

In order to speed up training, when we are far from the minimum, the iterative scheme (3.2) can
be reformulated as follows:

whtt = w* — pdiag{AT!, ..., A7} g(wF), k=0,1,..., (3.3)

where 7 is a relaxation coefficient. An elegant search technique for adapting 7 applied to steepest
descent method has been proposed in [10]. Following this technique we have to find the smallest
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positive integer my = 1,2,... for which 75, = n2!~™* satisfies the following relation:

E(wkt!) - E(w*) < ~0.50y, ||diag{A7" ..., A7  Jo(w*)[*. (3.4)

4. EXPERIMENTAL RESULTS AND CONCLUDING REMARKS

Two experiments have been conducted on training FNNs using BP with the modified dynamic
stepsize procedure (3.8), named Multi-Lipschitz Back-Propagation (MLBP).

In the first experiment a 2-2-1 FNN (6 weights, 3 biases) is used to solve the XOR problem [5,1].
The XOR. problem is sensitive to initial weights as well as to stepsize variations, and presents a
multitude of local minima with certain weight vectors [11]. The weights have been initialized using
the Nguyen-Widrow method [12]. MLBP initial stepsize has been taken equal to 4.5. For the BP
and the momentum BP (MBP) [5] the following standard values have been chosen: stepsize = 0.75,
momentum factor = 0.9. The termination condition is £ < 0.04 within 600 error function evaluations.

In all instances, 1000 simulations have been run and the results are summarized in Table 1. MLBP
and MBP are faster than the BP. The aforementioned local minima problem affects the number of
successful simulations. A better success has been observed for the MLBP when compared with the
BP and the MBP.

Method | Success Mean  Std
BP 4 % 2505 96.8
MBP 43 % 2409 113.1
MLBP 50 % 225.8 143.2

Table 1: Comparison in terms of function evaluations for the XOR problem

The second experiment is on training a 64-6-10 FNN (444 weights, 16 biases) for recognizing
numerals from 0 to 9 [13]. The FNN has an 8 x 8 pixel input and a 10 bit one-hot output representing
0 through 9. The weights have been initialized following a uniform distribution in (-1, +1). The BP
fixed stepsize has been set to 0.9; a larger stepsize leads to oscillations. The termination condition is
F < 0.01 and the algorithms have been tested on 100 simulation runs. The heuristics for the ABP
[6] have been set as follows: error ratio = 1.04, stepsize increment factor = 1.05, stepsize decrement
factor = 0.7.

The results are summarized in Table 2. MLBP is definitely better than the other algorithms
escaping shallow local minima and providing fast training.

Method | Initial Stepsize Success Mean Std
BP 0.9 100 % 21744 5466
ABP 1.75 38 % 1870.0 1120.0
2.00 23 % 2436.0 1116.0
MLBP 1.75 100 % 1907.0  409.3
2.00 100 % 1886.7 367.5

Table 2: Comparison in terms of function evaluations for the font 8x8 problem

In conclusion, in order to accelerate the convergence speed and to avoid overshooting we propose a
method for dynamically adapting an individual stepsize for each weight. This is based on estimates
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of the local Lipschitz comstant that are obtained without additional error function and gradient
evaluations. The convergence of the proposed method is guaranteed under suitable assumptions.
We also incorporate in the new method a search technique for the determination of the relaxation
coeficient 7 in order to ensure that the value of the error function is sufficiently decreased with every
weight update.
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