Nonlinear
Analysis

PERGAMON Nonlinear Analysis 47 (2001) 3425-3430

www.elsevier.nl/locate/na

Adaptive Stepsize Algorithms for On-line
Training of Neural Networks

G.D. Magoulas®¢, V.P. Plagianakos™°, M.N. Vrahatis ®°

2 Department of Information Systems and Computing, Brunel University, Uzbridge
UB8 3PH, United Kingdom

b Department of Mathematics, University of Patras, GR-26110 Patras, Greece
¢ University of Patras Artificial Intelligence Research Center (UPAIRC)

Abstract

In this paper a method for adapting the stepsize in on-line network training is pre-
sented. The proposed technique derives from the stochastic gradient descent proposed
by Almeida et al. [On-line Learning in Neural Networks, 111-134, Cambridge Univer-
sity Press, 1998]. The new aspect of our approach consists in taking into consideration
previously computed pieces of information regarding the adaptation of the stepsize. The
proposed algorithm has been implemented, tested and compared against other on-line
methods in three problems. The results shown that it behaves predictably and reliably,
and possesses a satisfactory average performance.

1 Introduction

Learning in multilayer perceptrons (MLPs) is usually achieved by minimizing the
network error using a stochastic, also called on-line, or a batch, also called off-line
training algorithm. Batch training is considered as the classical machine learning
approach: a set of examples is used for learning a good approximating function,
i.e. train the MLP, before the network is used in the application. In this case, the
aim is to find a minimizer w* = (w}, w$, ..., w}) € R", such that:

.
w —ﬁ%E(w),

0362-546X/01/$ - see front matter © 2001 Published by Elsevier Science Ltd.
PII: S0362-546X(01)00458-8

3426 Third World Congress of Nonlinear Analysts 47 (2001) 3425-3430

where E is the batch error measure of an MLP, whose I-th layer (I = 1,..., M)
contains N, neurons

P Ny

E= % > (yJNIIv - tj,p)2~ (1)

p=1j=1

In Relation (1), the error function is based on the squared difference between the
actual output value at the j-th output layer neuron for pattern p, y%), and the target
output value, t;,; p is an index over input-output pairs. The rapid computation
of such a minimizer is a rather difficult task since, in general, the dimension of
parameter space is high and the function E generates a complicated surface in this
space, possessing multitudes of local minima and having broad flat regions adjoined
to narrow steep ones that need to be searched to locate an “optimal” weight set.

On the other hand, in on-line training, the MLP parameters are updated after
the presentation of each training example, which may be sampled with or without
repetition. On-line training may be the appropriate choice for learning a task
either because of the very large (or even redundant) training set, or because of the
slowly time-varying nature of the task. Although batch training seems faster for
small-size training sets and networks, on-line training is probably more efficient
for large training sets and MLPs. It helps escaping local minima and provides a
more natural approach for learning non-stationary tasks. On-line methods seem
to be more robust than batch methods as errors, omissions or redundant data in
the training set can be corrected or ejected during the training phase. Additionally,
training data can often be generated easily and in great quantities when the system
is in operation, whereas they are usually scarce and precious before. Lastly, on-
line training is necessary in order to learn and track time varying functions and
continuously adapt in a changing environment.

Given the inherent efficiency of stochastic gradient descent, various schemes have
been proposed recently [1,4-7]. However, these schemes suffer from several draw-
backs such as sensitivity to learning parameters [4]. Note that in this framework it
is not possible to use advanced optimization methods, such as conjugate gradient,
variable metric, simulated annealing etc., as these methods rely on a fixed error
surface [4].

This paper is organized as follows: a new on-line training algorithm is presented
in the next section. Experimental results are reported in Section 3 to evaluate the
performance of the proposed algorithm and compare it with several on-line and
batch training algorithms. In Section 4, conclusions are presented.

2 Memory-based adaptation of the stepsize

Despite the abundance of methods for learning from examples, there are only
few that can be used effectively for on-line learning. For example, the classic

Third World Congress of Nonlinear Analysts 47 (2001) 3425-3430 3427

ON-LINE TRAINING WITH ADAPTIVE STEPSIZE

0: Initialize the weights w®, n°, and K.
1: Repeat for each input pattern p
2: Calculate E(w?) and then VE(wP).
3 Update the weights:
wPtl = P — PV E(wP)
4: Calculate the stepsize to be used with
the next pattern p + 1:
P =P + K(VE(wP~1), VE(wP))
5: Until the termination condition is met.

6: Return the final weights wP*!,

Algorithm 1: The proposed algorithm in pseudocode.

batch training algorithms cannot straightforwardly handle nonstationary data.
Even when some of them are used in on-line training there exists the problem
of “catastrophic interference”, in which training on new examples interferes ex-
cessively with previously learned examples leading to saturation and slow conver-
gence [8]. Methods suited to on-line learning are those that can handle nonstation-
ary (time-varying) data, while at the same time, require relatively little additional
memory and computation in order to process one additional example.

A high-level description of the stochastic gradient descent equipped with the pro-
posed adaptation strategy is given in Algorithm 1, where 7 is the stepsize, K is
the meta-stepsize and (-, -) stands for the usual inner product in R*.

The memory—based calculation of the stepsize, in Step 4, takes into consideration
previously computed pieces of information to adapt the stepsize for the next pattern
presentation. This seems to provide some kind of stabilization in the calculated
values of the stepsize, and helps the stochastic gradient descent to exhibit fast
convergence and high success rate. Note that the classification error or an upper
limit to the error function evaluations can be used as the termination condition in
Step 5.

The key features of this method are the low storage requirements and the inexpen-
sive computations. Moreover, in order to calculate the stepsize to be used at the
next iteration, this on-line algorithm uses information from the current, as well as
the previous iteration.

3428 Third World Congress of Nonlinear Analysts 47 (2001) 3425-3430

3 Simulation results

A set of computer simulations has been developed to study the performance of the
proposed stepsize- adaptation scheme. To this end, the stochastic gradient descent
with adaptive stepsize (Algorithm-1) has been compared with other on-line and
batch training methods. More specifically, we have compared Algorithm-1 with
three stochastic adaptive stepsize methods proposed by Almeida et al. in [1). The
first of these methods, i.e. ALAP,, uses at each iteration a common adaptive step-
size for all weights, while the other two, i.e ALAP; and ALAP;3, use a different adap-
tive stepsize along each weight direction. This feature makes ALAP,; and ALAP;
able to actually implement variants of the stochastic gradient procedure, and, thus,
follow a search direction that does not necessarily coincide with the gradient direc-
tion, but, hopefully, provides accelerated learning. The ALAP, method is called the
unnormalized update rule, while ALAP; is the normalized update rule. Addition-
ally, for comparison purposes we have also tested the on-line Back—Propagation
(On-line BP), the batch Back-Propagation (Batch BP), and the batch adaptive
BP with adaptive stepsize and momentum (Batch ABP) [9]. The algorithms were
tested using the same initial weights, initialized by the Nguyen-Widrow method [3],
and received the same sequence of input patterns. The meta~learning parameter
received the fixed value K = 1. It seems that the choice of K is not critical for
successful training. However, one may achieve faster convergence, if the value of
the meta-learning parameter is fine—tuned. As a last remark, the training phase
was considered successful when the network exhibited zero misclassifications on
the training set.

For each test problem, described below, a table is presented that summarizes the
performance of the algorithms for simulations that reached solution out of 100
runs. The reported parameters are: Min the minimum number of pattern presen-
tations, Mean the mean value of pattern presentations, Maz the maximum number
of pattern presentations, and Succ. the number of simulations succeeded. If an al-
gorithm fails to converge within a predetermined error function evaluation limit, it
is considered that it fails to train the MLP, and its pattern presentations are not
included in the statistical analysis of that algorithm.

The first test problem we will consider is the eXclusive-OR (XOR) Boolean func-
tion problem. This simple problem is not linearly separable (i.e. it cannot be solved
by a simple mapping directly from the inputs to the output), and thus an MLP
requires the use of extra hidden units to learn the task. Moreover, training is sen-
sitive to initial weights as well as to stepsize variations and the batch error surface
of the problem presents a multitude of local minima with certain weight vectors.
A 2-2-1 MLP (six weights, three biases) with logistic activations has been used
to learn the XOR function. The error function evaluation limit was 4000, i.e. only
4000 pattern presentations were allowed.

From the results of Table 1, it is evident that the proposed algorithm clearly
outperforms the ALAP;, ALAP, and ALAP; algorithms, the on-line and the batch

Third World Congress of Nonlinear Analysts 47 (2001) 3425-3430 3429

Table 1

Comparative results for the XOR problem
Algorithm Min, Mean Maz Suce.

Batch BP 176 1693.9 3840 17%
Batch ABP 144 1430.4 3708 49%
On-line BP 72 724.2 2972 43%
ALAP, 56 736.1 3900 38%
ALAP, 40 816.9 3960 37%
ALAP; 52 1000.5 3636 43%
Algorithm-1 44 680.2 3388 48%

versions of the BP algorithm, but the ABP method exhibits a slightly higher rate
of success. This was expected since, in general, the batch algorithms are very good
with problems that have small training sets and/or small network topologies.

In the second experiment, a network with 64 input, 6 hidden and 10 output nodes
(444 weights, 16 biases) was trained to recognize 8 x 8 pixel machine printed nu-
merals from 0 to 9 in helvetica italic [2]. The network was based on neurons of
the logistic activation model. The termination condition for all algorithms tested
was to exhibit zero misclassifications on the training set within 1000 error function
evaluations. Detailed results regarding the training performance of the algorithms
are presented in Table 2. The on-line BP method exhibited very high success rate,
but the ALAP;, ALAP, and ALAP3; methods were faster. On the other hand,
the proposed method and the On-line BP had almost perfect success rate (99%).
Moreover, Algorithm-1 exhibited fast convergence since it needed on average only
436 pattern presentations in order to train the network.

Table 2

Results for the numeric font learning problem
Algorithm Min Mean Maz Suce.

Batch BP 210 500.8 980 90%
Batch ABP 420 789.2 990 51%
On-line BP 230 507.7 950 99%
ALAP,; 130 475.5 990 90%
ALAP, 190 433.6 860 90%
ALAP; 210 486.3 990 96%

Algorithm-1 170 436.3 870 99%

In the third experiment, 26 matrices with the capital letters of the English alpha-
bet are presented to a 35-30-26 MLP (1830 weights, 56 biases) that used logistic
activations. Each letter has been defined in terms of binary values on a grid of
size 5 x 7. The results are exhibited in Table 3. Once again, the proposed method
exhibited a very high success rate (96%) and was faster than all the other meth-
ods considered. On average it needed only 749 pattern presentations in order to
complete the task.

4 Conclusions

In this paper, a new learning algorithm for neural network on-line training has
been proposed. Such algorithms are able to train large networks using on-line

3430 Third World Congress of Nonlinear Analysts 47 (2001) 3425-3430
Table 3
Comparative results for the alphabetic font learning problem
Algorithm Min Mean Maz Succ.
Batch BP 4498 21375.9 41860 79%

Batch ABP 3588 3815.7 4212 98%
On-line BP 1404 1861.1 2418 87%

ALAP; 494 15194 2548 2%
ALAP, 338 756.6 1846 94%
ALAP; 338 754.5 2418 79%
Algorithm-1 364 749.6 1872 96%

data, and are better suited for tasks with large, redundant or slowly time-varying
training sets. Numerical evidence suggest that the proposed algorithm provides fast
and stable learning, when compared with other on-line as well as batch training
methods, and, therefore, a greater possibility of good performance. Further work
is needed to optimize the algorithm’s performance and test it on bigger and more
complex real-life learning tasks.

Acknowledgement

The authors wish to thank the referees for useful suggestions.

References

[1]

2l
3l

[4]

L.B. Almeida, T. Langlois, J.D. Amaral, A. Plankhov, Parameter adaptation in
Stochastic Optimization, In: On-line Learning in Neural Networks, D. Saad, {ed.),
111-134, Cambridge University Press, 1998.

G.D. Magoulas, M.N. Vrahatis and G.S. Androulakis, Effective back-propagation
with variable stepsize, Neural Networks, 10 (1997) 69.

D. Nguyen and B. Widrow, Improving the learning speed of 2-layer neural network
by choosing initial values of the adaptive weights, In: Proc. IEEE 1% Int. J. Conf.
on Neural Networks, 21-26, 1990.

D. Saad, On-line Learning in Neural Networks, Cambridge University Press, 1998.

N.N. Schraudolph, Online Local Gain Adaptation for Multi-layer perceptrons,
Technical Report, IDSIA-09-98, IDSIA, Lugano, Switzerland, 1998.

N.N. Schraudolph, Local Gain Adaptation in Stochastic Gradient Descend, Technical
Report, IDSIA-09-99, IDSIA, Lugano, Switzerland, 1999.

R.S. Sutton, Adapting Bias by Gradient Descent: an Incremental Version of Delta—
Bar—Delta, In: Proc. 10#* Nat. Conf. on Artificial Intell., MIT Press, 171-176, 1992.
R.S. Sutton and S.D. Whitehead, Online Learning with Random Representations,
In: Proc. 10** Int. Conf. on Machine Learning, Morgan Kaufmann, 314-321, 1993.

T.P. Vogl, J. K. Mangis, J.K. Rigler, W.T. Zink and D.L. Alkon, Accelerating the
Convergence of the Back—propagation Method, Biol. Cybern., 59 (1988) 257.

