Overview

- Intro to Media Access Control (MAC)
- MAC design goals
- Contention-based MAC protocols
 - CSMA, MACA, MACAW, IEEE 802.11 DCF, PAMAS
- TDMA MAC protocols
 - IEEE 802.11 PCF, Bluetooth
- Energy-efficient MAC protocols for sensor networks
 - S-MAC
Intro to Media Access Control

- Wireless medium is shared
- Many nodes may need to access the wireless medium to send or receive messages
- Concurrent message transmissions may interfere with each other => collisions => message drops
- A MAC protocol is needed to allow the efficient sharing of the wireless medium by multiple nodes
Design goals of a MAC protocol:

- **ensure reliable communication** across wireless links (not end-to-end reliability, only 1-hop reliability)
- **maximize the use of available bandwidth** (keep control overhead as low as possible)
- **ensure fair bandwidth allocation** to contending nodes
- **minimize delay** of sending/receiving messages
- **minimize energy-consumption** of sending/receiving messages
Contestation-based protocols

Assumptions in contestation-based protocols:
- nodes may try to use the medium at any time (they don’t reserve any time slots)
- they all use the same frequency

Protocols:
- CSMA
- MACA and MACAW
- IEEE 802.11
- PAMAS
Carrier Sense Medium Access (CSMA)

- The transmitter first senses the wireless channel in the vicinity.
- The transmitter refrains itself from transmission if the channel is already in use.
- It waits for some time before the next attempt (backoff procedure).
- Example: ALOHA protocol.
The exposed node problem

CSMA may cause nodes to unnecessarily refrain from accessing the medium.

B transmits to A.

C hears the transmission from B to A.

C "unnecessarily" refrains from sending a message to D even though no collision would occur.
The hidden node problem

CSMA does not avoid the hidden node problem.

A transmits to B.
B receives the message.
C does not hear the transmission.

A tries to transmit to B.
C also tries to transmit to B.
Both messages are dropped at B.
MACA protocol: Multiple Access with Collision Avoidance [Karn 1990]

Nodes reserve the channel using control messages (virtual sensing):

- The sender first expresses its wish to transmit by sending a Request-To-Send (RTS) message
- The receiver allows this transmission by sending a Clear-To-Send (CTS) message
- The sender then sends the Data message
A sends RTS to B.
B sends a CTS to A (C overhears it).
A sends Data to B.

Both RTS and CTS carry information about the duration of the Data transmission.
RTS-CTS handshake

- If control (RTS-CTS) messages collide with each other or with data packets, a backoff procedure is activated (backoff is binary exponential).

- RTS-CTS helps to avoid some cases of the hidden and exposed node problems, because:
 - All neighbors of the sender hear the RTS.
 - All neighbors of the receiver hear the CTS.

- However, it does not always avoid these problems!
MACAW [Bharghavan et al. 1994] extends MACA

- RTS-CTS-DS-Data-ACK
MACAW extends MACA with

- DLL acknowledgements
- an improved backoff mechanism
 - => fair allocation of the medium to contending nodes

DS (Data Sending) message:
- Say that a neighbor of the sender overhears an RTS but not a CTS (from the receiver)
- In this case it can’t tell if RTS-CTS was successful or not
- When it overhears the DS, it realizes that the RTS-CTS was successful, and it defers its own transmission
IEEE 802.11 DCF

- **IEEE 802.11** is the standard MAC and physical protocol for wireless LANs.
- The DCF (Distributed Coordination Function) of the MAC sublayer does *physical and virtual sensing*:
 - CSMA / CA (Carrier Sense Multiple Access with Collision Avoidance)
 - RTS-CTS-Data-ACK
 - RTS and CTS include the busy channel duration
 - All nodes that overhear either the RTS or CTS set their NAV (Network Allocation Vector) to the busy channel duration indicated in RTS/CTS.
 - A node can access the channel only if no signal is physically detected and its NAV value becomes zero.
PAMAS [Singh and Raghavendra, 1998]: Power-Aware Multi-Access Protocol with Signaling

- Similar to MACA
- RTS-CTS occur over a separate signaling channel
- PAMAS conserves energy by:
 - Powering off its data channel, when it has not data to transmit or when its neighbors are using the medium
 - Powering up the data channel, upon being notified by the signaling channel that the node is ready to receive or send data
- Special circuit design is required
TDMA MAC protocols

- TDMA (Time Division Multiple Access) protocols
- Time is divided into timeslots
- Nodes transmit one after the other using their own timeslot
- TDMA requires good time synchronization
 - Scalability issue: hard to achieve time synchronization in large multi-hop networks

Protocols:
- IEEE 802.11 PCF
- Bluetooth
IEEE 802.11 PCF

- IEEE 802.11 PCF (Point Coordination Function)
- One node, called Access Point (AP), coordinates the transmissions of its neighbors
- The AP polls neighbors one after the other, and allows them to transmit in a round robin manner
- PCF is not suitable for large multi-hop networks
Bluetooth

- Piconet: One node, called the master, can communicate with up to 7 nodes called the slaves.
- Bluetooth uses 79 channels (each 1 MHz wide) and changes channels up to 1600 times.
- Each channel is divided into time slots of 625 μsecs.
- The master switches from slave to slave in a round-robin fashion.
 - Time-Division Duplex (TDD): master (downlink) and slave (uplink) transmissions occur in alternative slots.
 - Slaves can talk back to the master immediately after they are polled by the master.
Energy-efficient MAC protocols

- Energy savings are important in sensor networks:
 - battery-powered sensor nodes are left unattended in remote areas for large periods
- To increase lifetime of battery-powered nodes
 - Minimize the time that the radio is switched on:
 - Reduce collisions and packet retransmissions
 - Reduce overhearing
 (the receiving cost is comparable to the sending cost)
 - Reduce idle-listening
 (the listening cost is comparable to the receiving cost)
- Protocol: S-MAC (others are B-MAC, Z-MAC etc.)
Main features of S-MAC [Yet et al. 2004]:
- Nodes follow periodic sleep-listen schedules
- Nodes avoid overhearing neighbor transmissions
- Long messages are fragmented and sent together in a burst
- Nodes on the same sleep-listen schedule contend for the medium using RTS-CTS-Data-ACK

S-MAC reduces energy consumption but:
- At the expense of delay
- At the expense of per-hop fairness
S-MAC

- Nodes follow periodic sleep-listen schedules
 - Low duty cycle (say 10%) \Rightarrow increased delay

- A node tries to adopt the schedule of its neighbors
- If two neighbors have different schedules then the node may decide to:
 - either adopt both (\Rightarrow spend more energy listening)
 - or adopt only one. In this case, if a node wants to send a message to a neighbor with a different schedule, it must wake up during the listen interval of that schedule.
Nodes on the same schedule use RTS-CTS to contend for the medium.

On overhearing an RTS or CTS for a message that does not concern them, they turn off the radio for the duration allocated to the message’s transmission.

Nodes save energy because they avoid overhearing Data-ACK packets not destined to them.
- Long messages are fragmented and sent in bursts
 - Only one RTS-CTS pair is sent
 - An ACK is sent for each fragment

In this way, a node may reserve the medium for the period needed to send all fragments. The neighbors of the sender and receiver go to sleep.

Fairness issue: The other nodes don’t get the chance to access the medium until the last fragment is transmitted.
Summary

- The most important design goal of a MAC protocol is to enable *shared access to the common wireless medium*.

- **Contention-based** vs. **TDMA-based** MAC protocols
 - Contention-based protocols try to sense whether the medium is busy before accessing it (through physical or virtual sensing).
 - TDMA-based protocols share the medium by accessing it at different times.

- In *energy-constrained* environments (e.g. sensor networks), MAC protocols aim to reduce radio usage (retransmissions, overhearing and idle listening).
Related Reading

Paper to prepare for discussion