Mobile and Ubiquitous Computing
Bluetooth Networking

George Roussos
g.roussos@dcs.bbk.ac.uk

Bluetooth Overview

- A cable replacement technology
- Operates in the unlicensed ISM band at 2.4 GHz
- Frequency Hopping scheme (1600 hops/sec)
- Range 10+ or 100+ meters
- Single chip radio + baseband
- Design features:
 - robustness
 - low complexity
 - low power
 - low cost

Bluetooth Characteristics

- Bluetooth supports
 - Synchronous & asynchronous data channels.
 - Three simultaneous synchronous voice channels, or
 - One channel, with asynchronous data and synchronous voice
 - Data channel can support maximal 723.2 kb/s asymmetric (and still up to 57.6 kb/s in the return direction), or 433.9 kb/s symmetric.
- Bluetooth provides
 - point-to-point (only 2 nodes), or
 - point-to-multipoint connection.
Application Scenarios

• Data Access Points
• Synchronization
• Headset
• Conference Table
• Cordless Computer
• Business Card Exchange
• Instant Postcard
• Computer Speakerphone

Usage scenarios: Synchronization

User benefits
• Proximity synchronization
• Easily maintained database
• Common

Usage scenarios: Headset

User benefits
• Multiple device access
• Cordless phone benefits
• Hand’s free operation
Usage scenarios: Data access points

User benefits
- No more connectors
- Easy internet access
- Common connection experience

Bluetooth Stack

- Application Framework and Support
- Host Controller Interface
- Link Manager and L2CAP
- Radio & Baseband

• A hardware/software/protocol description
• An application framework

Single chip with RS-232, USB, or PC card interface
Power consciousness

- Standby current < 0.3 mA
 - 3 months(*)
- Voice mode 8-30 mA
 - 75 hours
- Data mode average 5 mA
 (0.3-30mA, 20 kbps, 25%)
 - 120 hours
- Low-power architecture
 - Programmable data length (else radio sleeps)
 - Hold and Park modes: 60 µA
 - Devices connected but not participating
 - Hold retains AMA address, Park releases AMA, gets PMA address
 - Device can participate within 2 ms

(*) Estimates calculated with 600 mAh battery and internal amplifier, power will vary with implementation.

Radio

- Low Cost
 - Single chip radio (minimize external components)
 - Today’s technology
 - Time division duplex
- Low Power
 - Standby modes
 - Sniff, Hold, Park
 - Low voltage RF
- Robust Operation
 - Fast frequency hopping 1600 hops/sec
 - Strong interference protection

Baseband
Baseband protocol

- **Standby**
 - Waiting to join a piconet
- **Inquire**
 - Ask about radios to connect to
- **Page**
 - Connect to a specific radio
- **Connected**
 - Actively on a piconet (master or slave)
- **Park/Hold**
 - Low-power connected states

Connection Setup

- Inquiry - scan protocol
 - To learn about the clock offset and device address of other nodes in proximity

Piconet formation

- Page - scan protocol
 - To establish links with nodes in proximity
The Bluetooth network topology

- Radio designation
 - Connected radios can be master or slave
 - Radios are symmetric (same radio can be master or slave)
- Piconet
 - Master can connect to 7 simultaneous or 200+ active slaves per piconet
 - Each piconet has maximum capacity (1 Mbps)
 - Unique hopping pattern/ID
- Scatternet
 - High capacity system
 - Minimal impact with up to 10 piconets within range
 - Radios can share piconets!

Piconet

- One unit acts as the master of the Piconet, whereas the others acts as slaves.
- Up to seven slaves can be active.
- More slaves can be synchronized & locked to the master in parked state.
- The channel access for all the slaves in a piconet is controlled by the master.

Piconet characteristics

- All devices in a piconet hop together
 - To form a piconet: master gives slaves its clock and device ID
 - Hopping pattern determined by device ID (48-bit)
 - Phase in hopping pattern determined by Clock
- Non-piconet devices are in standby
- Piconet Addressing
 - Active Member Address (AMA, 3-bits)
 - Parked Member Address (PMA, 8-bits)
Scatternet

- Scatternet is formed by multiple Piconets with overlapping coverage areas.
- Each Piconet can only have a single master
- Slaves can participate in different Piconets on a time-division multiplex basis
- A master in one Piconet can be a slave in another Piconet.
- Each Piconet has its own hopping channel in a Scatternet.

Addressing

- Bluetooth device address (BD_ADDR)
 - 48 bit IEEE MAC address
- Active Member address (AM_ADDR)
 - 3 bits active slave address
 - all zero broadcast address
- Parked Member address (PM_ADDR)
 - 8 bit parked slave address
Inter piconet communication

Scatternet, scenario

How to schedule presence in two piconets?
Forwarding delay?
Missed traffic?

Link Manager Protocol

Setup and Management of Baseband connections
- Piconet Management
- Link Configuration
- Security
Link Manager Protocol

- Piconet Management
 - Attach and detach slaves
 - Master-slave switch
 - Establishing SCO and ACL links
 - Handling of low power modes (Sniff, Hold, Park)
- Link Configuration
 - Packet type negotiation
 - Power control
- Security functions
 - Authentication
 - Encryption

Bluetooth security features

- Fast frequency hopping (79 channels)
- Low transmit power (range <= 10m)
- Authentication of remote device
 - Based on link key (128 Bit)
 - May be performed in both directions
- Encryption of payload data
 - Stream cipher algorithm (≤ 128 Bit)
 - Affects all traffic on a link
- Initialization
 - PIN entry by user

Link keys in a piconet

- Link keys are generated via a PIN entry
- A different link key for each pair of devices is allowed
- Authentication:
 - Challenge-Response Scheme
- Permanent storage of link keys
Application level security

- Builds on-top of link-level security
 - creates trusted device groups
- Security levels for services
 - authorization required
 - authentication required
 - encryption required
- Different or higher security requirements could be added:
 - Personal authentication
 - Higher security level
 - Public key

L2CAP

L2CAP provides:
- Protocol multiplexing
- Segmentation and Re-assembly
- Quality of service negotiation
- Group abstraction

Serial Port Emulation using RFCOMM

Serial Port emulation on top of a packet oriented link:
- Similar to HDLC
- For supporting legacy apps
Bluetooth Service Discovery Protocol

Usage of SDP
- Establish L2CAP connection to remote device
- Query for services
 - search for specific class of service, or
 - browse for services
- Retrieve attributes that detail how to connect to the service
- Establish a separate (non-SDP) connection to user the service

GOALS
- Internet access using cell phones
- Connect PDA devices & laptop computers to the Internet via LAN access points
Bluetooth protocols

• Host Controller Interface (HCI)
 – provides a common interface between the Bluetooth host and a Bluetooth module
 • Interfaces in spec 1.0: USB; UART; RS-232
• Link Layer Control & Adaptation (L2CAP)
 – A simple data link protocol on top of the baseband
 • connection-oriented & connectionless
 • protocol multiplexing
 • segmentation & reassembly
 • QoS flow specification per connection (channel)
 • group abstraction

Protocol pathways

LAN access point profile

Security
Authentication
Access control
Efficiency
header and data compression
Auto-configuration
Lower barrier for deployment
Bluetooth protocols

• Service Discovery Protocol (SDP)
 – Defines a service record format
 • Information about services provided by attributes
 • Attributes composed of an ID (name) and a value
 • IDs may be universally unique identifiers (UUIDs)
 – Defines an inquiry/response protocol for discovering services
 • Searching for and browsing services

BlueTooth protocols

• RFCOMM (based on GSM TS07.10)
 – emulates a serial-port to support a large base of legacy (serial-port-based) applications
 – allows multiple “ports” over a single physical channel between two devices

• Telephony Control Protocol Spec (TCS)
 – call control (setup & release)
 – group management for gateway serving multiple devices

• Legacy protocol reuse
 – reuse existing protocols, e.g., IrDA’s OBEX, or WAP for interacting with applications on phones

Interoperability & Profiles

• Represents default solution for a usage model
• Vertical slice through the protocol stack
• Basis for interoperability and logo requirements
• Each Bluetooth device supports one or more profiles
Profiles

- Generic Access Profile
 - Service Discovery Application Profile
 - Serial Port Profile
 - Dial-up Networking Profile
 - Fax Profile
 - Headset Profile
 - LAN Access Profile (using PPP)
 - Generic Object Exchange Profile
 - File Transfer Profile
 - Object Push Profile
 - Synchronization Profile
 - TCS_BIN-based profiles
 - Cordless Telephony Profile
 - Intercom Profile

Synchronization profile

- IrMC
- IrOBEX
- RFCOMM
- L2CAP
- LMP
- Audio Stream
- AT Commands
- Bluetooth Baseband
- RFCOMM
- L2CAP
- LMP
- ACL
- SCO
- Bluetooth Baseband

Headset profile
LAN access point profile

- PPP
- RFCOMM
- L2CAP
- LMP
- ACL
- SCO

Bluetooth Baseband

Trail Recording

- BlipSystems
 - Platform for Bluetooth aware devices
 - Java API to write Bluetooth applications
 - Continues inquiry
- Identify location by closest blip node
 - Record discovered devices and signal strength in log files

Sample Log Files

- Computer - Handheld PC/PDA (clam shell), 17/2/2005:3:31:13:453, 00:A0:96:09:1C:DC, 193.61.44.28, 00:02:C7:0D:97:8D, {-28 dBm}
- Imaging - Printer, 17/2/2005:3:31:21:556, 00:A0:96:09:1C:CD, 193.61.44.28, 00:30:6E:EA:29:2F, {-75 dBm}
- Imaging - Printer, 17/2/2005:3:31:22:8, 00:A0:96:09:1C:CD, 193.61.44.28, 00:30:6E:EA:29:2F, {-75 dBm}
- Imaging - Printer, 17/2/2005:3:31:23:846, 00:A0:96:09:1C:CD, 193.61.44.28, 00:27:3D:97:8D, {-28 dBm}
- Computer - Handheld PC/PDA (clam shell), 17/2/2005:3:31:26:654, 00:A0:96:09:1C:CD, 193.61.44.28, 00:30:6E:EA:29:2F, {-73 dBm}
- Imaging - Printer, 17/2/2005:3:31:31:777, 00:A0:96:09:1C:CD, 193.61.44.28, 00:30:6E:EA:29:2F, {-85 dBm}
- Imaging - Printer, 17/2/2005:3:31:32:376, 00:A0:96:09:1C:CD, 193.61.44.28, 00:30:6E:EA:29:2F, {-79 dBm}
Summary

• Bluetooth is a global, RF-based (ISM band: 2.4GHz), short-range, connectivity technology & solution for portable, personal devices
 − it is not just a radio
 − create piconets on-the-fly (appr. 1Mbps)
 • piconets may overlap in time and space for high aggregate bandwidth

• The Bluetooth spec comprises
 − a HW & SW protocol specification
 − usage case scenario profiles and interoperability requirements

• 1999 Discover Magazine Awards finalist
• To learn more: http://www.bluetooth.com