Mobile and Ubiquitous Computing
Location Sensing

George Roussos
g.roussos@dcs.bbk.ac.uk

Session Overview

• Location sensing techniques
 – Triangulation
 – Proximity
 – Scene analysis
• Location sensing systems
 – Properties
 – Examples
 – Challenges

Location Sensing Techniques

• Triangulation
 – Lateration (using distance)
 – Angulation (using angles)
• Proximity
 – Contact
 – Contactless
• Scene analysis
Triangulation

- Compute object locations using the properties of triangles (e.g. law of sines, Pythagorean theorem etc)
- Several combinations of distance/angle measurements would work
- Generalization into 3 dimensional objects
- E.g. 3 non-collinear points are needed in 2D and 4 non-collinear points are needed in 3D

Lateration

Lateration Measurements

Types of Measurements
- Direct touch
- Time-of-flight (of the radio signal between transmitter and receiver)
 - e.g., sound waves travel 344m/s in 21°C and so distance = time x speed
- Signal attenuation
 - calculate based on send and receive strength
 - Absorption, scattering, interference
 - Free space loss = 32.4 + 20xLog F(MHz) + 20xLog R(Km)
 - attenuation varies based on environment
Time-of-Flight Problems

- Often requires high time resolution (for accurate light or radio propagation measurements)
 - A light pulse (with 299,792,458 m/s) will travel the 5 m in 16.7 ns
 - 0.001 sec -> 200 miles error!
- Clock synchronization critical
 - Accurate synchronization between reference beacons and receivers
 - Beacons could use atomic clocks (100k cost)
 - Use extra measurements!

Global Positioning System

- 27 satellite constellation
- More than 50 launched since 1978
- Powered by solar energy
- Each carries a 4 rubidium atomic clocks
 - locally averaged to maintain accuracy
 - updated daily by US Air Force Ground control
- Satellites are precisely synchronized with each other
- 400 M USD per year

Global Positioning System

- Receiver is not synchronized with the satellite transmitter
- Satellites transmit their local time in the signal
- Receivers compute their difference in time-of-arrival
- Receivers estimate their position (longitude, latitude, elevation) using (at least) 4 satellites
- Accuracy is about 5 meters (20 meters until recently when random error was introduced)
- Differential GPS provides extra accuracy approx. 2 meters
- European solution: Galileo
Angulation

- Location sensing in 2D requires
 - 2 angle measurements from known location
 - 1 distance measurement (between the 2 locations above)
- Example system: phased antenna array

Phased Antenna Array

- Multiple antennas with known separation (i.e. distance) – the military is very fond of this!
- Each measures time-of-flight of signal
- Using the difference in times and the (known) geometry of the receiving array, we can calculate the required angle
- If there are enough elements in the array and large separation, angulation can be performed accurately

Scene Analysis

- Compares scenes to reference scenes
 - Image, electromagnetic spectrum
- Construct a signature of a position and apply pattern matching techniques with this signature
- Differential scene analysis
 - Tracks differences in scenes
Scene Analysis Challenges

• Issues
 – the observer needs access to the features of the environment against which it will compare its observed scenes
 – changes of the environment that affects these features may require their reconstruction

Proximity

• Physical contact e.g., with pressure, touch sensors or capacitive detectors
• Within range of an access point e.g. GSM antenna
• Automatic ID systems
 – computer login
 – credit card sale
 – RFID
 – EPC codes

Location System Properties

• Physical position and symbolic location information
• Absolute versus relative locations
• Localized location computation capability
• Accuracy and Precision
• Scale
• Recognition capability
• Cost
• Limitations
Physical Position and Symbolic Location

- Location information can be
 - Physical (47°39'17" N by 122°18'23" W)
 - Symbolic (in the kitchen, next to a mailbox)
- Symbolic location information can be derived by physical position with additional information.
- Using only symbolic location information can yield very coarse-grained physical positions

Absolute vs. Relative

- Absolute location system
 - Shared reference grid for all objects
 - Can be transformed into a relative location
- Relative location system
 - Each object may have own frame of reference
 - Can transform into absolute location from relative location readings
 - Must know absolute position of reference points

Localized Location Computation

- Location computation can happen in:
 - The object being located
 - Ensures privacy
 - The external infrastructure
 - Lower computational and power demands on objects
 - Many more applications possible
Accuracy and Precision

- **Accuracy**
 - Grain size (e.g. “within 10 meters”)
 - Probability of achieving a particular accuracy
- **Precision**
- **Sensor Fusion**
 - Tries to improve accuracy and precision through integration of location systems to form hierarchical and overlapping levels of resolution
- **Adaptive Fidelity**
 - Ability to adjust precision in response to dynamic events like partial failures.

Scale

- **Scale** assessed by:
 - Coverage area per unit of infrastructure (e.g. “1 base station per 10 square meters”)
 - Number of objects the system can locate per unit of infrastructure per time interval (e.g. “25 computations per room per second”)
- Larger scale achieved by increasing infrastructure

Recognition

- **Recognition** necessary for applications that take specific actions based on location of object (e.g. airport baggage handling system)
- **GUID (Globally Unique ID)**
 - Used to provide recognition capability
 - Combined with other contextual information allows for different object interpretations in different settings.
 (e.g. retrieving museum information in a particular language)
Cost

- Time
 - Installation process length
 - System administration needs
- Space
 - Amount of installed infrastructure
 - Hardware size
- Capital
 - Price per mobile unit or infrastructure element
 - Support personnel salaries

Limitations

- Improper functionality in certain environments:
 - Signal strength indoors
 - Exceeding request limits
 - Frequency interference

Session Overview

- Location sensing techniques
 - Triangulation
 - Proximity
 - Scene analysis
- Location sensing systems
 - Properties
 - Examples
 - Challenges