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Abstract
Models developed for the prediction of location, where
a specific individual will be present at a future time, are
typically implemented using a one-model-per-user
approach which cannot be employed for inferring
collective or social behaviours involving other
individuals. In this paper, we propose an alternative
that allows for inference though a collaborative
mechanism which does not require the profiling of
individual users. This alternative utilises a suffix tree as
its core underlying data structure, where predictions
are computed over an aggregate record of behaviours
of all users. We evaluate the performance of our model
on the Nokia Mobile Data Collection Campaign data
set and find that the collective approach performs well
compared to individual user models. We also find that
the commonly used Hit and Miss score on its own does
not provide sufficient indication of prediction accuracy,
and that employing additional metrics using the mean
error may be preferable.

Author Keywords
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trails, location prediction.



ACM Classification Keywords
H.1.1 [Systems and Information Theory]: Information
Theory.

Introduction
The ability to predict the behaviour of individual mobile
users is a key ingredient for context-aware adaptation
in mobile applications and systems. One approach to
build a mobile recommendation system is to employ
the one-model-per-user paradigm to infer immediately
subsequent locations [6]. However, by setting the goal
”to build a user-specific model that learns from his/her
mobility history, and then apply the model to predict
where the user will go next,” one presents a tightly
defined objective: this model must be constructed
solely from personal data recorded specifically as the
result of the behaviour of the particular individual
observed.

This approach for building user models clearly offers
distinct advantages. Indeed, such a model can
potentially be developed following a variety of
machine-learning and data-mining techniques and a
full implementation on the user mobile device is
feasible. The latter feature would also allow the
specification and application of tight controls on access
to the model by external systems and third-party
applications. Such security constraints would inevitably
limit opportunities to capitalise on the facilities afforded
by this model, since adaptation, context-awareness
and recommendations would be restricted to specific
and specifically authorised parties defined by
cumbersome to manage and adapt use policies. Thus,
this one-model-per-user approach would be limited due
to being over complicated and due to the need for
decentralised data management to preserve

robustness and reliability. Conversely, if a centralised
system is used, then it would pose a considerable
privacy liability, which places significant challenges for
a widespread deployment. A trade-off between the two
approaches is possible but recent experience with
web- and location-based systems indicates that
decentralised systems quickly become difficult to
operate effectively in practice. Setting aside
privacy-balancing issues, the one-model-per-user
approach has several further limitations:

• In practice, most such models have poor
performance when novel behaviours occur.

• Focusing on the individual, such models cannot
be employed for inferring collective/social
dynamics such as those resulting from cascading
behaviour within social networks.

An alternative modus operandi to the
one-model-per-user, is to infer individual behaviour by
employing a single aggregate model incorporating the
collective record of observed behaviours. Moreover,
this alternative also mitigates the privacy concerns
because individual models identifying a specific user
are never constructed nor stored.

This paper makes the following contributions, backed
up by empirical evidence:

• It presents a collective prediction approach and
investigates its predictive limits by comparing it to
the one-model-per-user approach. To this end,
we study the problem of predicting the location
that the user will be visiting next, taking into
consideration the time and location information of
where the user had been in the past.



• It examines the effect of the length of the user
record of the most recent temporal locality used
to make inferences, and the relative loss of
accuracy when reduced data samples are
provided so as to establish the exact trade-off
involved.

• It describes a more comprehensive approach,
than previously proposed, to evaluating the
mobility model’s prediction accuracy, using the
Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE) metrics. It also investigates the
merits of the Hit and Miss Score (HM) in evaluating
the accuracy of location prediction algorithms.

Note that we have followed a specific methodology to
construct the collective model. In brief, we construct a
variable length Markov chain model [4], which we
stored in an augmented suffix tree data structure that
allows for flexible and high-performance querying. This
representation is supplemented by specific weighted
spatio-temporal metrics of significance to estimate and
rank the probability of computed inferences.

The coming sections in this paper include the Related
work, Suffix tree models, Temporal models, Data set
and experimental setup, Experimental results and
Conclusion and future work.

Related Work
To decipher the complexity of human mobility, many
approaches have been proposed for building models
that can accurately predict individuals’ future locations
of visit. Generally, these approaches can be divided
into three major categories based on the perspective
from which the data is being considered: spatial,
temporal, and joint spatio-temporal approaches.

Researchers have investigated the user’s spatial
patterns on mobile data and various prediction
approaches have been proposed [12]. Other methods
rely on the user’s temporal patterns, as shown in [1]. In
[11], Scellato et al. proposed a spatio-temporal
framework, called NextPlace, which used nonlinear
time series analysis of users’ arrival time and
residence time to predict temporal behaviour.

Prediction models of future locations of visit have been
predominantly implemented using a
one-model-per-user approach. For example, Krumm
[9], used a Makov model for making short-term route
predictions for vehicle drivers. [2] however, suggested
a model in which locations are incorporated into a
Markov model that can be consulted for use with a
variety of applications in both single-user and
collaborative scenario where multiple single-user
models can be shared. Unfortunately, it is not clear
how they evaluated their models apart from showing
that the predictions for their single user model were
compared against ”random chance”. Also they did not
address the situations when the user has no mobility
history to use for prediction. Moreover, sharing multiple
single-user models inevitably raises concerns relating
to the privacy of users’ information being compromised,
for example, by the service provider. Unlike [2] and [9],
this paper, presents a collective suffix tree model (i.e. a
single model for multiple of users) which is a principled
and scalable implementation of a variable length
markov model. It also presents various models that are
capable of dealing with situations when the user has no
mobility history to use for inferring future locations.

The ”Hit and Miss Score (HM)” which, also known as
the ”Success Ratio”, has been widely used to measure



the prediction accuracy in domains such as web usage
mining [5] and recently in mobility prediction [6]. In the
context of predicting the user’s mobility, our opinion is
that HM, on its own, does not give a sufficient
assessment for the prediction accuracy. This is
strongly supported by our tests’ results. We propose
that, in addition to the HM Score, MAE and RMSE
should be used.

Suffix Tree Model
Overview
The cornerstone of our approach is the use of mobility
trail which we define as the sequence of recordings, of
the temporal and spatial information, of all the visits
that the user makes in a day. A traditional drawback of
trail analysis is that it requires considerable storage and
computational resources to discover hidden patterns.
To overcome this, we employ a trail-based analysis
approach, which utilises suffix trees as the data
structure for efficient storage, filtering and retrieval [3].

Mobility Trails
We view a user’s mobility history as a directed graph,
where vertices denote locations which the user visited
and edges denote paths between these locations. Two
locations are said to be connected if they have been
visited in sequence by the observed user. In such
context, a trail can be defined as a sequence of
connected locations, such that the connections
between locations are always directed.

Detecting the User’s Mobility Patterns
We utilise the sequence of GPS recordings of the
user’s exact location to detect the hidden mobility
patterns. To discover these patterns we apply the
following procedure:

1. For every user, apply the DBScan algorithm to
cluster the GPS data to identify the locations
which are likely to be part of a daily pattern
(Locations with number of visits below a certain
threshold are ignored).

2. Compute the centre of mass of the locations in
each discovered cluster.

3. Using a latitude/longitude grid, for each cluster,
identify the grid cell(s) containing the centre of
mass of the clusters.

4. Divide the day into equal time-units (We choose
20 minutes as the basic time unit).

5. Compute the duration of visit for each cluster
using the time of visit associated with the GPS
readings. Then identify the time-unit(s)
corresponding to each visit.

6. Construct the daily trail using the grid cells and
the time-units computed in step 5.

After applying above procedure we obtain sequences
of visit-objects where each object contains the
following information:

< userID, time, day, location, meta-data>

Suffix Trees
To efficiently store the trails and their related meta-data
we use a probabilistic suffix tree data structure [3]
enhanced with meta-data needed to encapsulate
different information and metrics. Suffix trees can
maintain all captured information in a compact format,
while being able to respond to queries in linear time of
the size of the trail. They have been successfully
employed in a number of domains such as anti-spam
filtering [10] and computational biology [3].



Tree Representation

Figure 1: A suffix tree for the trails
represented by the strings ”ABBC”,
”CBBA” and ”BBC”. The letters
denote the individual visits in each
trail and the numbers show the
frequency of visit to each location.
Suppose the tree represents the
mobility history of a user u and the
trail ”BB” gives the sequence of the
his most recent visits. To predict the
location that u will visit next, we
present the trail ”BB” to the tree
which produces the candidate
locations ’A’ and ’C’ (’C’ has a
higher probability as opposed to ’A’,
hence most likely to be the next
location of visit).

For our suffix tree representation, we opted for a design
in which the nodes are labelled as opposed to the
edges [10]. Also, due to the nature of the task we are
undertaking, our suffix tree uses a terminal character to
determine the depth of the tree which, for a big number
of users, can grow very large in size. Furthermore, our
trees are not limited in size which is a key factor that
gives the model the ability to learn as more locations
are being explored by the observed users. An example
of this data structure is shown in Figure 1.

The One-model-per-user
The one-per-user model is based entirely on a single
user’s past mobility data which is organised into trails
representing the daily sequences of visits. For each
day sequence of visits, the time and location
information of each visit is encoded in a string object
and the objects, in turn, are grouped together to form a
trail. The trails are then used to build the suffix tree. To
make a prediction, let S be the suffix tree and, T = t1 , t2
, . . . , tn , be a search-trails where ti , 1 ≤ i ≤ n,
represents the locations visited by the observed user,
and we wish to predict the next location in the
sequence, i.e. tn+1 . Then we can apply Algorithm 1,
called Predict, based on [7], to make a prediction as is
shown in Figure 2.

The Collective Model
The collective suffix tree model is a joint model (i.e. a
single tree) over the population of all users. It enables
predicting the next location based on the past mobility
data of multiple users. In this model, the data
identifying specific users is completely anonymised
before building the model.

Temporal Models
The motivation behind the models in this section is to
address the lack of matching historical behaviour which
the suffix tree requires when predicting future
behaviours. These models predict the user’s future
behaviour using only the current temporal context.

Time-spent Predictor (TSP)
The Time-spent Predictor (TSP) looks for the location
where the user spent most of his/her time. It looks at
the time-spent at each visited location and uses this as
a basis for predicting the next location.If t prediction
time interval, then (TSP) computes a time-spent ranked
list of all the locations visited during t and returns the
top-k locations. The collective version of TSP (CTSP) is
a model built over a group of users as opposed to a
single one.

Most Popular Location (MPL)
The Most Popular Location (MPL) looks for the location
which the user visited most often. Given a time interval
t, the (MPL) method ranks each user’s visited locations
based on their frequency of visit. By restricting the
prediction to t, MPL learns from the user temporal
behaviour. As in CTSP, CMPL is the collective MPL
version.

Data Set and Experimental Setup
Data Set
We tested our approach on the data set which Nokia
released for it’s mobile data competition in 2012 [8].
We used only a subset of the data set (originally used
for the Open Challenge task). This subset consisted of
data collected from the mobile phones of 38 users and
had the actual raw location data including GPS
recordings and WLAN data for all the users. It was rich



and ideal for testing the models proposed in this paper
particularly the comparison between the collective
intelligence and the one-model-per-user approaches.
A summary of the properties of the data is in Table 1.

Figure 2: Algorithm 1 - Predict(...)

Experiments
To test the proposed models, we organise the data into
a sequence of days based on the time in which the
user visited each location. We then implement the
following steps:

1. For each user, we divide the daily trails into two
sets: a training set containing the first α % of the
total number of trails, and a test set containing the
remaining (100-α)% (our choice of al pha was 90).

Open
Property challenge

data set
Number of 38
users
Number of 8154
user-days
Avg number
of locations 89
per user

Table 1: Properties of the Nokia
MDC Open Challenge data set.

2. For the one-per-user-model, we create a suffix
tree for each user using the data given in the
training set. For the collective model, we use the
data from the union of the different users’ training
sets to create a single suffix tree.

3. For each daily trail data from the test set, we
compute search-trails, of a maximum length n,
using the following sliding window technique:

Let T be the daily trail to be tested and assume a
window of size n, we extract the n first locations
from the trail T , match against the suffix tree and
try to predict the (n+1)th location in T. We then
slide the window to include the locations from the
2nd to (n+1)th and attempt to predict the (n+2)th

location and so on. The locations contained in the
sliding window make, what we call, a search-trail
(the maximum length we used was 5).

Performance Measurement
Error Measurement
To evaluate the accuracy of the proposed models, we
use two well known metrics: the Mean Absolute Error
(MAE) and the Root Mean Square Error (RMSE) [5],
which are standard methods for measuring the average
inaccuracy associated with a set of model-produced
predictions. In the context of next location prediction,
we have slightly different interpretation to MAE and
RMSE as opposed to how they are normally
interpreted in other contexts. MAE can be interpreted
as the mean rank of the correct results while RMSE
can be viewed as the square root of the mean of the
square ranks of the correct results. By rounding up
MAE or RMSE value to nearest whole number, either
MAE or RMSE can be used to determine the size of
the list of predicted locations which includes, on
average, the correct next location. For example, if the
MAE value 1.5, one can safely suggest the top 2
predicted locations as they are most likely to include,
on average, the correct next location.

In our proposed approach, the possible next locations
are ranked 1 to r according to their probability of visit.
Assuming that the highest ranked location was the one
followed (noting that ties are broken arbitrarily), then
we compute the absolute error score for an individual
prediction as (r-1). For n predictions the MAE, as
shown in Equation 1, is the average of the n individual
error scores:

MAE = n−1 ∑
i

ri −1. (1)

As a special case, if the location that was followed had
probability zero in the suffix tree, i.e. it does not appear
as a next location, then we take it to be in the last
position, r. In such a situation, we assume that the list



of suggested locations has the length equal to the
maximum branching factor of the suffix tree (i.e. the
maximum number of leaves per branch).

Figure 3: Weekend Activity

Figure 4: Weekdays Activity

To compute the RMSE, the errors are squared before
they are averaged. If the squared error score for an
individual prediction is (r-1)2 then for n predictions, the
RMSE, as shown in Equation 2, is the square root of
the average of the n squared error scores. Therefore,
RMSE gives a relatively high weight to large errors,
and is thus most useful when large errors are
particularly undesirable. This implies that, in general,
extending the list of suggested locations on the basis of
the RMSE value, is likely to give a better chance for the
correct next location to be included in the list, as
opposed to when MAE is used.

RMSE =

[

n−1 ∑
i
(ri −1)2

]−
1
2

. (2)

Hit and Miss Score (HM)
We view a correct prediction as a (hits) and an incorrect
one as a (miss). To compute the HM score, we divide
the number of hits (h) by the total number of attempts
made (n), as shown in Equation 3. In the current
context, HM can be interpreted as the probability of
guessing that the next location visited by the user was
the one with the maximum probability.

HM = n−1h. (3)

Experimental Results
To develop our proposed approach, we benefited from
an exploratory investigation in which we discovered a
significant variance in the average number and the

places visited by the users during the weekend period
compared to that of the weekdays period, as shown in
Figure 3 and 4. This motivated us to build separate
models for each class of data.

Discussion
To benchmark for the performances of the proposed
models, we compare against the performance of MPL.
The idea is that for a good prediction performance,
MAE and RMSE should be significantly smaller, whilst
the HM score should be greater, compared to the MPL
results. If suffix tree results are significantly close to
the MPL results, the system should make the
predictions on the basis of the most popular visited
locations, and ignore the computationally expensive
suffix tree models.

Target Locations with Visiting History:
Table 2, shows the results for target locations with
history visits. The best HM score was produced by the
collective suffix tree (CSTseq) model in which the
sequential order of the visits was considered but the
time of visit was ignored. Ignoring the time of visit
increases the number of overlaps between the
locations and, hence there is a greater chance for the
correct locations to be predicted. The most exciting
result in this experiment was the one achieved by CST,
specially when compared to the results of its rival ST.
The (CST ) had a slightly higher RMSE and MAE
compared to ST, which had the best MAE and RMSE
results in the experiment. A key contributing cause to
this difference in the MAE and RMSE results was the
fact that (CST ) utilises data from multiple users, and
hence, has a higher branching factor.



Target Locations with No Visiting History:
The results shown in Table 4, were the product of the
TSP and MPL temporal models which, unlike the suffix
tree models, they do not require the most recent
history data to make genuine predictions. The
collective models scored very poorly here, particularly
the CTSP and the CMPL.

Collective MPL and TSP Models:
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Table 2: MAE, RMSE and HM (In
this experiment, all target locations
given in the test set have visiting
history in the training data set).

To understand the reason behaind the poor
performance of CMPL, we compared the variance
between the numbers of users choosing a particular
landmark as their most popular location. The idea is
that for a given time period of the day, CMPL will have a
good prediction performance, if a large number of
users share a particular landmark or set of landmarks
as their most popular location(s). This means that for
each time interval, in order to achieve good
performance, we would expect the variance across the
different landmarks to be high. The same idea can be
applied to the CTSP model. After testing, we found that
the highest variances across the different time
intervals, for MPL and TSP models were 1.16 and
5.7431, respectively. One approach to improve the

Record number %
length of trails

0 555 25.63
1 33 1.52
2 29 1.34
3 25 1.15

> 3 1523 70.34

Table 3: Details of historical
records (search-trails) used for
querying the models

performances of CMPL and CTSP, would be to cluster
users according to location or distance and then
individually predict the mobility in each cluster using
CMPL or CTSP.

Query Length:
We examined the effect of the length of the historical
data used for querying the models to determine the
relative loss of accuracy when this data is reduced. It is
clear from the results shown in Table 5 that, on
average, the more history the search query contained
the better the prediction result, except for the search

queries with history data length equal to 2. It is also
clear that for queries length greater than 3, which
account for 70.34% of total number of queries, the ST
achieved only a very small improvement over the CST
HM score. This a strong indication that the
performances of the two models are very similar.

The Collective Model versus the One-model-per-user
The collective model has a number of advantages over
the one-model-per-user:

• Support for privacy: The collective suffix tree model
mitigates the privacy concerns by eliminating the
need to build and store individual models which
identify specific users. Moreover, the prediction is
carried out using a short sliding window, which
only reveals the more recent mobility history of
the user and is far too narrow to form the basis of
model building.

• Social prediction: Like other data mining methods,
the one-per-user model can produce accurate
predictions but only about previously observed
behaviours. However, it has relatively poor
performance when novel behaviours occur. On
the other hand, the collective model can show
better performance in such situations because it
incorporates a range of behaviours from multiple
users.

• Serendipity: As a recommendation method, the
one-model-per-user would always predict places
that had been previously seen by the user. Whilst
this leads to making safe recommendations, it
does not help the user to discover new places.
Because it enables prediction using places seen
by other users, the collective model can
recommend new places that the observed user
has not experienced in the past.



• Less sensitivity to cold start situations: When users
are newly added to the system, they normally
have no mobility history that can be employed to
predict their next behaviour, a condition is known
as cold-start. Because the collective model is
based on multiple users, it is less sensitive to
such situations compared to the
one-model-per-user.
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Table 4: MAE, RMSE and HM (In
this experiment, all target locations
given in the test set have no visiting
history in the training data set).

• Cheaper to build: The collective model costs less
to build and maintain.

Despite their appeal, both models share a few
shortfalls which we summarise as follows:

1. When there is no mobility history to consider for
predicting the next location of visit (i.e. the user
visited a location for the first time), the models
predict the top-k most visited locations.

2. If the user has very low predictability (i.e. the user
very often visits new places that he/she never
seen in the past), there is high probability that the
model would make an incorrect prediction.

3. For some users, matching the highest ranked
search-trail does not necessarily lead to a correct
prediction.

To address these problems we propose the following
respective solutions:

1. The immediate solution, not neccessarily the
most effective, is use TSP or MPL when the
observed user has no mobility history to consider.
An alternative approach would be to cluster
landmarks based on their distance and build a
collective model for each cluster.

2. Because it has better coverage, a collective
model may be more suitable to predict users with
low predictability.

3. In many cases, using shorter search-trails gives
correct predictions. Therefore, for each
prediction, we query the tree using the longest
search-trail and all its shortened versions.

MAE and RMSE versus HM
To have a better perspective of the model accuracy, it is
important to know, not only, whether or not the system
is making correct predictions but also “how close” the
prediction to matching the correct target location when
system incorrectly predicts the user’s next place of
visit. Since the HM score is more focused on the hits
as opposed to the misses, using it on its own, gives an
imbalanced assessment of the prediction accuracy.
Also, in many application areas, unless the HM score is
very high which is very hard to achieve, the predictions
cannot be reliable and most probably not very useful.

A sensible alternative would be for the predictor to
present a short list of landmarks that are most likely to
be of interest to the user. Showing, the user, a list of
landmarks to choose from would, in many cases, be
preferable to acting on a single landmark prediction. In
the current context of next location prediction, MAE
and RMSE could be employed very effectively, to
determine the length of the list of suggested landmarks
which would, most likely, include the correct next
location to be visited by the observed user.

The main criticism is that, using one metric on its own
may not give sufficient assessment of the prediction
accuracy. A thorough evaluation of the results
suggests that algorithms optimised for maximising HM



score do not necessarily perform similarly when
measured with the MAE and RMSE. Hence, striking a
balance between the values of the three metrics is a
key element in getting a good evaluation.

Conclusion and Further Work
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Table 5: MAE, RMSE and HM, for
ST and CST models, computed for
different visiting history lengths (In
this experiment, only target
locations that have visiting history in
the ST training data set were used).

We presented an alternative approach that allows for
collaborative prediction and has the potential to
overcome the one-model-per-user’s weaknesses. We
showed how the two approaches have very
comparable performances particularly when previously
seen behaviours are available. We also showed that
only a short record of mobility history is required in
order to make relatively accurate predictions. We
investigated the merits of HM in evaluating the
prediction performance and argued that it is insufficient
when used on its own. We demonstrated that using the
three metrics: MAE, RMSE and HM together for
evaluation, gives a better view of the model’s accuracy.

For our future work, we seek to improve the accuracy
of the collective model though clustering the users on
the basis of distance or through clustering of locations
into different semantic categories.
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