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Abstract

Learning algorithms for multilayer perceptrons are usually based on local minimization
methods that can be often trapped in a local minimum of the error function. In this
work, the use of global optimization strategies for training multilayer perceptrons is in-
vestigated. These methods are expected to lead to “optimal” or “near-optimal” weight
configurations by allowing the network to escape local minima during training. The paper
reviews the fundamentals of a recently proposed deflection procedure, simulated anneal-
ing, genetic and evolutionary algorithms, and introduces a new differential evolution
strategy. Simulations and comparisons are presented.

1 Introduction

MultiLayer Perceptrons (MLPs) have been widely used in many application areas
and have shown their strengths in solving hard problems in artificial intelligence.
The training of an MLP is achieved by the incremental adaptation of connection
weights that propagate information between simple processing units called artificial
neurons and aims at minimizing the multi-variable error function of the network.
Below, a unified notation for the weights is adopted aiming at simplifying the
formulation of the equations; thus, for an MLP w denotes a2 column weight vector
with components w;,ws, ..., w, and is defined in R™, E represents the batch error
measure defined as the sum-of-squared-differences error function over the entire
training set; VE(w) defines the gradient vector of the error function E at w.
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Commonly used training methods are gradient-based, such as the Back-Propagation
(BP), which minimizes F(w) using the steepest descent with constant stepsize [5]:

W = Wb~ VE@w), k=0,1,.... (1)

The optimal value of the stepsize p depends on the shape of the N-dimensional
error function and the gradient, VE, is computed by applying the chain rule on
the layers of the MLP. Several modifications of this scheme based on local mini-
mization methods have been proposed in the literature. However, these algorithms
are often trapped in a local minimum of the error function. Convergence to a local
minimum prevents the MLP from learning the entire training set and results in in-
ferior network performance, or possibly to premature convergence. Intuitively, the
existence of local minima is due to the fact that the error function is the superpo-
sition of nonlinear activation functions that may have minima at different points,
which sometimes results in a nonconvex error function [2]. The insufficient number
of hidden nodes, as well as improper initial weight settings can cause convergence
to a local minimum. Several researchers have presented conditions on the network
architecture, the training set and the initial weight vector that allow BP to reach
the optimal solution [2,8]. However, conditions such as the linear separability of
the patterns and the pyramidal structure of the MLP [2] as well as the need for a
great number of hidden neurons (as many neurons as patterns to learn) make these
interesting results not easily interpretable in practical situations even for simple
problems.

This papers presents methods that alleviate the problem of occasional convergence
to local minima in MLP training by using Global Optimization (GO) strategies.
The remaining of this paper is organized as follows. In the next section a recently
proposed deflection procedure is briefly presented. The fundamentals of simulated
annealing are presented in section 3, while genetic and evolutionary algorithms are
reviewed in section 4 and 5 respectively. Section 6 presents simulation experiments
and a discussion of the results obtained.

2 The deflection procedure

Assuming that m local minima, ry,...,7, € RY, exist, the deflection procedure
suggests to formulate the function:

F(w) = S(w;ry, M) 70 S(w; Ty A ) THE(w),

where S(w;r;, A;) is a function depending on the weight vector w and on the local
minimizer r; of E; A;; 1 = 1,...,m, is a set of relaxation parameters. The goal
is to find a “proper” function S(-), such that F{w) will not have a minimum at
ri,t = 1,...,m, while all other minima of £ remain locally “unchanged”. In other
words, we have to construct functions S that provide F' with the property that any
sequence of weights, {w*}%°, converging to r; will not produce a minimum of F at
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Fig. 1. Applying the deflection procedure to the Six Hump Camel Back test function.

w = r; and that the function F will retain all other minima of E. The function

S{w;ri, A;) = tanh (As|lw — ril])
provides F' with this property, also called deflection property, as proved in [4].

As an application example we applied the deflection procedure on the Six Hump
Camel Back test function

1
flzy,29) = 4a? — 2,127 + gxf + 2129 — 422 + 4a5.

The plot of the original function is illustrated in Fig. 1 (left). The effect of the
deflection procedure for A = 1.5 is shown in Fig. 1 (center) and for A = 10 in Fig. 1
(right). When the value of A; is small (say A; < 1) the deflection procedure affects
a large neighborhood around r;. On the other hand, when the value of ); is large
new local minima may be created near the minimizer r;, like a Mexican hat, see
Fig. 1 (right). These minima have greater function values than F(r;) and can be
easily avoided by taking a proper stepsize, or by changing the value of X;.

The deflection procedure can be incorporated in any algorithm to alleviate con-
vergence to local minima. In the experiments reported below the steepest descent
method was equipped with the deflection procedure and the new method was
named Steepest Descent with Deflection (SDD).

3 The simulated annealing

Simulated Annealing (SA) [5] refers to the process in which random noise in a
system is systematically decreased at a constant rate so as to enhance the systems’s
response. The SA is based on random evaluations of the error function, in such
a way that transitions out of a local minimum are possible. Unfortunately, the
performance of the SA as has been observed on typical MLP training problems
is not the appropriate one. SA is characterized by the need for a greater number
of function evaluations than that commonly required for a single run of common
training algorithms and by the absence of any derivative-related information. In
addition, the problem with minimizing F is not the well~defined local minima, but
the broad regions that are nearly flat. In this case, the so~called Metropolis move
is not strong enough to move the algorithm out of these regions [7].
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Burton and Mpitsos [1] proposed a modification of the SA that benefits from
derivative-related information:

Wit = w* — uV E(wk) + ne2=%, (2)

where n is a constant controlling the initial intensity of the noise, ¢ € (—0.5, +0.5)
is a random number and d is the noise decay constant. This modified method,
named BM, was used in our experiments as well as an alternative scheme: we start
by updating the weights using BP (see Relation (1)); if BP converges to a local
minimum, then we switch to BM. The combined scheme (1)-(2) is named BPBM.

4 Genetic algorithms

Genetic Algorithms (GAs) are simple and robust search algorithms based on the
mechanics of natural selection and natural genetics [5]. Briefly, a simple GA pro-
cesses a finite population of fixed length binary strings called genes. GAs have
two basic operators, namely: crossover of genes and mutation for random change
of genes. Another operator associated with each of these operators is selection,
which produces survival of the fittest in the GA. The crossover operator explores
different structures by exchanging genes between two strings at a crossover posi-
tion. The mutation operation introduces diversity in the population by altering
a bit position of the selected string and is used to escape the local minima in
the weight space. The combined action of mutation and crossover is responsible
for much of the effectiveness of GAs search, and allows GAs to act as a parallel,
noise-tolerant hill-climbing algorithms, which search the whole weight space. The
“Genetic Algorithm for Optimization Toolbox (GAOT)” [3] has been used for the
experiments reported below. GAOT’s default crossover and mutation schemes, and
a real-valued encoding of the MLP’s weights were employed.

5 Evolutionary algorithms

Evolutionary Algorithms (EAs) are global search methods that mimic the metaphor
of natural biological evolution. EAs operate on a population of potential solutions
applying the principle of survival of the fittest to produce better and better ap-
proximations to a solution. At each generation, a new set of approximations is
created by the process of selecting individuals according to their level of fitness in
the problem domain and breeding them together using operators borrowed from
natural genetics.

In our experiments we have used Differential Evolution (DE) strategies [5] to train
MLPs, because they can handle non differentiable, nonlinear and multimodal ob-
jective functions efficiently, and require few easily chosen control parameters. Also,
empirical results support the argument that DE strategies possess good conver-
gence properties and outperform other EAs [6]. In our case, we start with a specific
number (NP) of weight vectors, as an initial weight population, and evolve them
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over time; NP is fixed throughout the training process and the weight population is
1n1t1ahzed randomly following a uniform probability distribution. For each Welght
vector wy, t = 1,...,NP, where g denotes the current generation, a new vector vy, ,
(mutant vector) is generated according to one of the relations (3)-(8), described
below, where w?®* is the best member of the previous generation, ¢ > 0 is a real pa-
rameter called mutation constant, which controls the amplification of the difference
between two weight vectors, and ri,rs,r3,re,7s € {1,2,...,4—1,44+1,...,NP}
are random integers mutually different and different from the running index s.

Algorithm DE1: v}y =wj' + ¢ (w}! — w}?) (3)
Algorithm DE2: v} ) = w* 4+ ¢ (w]! — w?) ()
Algorithm DE3: v}y =w}' + & (w) ~ w}?) (5)
Algorithm DE4:  vi; =w) +¢ (wb™ —wl) + € (w] — wp?) (6)
Algorithm DE5 : ;'+1 =wp® + & (Wit — wi?) + & (w)? — wit) (M
Algorithm DES : g+1_w +&(w ’2—w’3)+§(w4-w 5). (8)

To increase further the diversity of the mutant weight vector, crossover is applied: for each
component j (j = 1,2,...,N) of the mutant weight vector v;+17 we randomly choose
a real number r from the interval [0,1], and compare this number with p (crossover
constant). If r < p, we substitute the j-th component of the trial vector v}, with the
j—th component of vg+1, otherwise, with the j-th component of the target vector wg_,_1

6 Simulation results and discussion

Experiments have been performed to evaluate the global search methods and compare
their performance in two notorious for their local minima problems. Initial weight vec-
tors chosen from a uniform distribution in the interval (—1,41) were used and global
convergence was achieved when F < 0.04. Local convergence was considered when
IVE(w*)|| < 1073, and w* was taken as a local minimizer r; of E. The fixed values
& = 0.5 and p = 0.7 were used for the mutation and the crossover, NP was twice the
dimension of the problem considered, and 100 simulations were run for each case.

The Ezclusive-OR classification problem concerns the classification of four patterns in
one of two classes using a 2-2-1 MLP. It is a classical test problem, sensitive to initial
weights, and presents a multitude of local minima. The stepsize was equal to 1.5 and the
heuristics for BM and BPBM were n = 0.3.

In the three bit parity problem, a 3~3-1 MLP receives 8 binary patterns and must output
a “17, for inputs that have an odd number of 1s, or “0”, for inputs that have an even
number of 1s. The stepsize was equal to 0.5, and the heuristics for BM and BPBM were
tuned to n = 0.1 and d = 0.00025.

The results of the experiments, exhibited in Table 1, suggest that the proposed DE
strategies and the SDD method provide a better probability of success than the BP.
Especially the SDD method exhibits a very good average performance: escapes local
minima and converges to the global minimum in all cases. It is worth mentioning that
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Table 1

Comparative results
Training XOR Problem Parity Problem
Method Success Mean  std.dev. Success Mean  std.dev.
BP 42% 144.1 112.6 91% 932.0 1320.8
BM 43% 424.2 420.8 22% 805.4 2103.1
BPBM 65%  1661.9 2775.7 66%  2634.0 6866.8
GA 95% 422.3 397.5 73%  1091.5 766.2
DE1 75% 192.9 124.7 91% 622.6 522.1
DE2 80% 284.9 216.2 61% 1994.1 657.6
DE3 97% 583.9 256.3 929% 896.3 450.6
DE4 98% 706.1 343.7 98%  1060.2 716.6
DE5 85% 300.5 250.2 26%  2112.0 644.9
DE6 93% 482.9 264.9 44%  2062.5 794.8
SDD 100% 575.1 387.3 100% 760.0 696.4

the mean number of function evaluations in BPBM and SDD contains the additional
evaluations required for the BP to satisfy the local minima stopping condition. The GA
and the DE3 and DE4 are promising and effective in the XOR problem, even when
compared with other methods that require the gradient of the error function, in addition
to the error function values. Note, however, that the performance of the GA in the parity
problem is not very good compared to the fined tuned BP; it is possible to alleviate this
situation by tuning GAOT’s crossover and mutation schemes. In conclusion, global search
methods provide techniques that alleviate the problem of occasional convergence to local
minima in MLP training. Escaping from local minima is not always possible, however
these methods exhibit a better chance in locating appropriate solutions.
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