

An Aspect-Oriented Framework in F#

Nitesh Chacowry

MSc Computer Science Final Year Project Report
Department of Computer Science and Information Systems
Birkbeck College
University of London

17th September 2011

 2

Declaration

I certify that I have accessed and understood the Blackboard Course BBK ITST009N 2006: Avoiding

Plagiarism.

By submitting this assignment I confirm that the work is my own, with the work of others fully

acknowledged. All quotations from the published or unpublished works of other persons are duly

acknowledged. Where there is no such acknowledgement the work is my own.

The work presented here has not been presented, in whole or in part, for credit in any module in this

or any other school.

Permission is granted to submit the work to an on-line database. It is understood that this work may

be compared with other works in the database in order to detect plagiarism and that work submitted

to the database will remain in the database.

 3

Abstract

This dissertation presents the research, design and development of an aspect-oriented framework

for F#, a functional programming language. Our framework allows one to insert advices before, after

or around the call to a particular function. We provide two distinct approaches to weaving the

advice to the source code: using a monad-based weaver, and using a weaver built on

metaprogramming technologies.

Our weaver built using metaprogramming technologies translates a source program into a data

structure which is amended as required to inject the advices. The weaver then returns another data

structure representing the advised (or transformed) program. The weaver using metaprogramming

technologies is judged to be more granular and less intrusive and hence is chosen as the weaver for

our framework.

We use our framework to advise a program which estimates π. In addition, we provide some timing

comparison between a program where we manually insert the advices and one advised by the

framework. Our results show a performance penalty when using the framework as we are required

to make expensive function calls to compile and execute the transformed program. This dissertation

provides some concluding remarks and suggestions for future work.

 4

Contents
Declaration .. 2

Abstract ... 3

1. Introduction .. 6

1.1 Background .. 6

1.2 Motivation ... 6

1.3 Scope and objectives ... 7

1.4 Achievements .. 7

1.5 Overview of dissertation .. 7

2. Background on Aspect-Oriented Programming and Functional Languages 8

2.1 Aspect-oriented programming (AOP) ... 8

2.1.1 Join points ... 9

2.1.2 Pointcuts ... 9

2.1.3 Advices ... 9

2.1.4 Aspects ... 10

2.1.5 Weaving .. 10

2.2 Functional languages ... 11

2.2.1 Function signatures ... 12

2.2.2 F# Interactive (fsi) ... 14

2.2.3 Active patterns .. 14

2.3 Summary ... 15

3. Requirements and development approach .. 17

3.1 Requirements .. 17

3.2 Development tools and methodology .. 18

4. Framework design and implementation ... 19

4.1 Weaver design ... 19

4.2 Monad-based weavers ... 19

4.2.1 Theoretical background on monads .. 19

4.2.2 F# support for monads .. 21

4.2.3 Development of a monad-based weaver using computation expressions 23

4.2.4 Discussion on monads ... 27

4.2.5 Summary of a monad-based weaver ... 28

 5

4.3 Code quotation-based weaver ... 29

4.3.1 Metaprogramming technologies in the .Net Framework ... 31

4.3.2 F# code quotations.. 33

4.3.3 F# abstract syntax tree nodes .. 37

4.3.4 Development of code quotation-based weaver ... 43

4.3.5 Before advice constraints .. 48

4.3.6 After advice constraints .. 49

4.3.7 Around advice constraints ... 51

4.3.8 Summary on the code quotation-based weaver .. 51

4.4 Pointcuts and aspects for the quotation-based weaver .. 51

4.4.1 Pointcut design ... 51

4.4.2 Aspect design .. 52

4.5 The AspectF Framework – a Visual Studio Solution... 54

4.6 The F# compiler as a weaver .. 55

4.6.1 Building the compiler .. 55

4.6.2 Attaching a debugger to step through the compile process ... 55

4.6.3 Suggested strategy for building a compiler extension .. 56

4.7 Summary ... 56

5. Usage and instrumentation – advising a recursive function to estimate π 58

5.1 Implementing Machin’s formula in F# .. 58

5.2 Estimating π – Comparing speed of execution .. 60

5.2.1 Instrumentation of the non-advised code.. 61

5.2.2 Instrumentation of manually advised code .. 62

5.2.3 Instrumentation of weaved code... 64

5.3 Summary ... 69

6. Conclusion ... 70

7. Future work ... 72

8. Bibliography ... 74

Appendix A – Unadvised and advised expression trees for the arctan function 81

Appendix B – Raw timing results for the weaved function ... 84

Appendix C – CD with source code ... 87

 6

1. Introduction

1.1 Background
The dissertation presents the research, design and development of an aspect-oriented [1,2]

framework for Microsoft’s implementation of a functional language: F# [3]. Aspect-oriented

programming (AOP) is a programming paradigm where functionalities which apply across different

modules are cleanly encapsulated into separate components. For example, a program may require

security checks to ensure that a particular user has access to certain functionalities only. In this case,

AOP provides a solution to cleanly separate out the security checks from the flow of the program.

AOP is usually implemented via a dedicated framework. Such frameworks exist for object-oriented

languages. Examples include AspectJ [4] for Java and Policy Injection Application Block [5,6] or

Spring.Net [7] for .Net languages.

We noted in the project proposal [8], that within function languages, AOP constructs are

implemented via a dedicated programming language. Example includes AspectML [9], AspectFun

[10,11], Aspectual Caml [12] or MinAML [13]. The project proposal [8] of this dissertation provides

further analysis of AOP frameworks targeting functional languages. However, no such frameworks or

AOP programming languages currently exist for F# - Microsoft’s implementation of a functional

programming language [3,14].

1.2 Motivation
This project is motivated by the following factors:

a. There are no dedicated AOP frameworks available for F#. F# is a functional language based

on the .Net Framework, and is a core language shipped with Visual Studio [15] – Microsoft’s

integrated development environment. This is a strong indication of Microsoft’s objective of

getting its flavour of a functional language operating within an industrial setting. In such a

setting, there are many use cases where AOP is required, for example: auditing or

instrumentation of code performance [16].

b. This project provides an opportunity to study functional languages. Functional languages

have a long history [17], but there has been a relatively recent resurgence in their

popularity. This can be attested by the release of functional languages such as F# or Clojure

[18], and the integration of functional language constructs (such as lambda functions) in

object-oriented languages such as C# and Groovy [19]. Polyglot languages [20] such as Scala

[21] support both object-oriented and functional programming constructs.

 7

c. This project provides an opportunity to study AOP. In the project proposal [8], we provided a

review of current AOP frameworks for functional languages and noted some of the issues

encountered in existing implementations, such as the need to break referential transparency

[11], or implement runtime type analysis [22]. This project therefore shows how F#

functionalities such as the ability to define objects [23], or the ability to inspect the type of

an object at runtime [24] can also address these implementation issues.

1.3 Scope and objectives
The objectives of this project are:

1. Research AOP and develop an understanding of this programming paradigm (Section 2.1 and

Chapter 3).

2. Develop an understanding of F# (Section 2.2).

3. Design the AOP constructs for F# (Chapter 4) and develop these constructs.

4. Design a framework around the AOP constructs (Section 4.5) for reusability and distribution.

5. Perform some time measurements to compare the performance of our framework against

regular code (Chapter 5).

1.4 Achievements
In this project, and supported by this dissertation, we show the design and development of the AOP

framework in F# (Chapter 4). We also show a usage of this framework in Chapter 5. Currently, the

framework is experimental and a greater amount of use cases would need to be implemented

before general distribution.

1.5 Overview of dissertation
Objectives 1 and 2 above are covered in Chapter 2 while objectives 3, 4 and 5, the main outcome of

the dissertation are presented in Chapters 3, 4 and 5.

In Chapter 2, we present a brief overview of aspect-oriented programming (AOP). This is followed by

an overview of functional programming, with an emphasis on F# and its syntax. In Chapter 3, we

detail the requirements for AOP framework we shall implement. Chapter 4 details the design choice

and presents a technical presentation of our framework. In Chapter 5, we present metrics that

contrasts the performance of a regular program with the one in which we have weaved some

additional functionalities. Finally, Chapters 6 and 7 presents some concluding remarks and suggests

future work.

 8

2. Background on Aspect-Oriented Programming

and Functional Languages

This chapter provides a brief review of aspect-oriented programming (AOP) and functional languages

- with an emphasis on F#. The project proposal [8] covers much of the theoretical background of

AOP and functional languages, but we reiterate the important points within this chapter. The review

helps in defining the issues that need to be addressed.

2.1 Aspect-oriented programming (AOP)

In the project proposal [8] for this dissertation, we reiterated the concept of separation of concern

as an important concept in program design [25]. A common design pattern to achieve separation of

concerns in large programs is to encapsulate the concerns into their own distinct layers, where each

layer performs a specific functionality [5,26]. For example, an application might be split in three

layers: a first layer which handles persistence to a database, a second layer to handle business

objects and a third layer to display data to the user and handle user input. In Figure 2.1 these

functionalities are represented by horizontal layers.

However, there may be additional requirements for including concerns which affect all layers of an

application. Such concerns include security, error handling, performance monitoring, thread

synchronisation and transactions [26]. These features are formally referred to as cross-cutting

concerns [5,27]. In Figure 2.1 we have modelled the security concern as a vertical layer which affects

all other layers.

User interface layer

Business logic layer

Persistence layer

S
e

c
u

ri
ty

Figure 2.1– Horizontal and vertical (cross-cutting) layers in an application

Cross-cutting concerns have the undesirable property that they cause clutter and noise on program

code. For example, in the proposal [8], we present sample C# code whose cohesion is degraded by

other cross-cutting concerns.

 9

AOP is a programming paradigm which allows the encapsulation of these cross-cutting concerns and

provides constructs to weave transparently these cross-cutting concerns into working code. In the

project proposal [8], we noted the following definition for AOP from [28]. As this definition is

referred within this dissertation and forms a thread for our weaver design, we reiterate the

definition here:

AOP is […] the desire to make programming statements of the form:

“In program P, whenever condition C arises, perform action A”

Definition 2.1 - A language-neutral definition of AOP

From Definition 2.1, there is a requirement for obliviousness in that the program P should have no

knowledge of the action A.

AOP consists of the following different components and these are explained in more details in the

next sections:

i. Join points

ii. Pointcuts

iii. Advices

iv. Aspects

2.1.1 Join points

A multitude of events can arise during a program’s execution, such as method calls and exceptions.

Join points are the set of events which can arise during the execution of a program. Referring back to

Definition 2.1, the condition C is one such join point.

AOP frameworks expose a join point model [16,27], which specifies the events that can occur and

allows a user to attach an action when the event fires. For our implementation, we propose to

advise the join point set to function calls only – i.e. the execution of a particular function.

2.1.2 Pointcuts

Pointcuts are used to define the subset of join points on which a specific action should be taken

[16,29,30].

2.1.3 Advices

Advices define the actions that should be taken when a particular join point has been reached during

the execution of a program. Referring back to Definition 2.1, the advice is the action A to be

performed. Within the scope of this project, we use the following definitions:

 10

 We say that a program or module is advised when an advice is attached to a module (e.g. a

function) via a join point/pointcut

 An unadvised program or module refers to one on which no advices have been attached.

 Advising refers to the process of injecting an advice into a source program.

 A target function is the function which is to be identified and advised.

 A source program is the original program

 A computation is a sequence of F# statements in a source program.

An advice can be primed to execute:

 Before the target function runs. We refer to these as before advices.

 After the target function runs. We refer to these as after advices.

 Before the target function runs, and also after the function runs. We refer to these as

around advices.

2.1.4 Aspects

Aspects encapsulate crosscutting concerns [16] [29]. Within an AOP framework, aspects store the

pointcut and the advice information.

2.1.5 Weaving

Referring back to Definition 2.1, a program P should have no knowledge of the action A. Clearly,

there must be a mechanism to combine the source code of program P with the code defined in

advice A. This mechanism is known as weaving [1,2,5,16,26] and is illustrated below, in Figure 2.2

(adapted from [5,31]). In Figure 2.2, there are two aspects, “Aspect A” and “Aspect B” which are

weaved to a source program:

 11

Source code

Aspect A

Aspect B

Weaver

Woven

code

Figure 2.2 – Weaving aspects to source code

Weaving – the merging of source code with aspects, can be done statically or dynamically:

 Static weaving occurs at compile time. In this case the weaver modifies the source code by

identifying the selected join points and injecting the advices.

 Conversely, dynamic weaving is a strategy where the weaver inspects running code (or code

that is about to be loaded at runtime) and applies advices as specified in the pointcut

[16,32].

2.2 Functional languages

In the project proposal [8] of the dissertation, we presented a background on functional languages

and highlighted the following characteristics:

 Functional programming languages are a sub-set of declarative programming languages [17]

where the result of a program is achieved through the combination and execution of

functions. By comparison, in imperative languages the result of a program is achieved

through the execution of commands [33].

 12

 Formally, functional languages are those which abide by the rules of lambda calculus. In

lambda calculus, every construct is a function and hence every construct returns a value

[33].

 Functions can be passed in arguments to other functions, and functions can also be

returned. Formally, we say that first-order functions can be passed as parameters to, or

returned from, higher-order functions [33,34].

 An important concept for functional languages is that of referential transparency, i.e.

“equals can be replaced by equals”. Referential transparency can assist in reasoning about a

function’s output. As [11,17] highlights, the ability to reason about a program is reduced by

AOP – as AOP transparently weaves additional functionalities and can alter a function’s

output.

 Functional languages have a type inference system [33,35], where the types used in a

computation do not have to be explicitly declared. The project proposal [8] provides more

details on type inference and its impact on AOP.

In this section we introduce some additional characteristics of F# which are used extensively within

the project. F# constructs which are specific to the topic being discussed (e.g. computation

expressions) are introduced as we progress. This section does not aim to be a full introduction to F#.

However for a good introduction into F# please refer to [15,33,36,37]. Furthermore, the project

proposal [8] of the dissertation describes functional language constructs which we use and

encounter during this project, namely currying, a more detailed treatment on type inference and

monads. F# is a descendent of the Meta Language (ML) family of functional languages, and shares

some syntax with OCaml [38], hence familiarity with these languages may be useful in

comprehending the F# snippets we use in this dissertation.

2.2.1 Function signatures

This section on function signatures was not included in the proposal. We cover function signatures

here as they are useful to gather information about a function’s purpose. Within F# (and functional

languages in general), the function represents the underlying model of computation [17]. As

mentioned previously, every function returns a value. As such, every function has an associated

function signature which represents:

 The set of inputs to the function (loosely analogous to input parameters).

 The return type of the function.

 13

A function signature for a function which accepts two inputs of type string and returns another

string would be:

string -> string -> string

Listing 2.1 – A sample function signature

For example, a possible implementation for this function could be:

let concatenate (lhs:string) (rhs:string) = lhs + rhs

Listing 2.2 – Sample function implementation

In the listing above, the function name is “concatenate” and the inputs are lhs and rhs, both

annotated with the type string. The type inference system of F# infers that the return type is also

of type string [33].

In the function signature shown in Listing 2.1, we simplified by describing the two type parameters

(string -> string) as the two input parameters of the function. More precisely, the function

signature indicates a sequence of transformation from one type to another [33,37]. A more accurate

reading of the function signature would be: “the function concatenate accepts one input of type

string and returns another (anonymous) function. The new function accepts an input of type

string as its parameter and returns an output of type string”. In effect this indicates that the

following is possible:

let partialConcatenate = concatenate “foo“

Listing 2.3 – Currying example

This returns another function which is bound to the partialConcatenate identifier and has the

function signature:

string -> string

Listing 2.4 – Function signature for the curried function

The signature above can be read as: “the function partialConcatenate transforms an input string

into another string”. This is an example of currying [33].

 14

Understanding function signatures enables one to gather information about the behaviour of a

particular function. For example our weaver function (called weave) which we introduce in Section

4.3.4 has the signature:

aspectInformation -> Expr -> Expr

One can read this function as follows: “the function weave accepts an object which provides

information on the aspect (aspectInformation), and returns another function. This new function

accepts a representation of the source program (as an object of type Expr) and returns an object

which represents the output (i.e. weaved) program as an object of type Expr”.

2.2.2 F# Interactive (fsi)

F# Interactive is a useful tool used in this project to develop the different components. F# Interactive

provides a REPL (Read, Evaluate, Print, Loop) environment to test F# snippets [39]. This approach can

assist the development process: once a fragment of F# produces the required output and is tested,

the code is then copied into F# files with an extension “.fs” for later compilation into an assembly

[36] (the project proposal [8] of the dissertation presents more information on .Net assemblies).

Most of the snippets in the code listings of this project can be run via fsi.

2.2.3 Active patterns

This section covers pattern matching and active patterns. As we developed the weaver, we made

extensive use of this construct, hence it is useful to provide a short explanation on active patterns.

[36] provides a succinct introduction to active patterns and covers the complete and incomplete

patterns constructs –this section focuses on complete patterns only.

Pattern matching is akin to a switch statement in C++ or C# [40], but with additional functionality

such as the ability to analyse the input code and then “branch” into the appropriate path [36].

Pattern matching starts with the keyword match, followed by the identifier to be matched. The

different possible matches are separated by pipes (|) [36]. A complete active pattern is a function

which accepts an input and returns one pattern (also known as case) [36,37]. To illustrate, the

example in Listing 2.5, below, shows an active pattern that analyses an input population value and

returns a pattern indicating whether this population describes a village, town, city or

megalopolis – obviously in real code, the program in Listing 2.5, below, would not have these magic

numbers and error checking would be in place to validate the input (i.e. if population is negative):

 15

let (|Village|Town|City|Megalopolis|) (population : int) =

 if population < 100 then

 Village

 else if population >= 100 && population < 10000 then

 Town

 else if population >= 10000 && population < 1000000 then

 City

 else

 Megalopolis

Listing 2.5 - Simple active pattern

We can call the active pattern through a pattern matching construct as shown below:

let eval population =

 match population with

 | Village -> printfn "Village"

 | Town -> printfn "Town"

 | City -> printfn "City"

 | Megalopolis -> printfn "Megalopolis"

Listing 2.6 - Calling the active pattern

In the eval function above, the integer value of population is passed to the active pattern. The

active pattern behaves like a function, and based on the value of population returns one of the

possible patterns (Village or Town or City or Megalopolis) back to the caller. The pattern

matching construct then branches appropriately.

2.3 Summary

This Chapter has introduced aspect-oriented programming (AOP) and functional programming with

an emphasis on F#. AOP is a programming paradigm which allows the clean encapsulation of

concerns and the weaving of those concerns into an existing program.

We noted the following basic constructs of AOP:

 Join points define the set of events on which one can attach actions to. Examples of event

include method executions or exception handling.

 Pointcut allows the selection of events. For example, it allows one to select a specific join

point such as the execution of a particular method.

 Advices represent the action to perform when the event has occurred. Advices can be

primed to execute before, after or “around” the event occurrence.

 Aspects represent the logical grouping of pointcuts and advices into one cross cutting

concern –for example we use the term security aspect to define such a grouping.

 Weaving is the process which transparently merges an aspect into a source program.

 16

We provided a short background on functional languages and on F#. Function signatures were

introduced and we explained how they can be interpreted. We also covered active patterns - a

construct which we use extensively within this project.

 17

3. Requirements and development approach

This chapter presents the requirement for our framework and presents the development

methodology used.

3.1 Requirements

 The framework will be developed in F# and advise other programs written in F#.

 Join point: Our join point model will be the execution of functions.

 Pointcut: The framework will provide the ability to select join points by allowing the user to

specify the target function. In the project proposal of the dissertation, we highlighted how

AspectJ allows user to name the pointcut for re-use [16]. Our framework shall allow named

and anonymous pointcuts.

 Advices: the framework will allow the user to specify the additional modules to inject into a

target. We propose to implement the ability to insert advices:

o Before the execution of a target function.

o After the execution of a target function.

o Around the execution of a target function.

 Our framework shall implement a weaver to inject the advices into the target program.

Within this project we implemented two weavers, one using monads (Section 4.2), and

another using metaprogramming technologies (Section 4.3). As discussed in Section 2.1, an

important design consideration will be to ensure our weaver satisfies the concept of

obliviousness. We propose to develop a static weaver (Section 2.1.5).

 Our framework shall allow aspects to be defined such that pointcuts and advices can be

grouped.

Figure 3.1 illustrates the different components of the framework and how they process some user

source code (leftmost box “User source code (F#)”).

 18

User source code

(F#)
Weaver

Pointcut definitionAdvice definition

Weaved code (F#)

Aspect

Figure 3.1 – Framework components

We can note that a central component of the framework is the weaver. The weaver design impacts

the design of the aspect, which in turn impacts the pointcut and the advice design.

3.2 Development tools and methodology

The framework was developed using the following software:

 F# 2.0. [3,14].

 F# interactive (fsi) and Visual Studio 2010 [41].

 Version 4.0 of the .Net Framework [42]1.

A test driven approach was taken [43]: unit tests were built using xUnit [44] during the development

phase of the project.

1
 As described in the project proposal [8], the .Net Framework provides a program runtime environment (the

Common Language Runtime or CLR) and a set of libraries (the Framework Class Libraries or FCL) [59], which are
analogous to Java’s Virtual Machine [117] and the Java Class Library [118].

 19

4. Framework design and implementation

This chapter details the implementation of the framework. We emphasise the weaver design and

implementation, as its design impacts all other components of the framework (as shown in Figure

3.1, above).

4.1 Weaver design

A relatively large amount of design and development effort was focused on developing a weaver as

it is a central component of the application. Recall from Section 2.1 that a successful weaving

strategy abides by the rule of obliviousness.

Two weaving strategies were investigated and developed:

 A monad-based weaver (Section 4.2), where we shall see that the advice is encapsulated in

what is termed a monadic type [33]. Monads provide constructs to weave these advices into

a program.

 A weaver based on metaprogramming technologies (Section 4.3), where advices are

implemented as regular F# functions. Special language functionalities are provided to weave

the advice function into the source program.

4.2 Monad-based weavers

4.2.1 Theoretical background on monads

The use of monads as a weaving strategy was postulated in [45]. As per the project proposal [8], our

first approach for a weaver is the use of monads.

An introduction to monads is given in [46], and [47] provides more information on these

programming construct. Within this section we provide a short introduction to monads, monads in

F# and recap the suitability as a weaving strategy.

Monads originate from the branch of mathematics known as group theory [48].In functional

languages, a program is usually written such that for a known set of input(s), the program gives one

output. This is a fundamental description of functional languages and allows one to reason about a

program. However, there are often valid use cases which require a program to apply a side effect,

for example printing to screen. Monads are used in functional programming languages to

encapsulate these side effects [49], without affecting the original computation or logic of the

program.

 20

The core of the monad is the monadic type [33]. The purpose of the monadic type is to augment or

enhance the current program, e.g. by applying some relevant side effect. A common notation for the

monadic type is M<‟a> [33,48] where ‟a is a generic type representing the original type of the

computation, and the monadic type M<„a>represents the functionalities/behaviours added by the

monad.

Monads further require the use of two operators, known within the literature as return and bind

operators [33,45]:

 Return is a first order function which lifts the original type „a to the monadic type M<‟a>,

and therefore has the signature („a -> M<‟a>). This function is also known as unit [45].

 Bind is a higher-order function which allows the composition of monadic types together. In

the project proposal, [8], we heuristically derived its signature:

M<‟a> -> („a -> M<‟b>) -> M<‟b>.

Figure 4.1 – Function signature of the bind operator

From the signature above, bind is a function which takes a monadic type, and a function

which returns a monadic type („a -> M<‟b>). The function signature implies that bind has

sufficient knowledge of the monadic type M<„a> to unwrap the original value (of type „a)

and pass in this value into the first order function (the second parameter).

Combined together, these operators allow functions to be chained together into a computation. To

illustrate, consider the forward pipe operator |> (with signature 'a -> ('a -> 'b) -> 'b) [50]. We

can construct the following computation, if f(x) has a signature (int -> int): 5 |> f. In this example,

we are passing in the integer value 5 into the function f(x). We expect the result to be of type int,

given that f(x) accepts an integer and returns another integer. We assume now that there exists a

requirement to augment the value 5 (of type integer) to another type M<int>. Clearly, we cannot

reuse the forward pipe operator, as the function f(x) accepts an integer, not a value of the type

M<int>. However, the solution is to create another function which has the same signature as the

bind function, and making the changes to the function f(x):

 Let f(x) have the signature (int -> M<int>)

 Let bind be represented with the notation >>=

 21

We can reconstruct the original computation chain as follows:

return(5) >>= f

Listing 4.1 – An example of monads

From [45,49] and the discussion above, monads are suitable as a weaving strategy as we can use the

monadic type M<‟a> to encapsulate our advices and use the bind operator to recreate the original

computation of the unadvised program.

4.2.2 F# support for monads

Within F#, a construct known as computation expression2, provides syntactic support for monads.

Smith [15] defines computation expressions as a construct which allows one to augment a certain

computation with additional behaviour. Computation expressions consist of the following

components:

 An F# class. In order to participate in a computation expression, the methods of the class are

required to conform to specific function signature(s)3. For example, a member method

called Bind will be automatically be used by the compiler as the monadic bind operator.

 A computation expression builder [15] .

Listing 4.2, below, illustrates a computation expression which applies a side effect (printing to

screen). In the example, the original type („a) and the monadic type (M<‟a>) are both integers (i.e.

„a is of type int).

2
 Computation expressions are also known as workflows [15]. Within this document, we use the term

computation expression when describing an implementation in F# and the term monad to describe the general
concept.
3
 Please refer to Table 10.1 of [15] for a full list of methods which are given special treatment by the compiler

and hence can participate in a computation expression.

 22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

type SideEffectBuilder(msg : string) =

 let msg = msg

 member this.Bind((x : int), (rest : int -> int)) =

 printfn "The message: %s." msg

 printfn "The result: %i." x

 rest x

 member this.Return (x : int) = x

let sideEffect msg = new SideEffectBuilder(msg)

let double x = x * 2

let printmsg = sideEffect "this is the injected test message"{

 let! v1 = double 5

 let! v2 = double 10

 return 0

 }

printmsg

Listing 4.2 – Computation expressions in F#

The computation expression starts by defining the type of the computation expression builder:

SideEffectBuilder (lines 1 to 9). The class has a Bind method (line 4) which prints a custom

message to the screen and returns a value which has the same type as the monadic type. As the

original and monadic types are both integers, the Return method accepts an integer and returns the

same integer. The SideEffectBuilder type has a constructor (line 1) which accepts a custom

message.

On line 11 of Listing 4.2, we define the computation expression builder by creating an instance of the

SideEffectBuilder class (line 11). We apply the side effect on a function called double, which

doubles the input value (defined in line 13).

This is followed by the computation expression itself, which is bound to an identifier printmsg. The

computation expression (lines 16 to 18) has the appearance of regular F# code, except for the

presence of the “!” marker appended to the let expressions. The compiler translates marker this to

a call to the computation expressions builder’s Bind method. The first parameter of the bind

expression is the result of the first call of the double function (double 5). The second parameter of

the computation is the function call in the following line (double 10).

 23

To illustrate the action of the compiler, the lines:

let! v1 = double 5

let! v2 = double 10

return 0

Listing 4.3 – Computation

are expanded (also referred to as de-sugared) by the F# compiler into the following lines:

sideEffect.Bind(double 5,

 fun v1 -> sideEffect.Bind (double 10,

 fun v2 -> sideEffect.Return(0)))

Listing 4.4 – De-sugared form of listing 4.3

We can draw parallels with the example given in Listing 4.2 with AOP. Namely, the Listing shows a

weaver which applies after advices to target code. The after advice is the side effect of printing to

the screen and the target code is the computation wrapped within the curly brackets. This example

forms the basis for a more complex weaver implementation.

4.2.3 Development of a monad-based weaver using computation expressions

This section discusses the implementation of a monad-based weaver using F# computation

expressions. The source code is available in the CD in Appendix C and in the online repository

(Section 4.5).

Our implementation uses three single case discriminated unions [51] to represent before, after and

around advices. These discriminated unions are concrete implementation of the monadic types

M<‘a>. An F# discriminated union can be compared to the object-oriented construct of an abstract

base class with a single level of inheritance [33]. A single case discriminated union is therefore

analogous to an abstract base class with only one child. Listing 4.5 shows the definition of advice

types:

type BeforeAspect<'T> =

 | Before of 'T

type AfterAspect<'T> =

 | After of 'T

type AroundAspect<'TBefore, 'TAfter> =

 | Around of 'TBefore * 'TAfter

Listing 4.5 – Types of advices

 24

Single case discriminated unions are used as they have some advantages when performing pattern

matching and result decomposition [33]. The discriminated unions are of a generic type „T, which

we can use to encapsulate a lambda function (i.e. an anonymous function [33,52]) representing the

function to execute. Note that the AroundAspect is different in that it requires two types: „TBefore

and „TAfter. We expand on this difference in Section 4.2.3.4. In the example below, the advice is a

lambda function which takes any input and returns unit [36] (unit is equivalent to void in C# or

C++).

let beforeaspect = Before(fun _ -> printfn "running advice.")

Listing 4.6 – Lambda representing a before advice

We now cover the specific implementations of the before, after and around computation expression

builder types.

4.2.3.1 The BeforeBuilder computation expression builder

The computation expression builder type which applies a before advice is shown in Listing 4.7:

1

2

3

4

5

6

7

type BeforeBuilder() =

 member this.Bind(Before(aspectfunc), func) =

 aspectfunc() // execute the advice

 func()

 member this.Return(value) = Before(value)

Listing 4.7 – Computation expression builder for the before advice

The parameters of the Bind function are:

 A monadic type which is constrained to the Before case.

 A function with the signature (unit -> BeforeAspect<‟b>).

4.2.3.2 BeforeBuilder Example

We demonstrate the use of the before computation expression builder by showing how a message is

printed to screen before a target function targetFunction() executes. The function

targetFunction()has the signature (unit -> bool):

let targetFunction() = printfn "executing target function."

 true

Listing 4.8 – Sample target function

 25

targetFunction() does not do anything very interesting, except for printing a message to screen

and constantly returning true. A computation expression which uses the computation expression

builder is shown in Listing 4.9:

1

2

3

4

5

6

7

8

9

10

let before = BeforeBuilder()

let beforeTestRunner(targetfunc) =

 before {

 let! res = beforeaspect

 return targetfunc()

 }

// below is code to run the computation expression

beforeTestRunner(targetFunction) |> ignore

Listing 4.9 – Example usage of the before computation expression builder

The computation expression bound to the beforeTestRunner identifier (line 3) and accepts a

function of signature (unit -> „a), which matches our concrete implementation

targetFunction() - which has the more constrained type (unit -> bool).

After running the computation expression, the following expected output is printed to screen:

running advice.

executing target function.

4.2.3.3 The AfterBuilder computation expression builder

The builder for the after aspect is similar to the builder for the before aspect. The computation

expression builder type is shown below:

1

2

3

4

5

6

7

8

type AfterBuilder() =

 member this.Bind(After(aspectfunc), func) =

 let (After(res)) = func() // call the target function and store the result

 aspectfunc() // execute the advice

 After(res) // return the result

 member this.Return(value) = After(value)

Listing 4.10 – Computation expression builder for the after advice

The class is similar to the BeforeBuilder type and has a Bind and Return method. The main

differences are:

 26

 We now use the After discriminated union.

 Within the Bind method, we are required to re-order the sequence of calls such that we

begin by calling the target function and store its result (line 3). We then execute the advice

and return the results of the target function (lines 4 and 5).

An example usage is shown below:

let aftereaspect = After(fun _ -> printfn "running advice.")

let afterTestRunner(targetfunc) =

 after {

 let! res = aftereaspect

 return targetfunc()

 }

afterTestRunner(targetFunction) |> ignore // Running the computation expression.

Listing 4.11 – Example usage of the after computation expression builder

After running the computation expression, the following expected output is printed to screen:

executing target function.

running advice.

4.2.3.4 The AroundBuilder computation expression builder

The around aspect must accommodate for the before and after advices being different. The around

aspect discriminated union is repeated below:

type AroundAspect<'TBefore, 'TAfter> =

 | Around of 'TBefore * 'TAfter

The single case discriminated union requires a tuple [15], where „TBefore is a lambda function

representing the before advice, and the „TAfter is a lambda function representing the after advice.

The computation expression builder is shown in the Listing below:

1

2

3

4

5

6

7

8

9

type AroundBuilder() =

 member x.Bind(Around(beforeFunc, afterFunc), func) =

 beforeFunc() // call the before aspect

 let res = func() // call the target function and store the result

 afterFunc() // call the after aspect

 res // return the result

 member x.Return(value) = Around(value)

Listing 4.12 - Computation expression builder for the around advice

 27

The Bind method performs sequential calls [53] to the before advice (line 4), the target function (line

5) and finally the after advice (line 6). The result of calling the target function is stored in a

temporary variable res which is returned at the end of the computation. A sample usage is shown

below:

1

2

3

4

5

6

7

8

9

10

11

12

// Create the advice to execute and the aspect

let beforeF = fun _ -> printfn "running before advice."

let afterF = fun _ -> printfn "running after advice."

let aroundeaspect = Around(beforeF, afterF)

let aroundTestRunner(targetfunc) =

 around {

 let! res = aroundeaspect

 return (targetfunc(), None)

 }

aroundTestRunner(targetFunction) |> ignore // Running the computation expression.

Listing 4.13 – Sample usage of the around computation expression builder

In the Listing shown above, we begin by specifying two lambda functions which represent the before

and after functions. We then create the around aspect which is bound to an identifier called

aroundaspect. When the computation expression is run, the following expected results are printed

to screen:

running before advice.

executing target function.

running after advice.

4.2.4 Discussion on monads

From the implementation provided, we note the following advantages when using a monad-based

weaver:

 Monads provide clean access to function boundaries.

 Weaving is trivial – the Bind method does most of the required weaving without changes to

the original computation order.

 Monads allow the encapsulation of any advices - the monadic type M<‟a> can encapsulate a

wide range of advices.

 Monads are well documented.

We note the following disadvantages when using a monad-based weaving :

 Constructing a pointcut selection language is complex and not intuitive.

 28

 Monads do not easily comply with the important concept of obliviousness. To illustrate, we

refer back to Listing 4.1 shown previously, which we repeat below:

return(5) >>= f

Implementing a monad-based weaving required changes to the function f as we need to

change its signature from (int -> int) to (int -> M<int>). Arguably this can be

achieved via a higher order function having the signature (int -> int) -> (int ->

M<int>).

 A monad-based approach lacks granularity. To illustrate, consider the following computation

which achieves the business requirements of committing some data into a database:

let save() = preptxn()

 let transactionResult = executetxn()

 transactionResult

Listing 4.14 – A computation representing a trivial business logic

Using the monadic constructs shown previously, it is trivial to attach before, after or around

advices to the top level function save(). However, we cannot trivially attach an advice to the

inner functions called by save(). As such, we cannot address a requirement to inject an

advice to, say the executetxn() function without substantially re-engineering the save()

function.

4.2.5 Summary of a monad-based weaver

This section has provided a background on monads and explained their usage within functional

programming. Parallels between monads and AOP were drawn to provide justification to use

monads as a weaving strategy. F# provides some (admittedly fairly unintuitive) language constructs

for monads called computation expressions. Our implementation of monads which apply advices

before, after and around a target function was implemented using computation expressions.

We next highlighted some advantages and disadvantages of a weaver built using monads. The main

disadvantage of this approach is that monads do not provide a satisfactory level of granularity –

namely it is trivial to advise top level function (functions calling other functions), but difficult to

advise functions called by the top level function. The disadvantages of a monadic approach lead us

to design and develop a finer grained yet more complex weaving strategy through the use of

metaprogramming technologies.

 29

4.3 Code quotation-based weaver
A definition [34] of metaprogramming is presented below:

Metaprogramming is a term which refers to a computer program which transforms a source

program into another program.

Definition 4.1 - A definition for metaprogramming

This is achieved by treating the source program as input data. Compilers are classical examples of

programs that carry out such transformations [34,54]. Conceptually, a weaver performs the same

transformation – namely the weaver takes a source, un-advised program, and manipulates it to

inject the relevant advices. From Definition 4.1, the following steps are required to implement a

weaver-based on metaprogramming:

1. Retrieve a source program and convert it to some data structure.

2. Analyse the data structure and detect the join points defined in the pointcut.

3. Amend the data structure and inject the advices.

4. Generate a working program from the amended data structure.

Figure 4.2, on the following page, illustrates the weaving strategy.

 30

User source code

(F#)

Or

...

Or

...

Weaved program

(F#)

1. Retrieve a source program into

some data structure

2. and 3. Inspect the data structure

and inject the advices
4. Generate a working program

Figure 4.2 - Weaving strategy using metaprogramming technologies

 31

In Figure 4.2, the data structure for the source and advised program is illustrated as a linked list or a

tree – the actual data structure is not important, as long we can traverse and amend it.

 There are two general metaprogramming techniques for transforming a source program into

another [31,55]:

 Source transformation: is the act of transforming the source code of the base program

before execution. This can achieved through compiler switches or compiler extensions. In

Section 4.6 we present some analysis on the F# compiler. In all cases, source transformation

technologies involve traversing an input data structure representing the source code and

applying changes where required.

 Dynamic reflection: can be loosely described as manipulating the source program at runtime.

This can be achieved by using a meta-representation [31] of the programming constructs in

the base code. Examples of these meta-representations include meta-objects [56,57]. Within

F#, we can use objects from the System.Reflection [58] library to perform runtime analysis

of the source program.

These two technologies are not mutually exclusive, for example [55] presents a weaver which is a

hybrid between source transformation and dynamic reflection.

The .Net Framework [42,59] provides several libraries which exposes metaprogramming

functionalities. These libraries provide access to both source transformation and dynamic reflection

techniques. Table 4.1, below, describes these libraries and their comparative advantage. Based on

the information in Table 4.1 we discuss our chosen technology to develop our weaver.

4.3.1 Metaprogramming technologies in the .Net Framework

Table 4.1, below, shows the different libraries available in the .Net Framework which can be used for

metaprogramming. This Table also includes a discussion on code quotations [15,36,60,61] which is a

metaprogramming construct specific to F#.

 32

Table 4.1 – Summary of metaprogramming technologies in the .Net Framework

Reflection

Description The methods within the .Net System.Reflection
namespace [58] provide functionalities to inspect and
instantiate types from compiled or executing code.

Source code information returned Information on compiled / executing code (e.g. functions,
properties) are made available as collections of objects (e.g
MethodInfo [62]).

Advantages Mature API (available since .Net 1.0 [34]).

Disadvantages Does not give any indication as to how the program
operates [15].

CodeDOM

Description Provides a document-oriented approach to code generation
[34,63]. CodeDOM is mainly focused on generating a code
graph code which can be compiled immediately or saved to
file for later compilation [34,64].

Source code information returned Graph of objects within the System.CodeDOM namespace
[63].

Advantages Allows generation of source code in a variety of .Net
languages [34]. This might be useful for debugging
purposes, however as noted in the disadvantages column,
generating F# code is not natively supported.

Disadvantages Not actively developed by Microsoft in recent years [34].

No functionalities exist to convert a string (i.e. an input
source file) into an object graph which is critical for further
manipulation.

As of the time of writing, there are no native providers
[34,65] to generate code into F# CodeDOM. Instead the F#
CodeDOM provider is part of a separate experimental
module – the F# PowerPack [66].

LINQ Expression Trees

Description Presents code as a data structure for analysis,
transformation and compilation [67,68].

Source code information returned Source code is expressed as a data structure where each
node is an object deriving from the Expression class [69].
Collectively, the structure represents an abstract syntax
tree (AST) [70].

Advantages Relatively mature technology – present in .Net since the
.Net Framework 3.5 [71].

Disadvantages Support for expression trees is not available for F# in the
core.Net 4.0 libraries, but available as part of the
experimental F# PowerPack [66].

 33

Table 4.1 (continued)

Code Quotations

Description Allows to retrieval of F# code into a data structure
through the use of keywords [15,36,72].

Source code information returned The data structure returned is an abstract syntax trees
(AST) where every node of the tree is an object deriving
from Quotations.Expr [73].

Advantages Allows the generation of source code AST via F# keywords
(i.e. quotation markers).

Dedicated functionalities are available to traverse and
modify the AST – which we shall cover in later sections of
this document.

Provides a mechanism where it is possible to define holes
in the AST. At a later phase, these holes can be filled in by
an actual sub tree –the act of defining holes and then
filling them is known as splicing [15,72].

Moreover, methods exist to convert a Quotations.Expr
object into an Expression object [66] –where the latter
object is of a type used in Linq. This allows for additional
work to be carried out in C#, where expression trees are
implemented as part of the core .Net libraries.

Disadvantages Documentation available but generally quite brief.

Some additional functionalities is provided in the
experimental F# PowerPack [66].

4.3.2 F# code quotations

Code quotations are our preferred choice for a weaver. This choice is motivated by the fact that it is

trivial to return a fragment of F# code into a data structure. This data structure (as noted in Table

4.1) is known as an abstract syntax tree (AST) [61,70,74]. Within this dissertation we refer to this

data structure as an AST or an expression tree. As mentioned in Table 4.1, every node of the

expression tree derives from the type Quotations.Expr [73].

 Listing 4.15 shows a simple use of code quotations where we use quotation markers [15,72] <@ @>

to wrap F# code and get a data structure representing the wrapped code. The example below is a

string replace function which is a façade over the .Net Framework’s String.Replace() method [75].

This method replaces a character in a string with another character. The implementation is trivial:

 34

let stringReplace (source : string) (oldChar : char) (newChar : char) =

 source.Replace(oldChar, newChar)

let quote = <@ stringReplace "test" 't' 'e' @> // retrieving the AST.

Listing 4.15 – Implementation of the stringReplace function.

The Listing above outputs the following in F# Interactive (fsi) [39]. The abstract syntax tree is shown

in italics below:

val stringReplace : string -> char -> char -> string

val quote : Quotations.Expr<string> =
 Call (None, System.String stringReplace(System.String, Char, Char),
 [Value ("test"), Value ('t'), Value ('e')])

Listing 4.16 – fsi output

The lines in italics indicate that the abstract syntax tree is an object of generic type [76]

Quotations.Expr<„a>, where <‟a> is the return type of the expression [15] – here of type string.

Wrapping F# code with the <@ @> quotation markers returns an object of the generic type:

Quotations.Expr<‟a>, whereas wrapping F# code with the <@@ @@> quotation markers returns

object of the non-generic type: Quotations.Expr [15].

In Listing 4.16 above, we have four nodes in our AST, which we illustrate in the figure below:

Call

Value(“test”) Value(„t‟) Value(„e‟)

Figure 4.3 – Abstract syntax tree for the stringReplace function

The parent node is a node of type Call, which represents a function call [15,77]:

Call (none,System.String stringReplace (System.String, Char, Char), [Value

(“test”), Value(„t‟), Value(„e‟)])

The leaf nodes are of type Value which represents the literal values “test”, ‘t’ and ‘e’ [15,78]. Many

different types of nodes exist, representing other F# constructs such as let bindings, tuples, curried

 35

functions – more information is available from [73],- and we cover some of the common ones in

Section 4.3.3. As the AST is a recursive data structure, each node may represent another object of

type Quotations.Expr.

We focus on the Call nodes as these are the nodes on which we need to attach before, after or

around advices.

From Listing 4.16 we can decompose the Call node into three parameters:

1. The object that the function is being called on, which in the example shown in Listing 4.16

case is none.

2. The name and signature of the function. More precisely, the second parameter is an object

of type MethodInfo which contains metadata about the method (or function) being called

[62].

3. The last parameter is a list of the function parameters. In this example, the three parameters

are bound to the string “test” and the characters „t‟ and „c‟.

Using pattern matching [15,36] it is possible to recursively traverse an AST with the objective of

identifying and inspecting each node. Each node can be inspected and decomposed into its

constituent parts – e.g. retrieve the mutable MethodInfo object for inspection and modification.

The general approach to traversing the input AST (and the one generally described in literature

[15,36,79]) is to write a recursive function which carries out pattern matching using active patterns

[15,36,80]. There are many active patterns available to decompose an AST, and these are

documented in [81]. For ease of use, however, Microsoft has provided three general patterns which

cover all other (more fine grained) patterns [15,82]:

1. ShapeVar matches a value.

2. ShapeLambda matches a function value.

3. ShapeCombination matches “anything else”, for example a combination of other nodes – a

simple example is the Call node which combines other nodes. This pattern allows one to

“drill” further into sub-expressions.

We can develop a simple non-tail recursive function qa (quotation analyser) to traverse an input AST

and output the same AST. The Listing below shows the function qa:

 36

let rec qa expr =

 match expr with

 | ShapeVar(var) -> Expr.Var(var)

 | ShapeLambda(var, lambdaBody) -> Expr.Lambda(var, qa lambdaBody)

 | ShapeCombination(h, exprs) -> RebuildShapeCombination(h, exprs |> List.map(qa))

let result = qa quote

Listing 4.17 – A general recursive function to traverse an expression tree

The Listing below shows the (unexciting!) fsi outputs when the input is the AST from the

stringReplace function.

val qa : Expr -> Expr
val result : Expr =
 Call (None, System.String stringReplace(System.String, Char, Char),
 [Value ("test"), Value ('t'), Value ('e')])

Listing 4.18 – Output when parsing the input expression tree via the quotation analyser in Listing 4.17

We can now modify the qa function, such that it transforms the input AST and swaps the new

character with the old character (i.e. the last two parameters of stringReplace are swapped). In

Listing 4.19, below, the changes are highlighted in red.

let rec qaReverse expr =

 match expr with

 | Call(obj, methBody, args) ->

 let firstParameter = args.Item 1

 let secondParameter = args.Item 2

 let reversedArgs = [args.Item 0; secondParameter; firstParameter]

 Expr.Call(methBody, reversedArgs)

 | ShapeVar(var) -> Expr.Var(var)

 | ShapeLambda(var, lambdaBody) -> Expr.Lambda(var, qaReverse lambdaBody)

 | ShapeCombination(h, exprs) -> RebuildShapeCombination(h, exprs |>

List.map(qaReverse))

let resultReverse = qaReverse quote

Listing 4.19– A recursive function to traverse and apply transformations to a quotation tree

In the body of the qaReverse function, we have added a finer grained match to the Call pattern.

When we have matched the (only) call to String.Replace, we swap the second and third

parameters of the call to String.Replace. Obviously, qaReverse is not very generic, but serves to

illustrate the general concept of pattern matching and AST transformation.

 37

The results from F# Interactive are shown below, where the inversion of parameters is in bold and

underlined:

val qaReverse : Expr -> Expr

val resultReverse : Expr =
 Call (None, System.String stringReplace(System.String, Char, Char),
 [Value ("test"), Value ('e'), Value ('t')])

Listing 4.20 – Transformed AST

It is possible to compile and execute the ASTs bound to the result and resultReverse identifiers

using methods available in the F# PowerPack experimental library [15,66]. In this case, result and

resultReverse evaluate to “eese” and “ttst”, respectively.

It is important to note an important drawback when attempting to retrieve the AST of an F#

computation (e.g. a sequence of function calls) through quotation markers, as we have done so far in

Listing 4.15. Namely, it is not possible to retrieve the AST of any functions called within the

computation – i.e. we have the same issue as for monads and can only retrieve the AST of the top

level function and not any function called by the computation.

One F# attribute does allow function bodies to be included in the returned quotation: the

[<ReflectedDefinition>] attribute [15,36,83]. This attribute needs to be applied to the top level

function. The MethodWithReflectedDefinition active pattern [84] allows one to inspect the

functions called by the top level function.

In this section, we have provided some information on metaprogramming techniques and focused

on F# code quotations. Code quotations allow the retrieval of the AST of a fragment of F# code. We

followed this discussion with examples where we recursively traversed and manipulated the AST of a

trivial stringReplace function.

Our approach for a weaver using metaprogramming consists of the following steps:

1. Retrieve the AST of the target code.

2. Detect the calls to the target function.

3. Manipulate the AST to inject advices.

4. Return the modified AST.

4.3.3 F# abstract syntax tree nodes

In Section 4.3.2, we noted the Call node and we introduced the notion that within F# different

nodes exist. For example, nodes exist to represent a let binding, or a curried function, an if else

 38

statement etc… Table 4.2, below, shows the different types of node, and Table 4.3 presents the F#

snippets which generate the corresponding node.

Note that our F# snippets use a commit function with the following signature – i.e. a function which

accepts a username and a date and returns a Boolean value:

commit : string -> System.DateTime -> bool

and the following function, which accepts a string and returns a unit:

logmsg: string -> unit

Table 4.2 – Main types of nodes in F# code quotations

Node Description

1 Expr.Call [77][85] Represents a call to a function, when all its
parameters are bound – i.e. this is a direct
function call.

2 Expr.Let [86][87] Represents the execution of a function
call, with its result bound to an identifier.
This node also holds the continuation of
the expression – i.e. the rest of the F#
code within which the identifier is in
scope.

3 Expr.Lambda [88][89] Represents an anonymous function.

4 Expr.Sequential [90,91] Represents the execution of an expression
(which might be a function call) followed
by another.

5 Expr.Application [92][93] Represents the partial application of a
value to a function – i.e. a curried function
[33].

6 Expr.IfThenElse [94,95] Represents an if/then/else statement. The
if/then branches may be a call to a
function or another expression.

 39

Table 4.3 – Demonstration of generating F# nodes

Sample Output

1 F# snippet to generate an Expr.Call node:

<@ commit "User" System.DateTime.Now @>

Output from fsi:

Call (None, Boolean commit(System.String, System.DateTime),

 [Value ("User"), PropertyGet (None, System.DateTime Now, [])])

2 F# snippet to generate an Expr.Let node:

<@

 let res = commit "User" System.DateTime.Now

 res

@>

Output from fsi:

Let (res,

 Call (None, Boolean commit(System.String, System.DateTime),

 [Value ("User"), PropertyGet (None, System.DateTime Now,

[])]), res)

Figure 4.4 shows the AST of the Let node:

Let

res Call commit res

Figure 4.4 – AST for the Let node

Referring to Figure 4.4:

4. The left child node is a variable which holds the result of the let expression.

The left child is an object of type Var.

5. The middle child node represents the body of the let expression. The middle

node is of type Quotations.Expr.

6. The right child node represents the continuation of the let expression – more

 40

Sample Output

precisely the rest of the computation where the variable (defined in the left

most node) is in scope. The right child node is an object of type Quotations.

Expr.

3 F# snippet to generate an Expr.Lambda node:

<@ commit @>

Output from fsi:

Lambda (username,

 Lambda (time,

 Call (None, Boolean commit(System.String,

System.DateTime),

 [username, time])))

Figure 4.5 shows the AST of the lambda node:

Lambda

username

Lambda

time Call commit

Figure 4.5 – AST for the Lambda nodes

Referring to Figure 4.5:

1. Each Lambda function node consists of a left child node and a right child node.

2. The left child is a single argument of type Var.

3. The right child is an object of type Quotations.Expr which represents the

body of the lambda function.

4 F# snippet to generate an Expr.Sequential node:

<@ logmsg "msg 1"

 logmsg "msg 2"

 41

Sample Output

@>

Output from fsi:

Sequential (Call (None, Void logmsg(System.String), [Value ("msg 1")]),

 Call (None, Void logmsg(System.String), [Value ("msg 2")]))

Figure 4.6 shows the AST of the Sequential node:

Sequential

Call logmsg Call logmsg

Figure 4.6– the Sequential node

Referring to Figure 4.6:

4. The leftmost child node represents the first expression to be evaluated, in this

case a call to the logmsg function. The node is of type Quotations.Expr.

5. The rightmost child node represents the second expression to be evaluated.

The node is of type Quotations.Expr.

5 F# snippet to generate an Expr.Application node:

<@ let transactionResult = commit

 let curried = transactionResult "User"

 curried System.DateTime.Now

@>

Output from fsi:

Let (transactionResult,

 Lambda (username,

 Lambda (time,

 Call (None, Boolean commit(System.String,

System.DateTime),

 [username, time]))),

 Let (curried, Application (transactionResult, Value ("User")),

 Application (curried, PropertyGet (None, System.DateTime Now,

[]))))

 42

Sample Output

6 F# snippet to generate an Expr.IfThenElse node:

<@

 let result = commit "User" System.DateTime.Now

 match result with

 | true -> "true"

 | false -> "false"

 @>

Output from fsi – the IfThenElse node is underlined:

Let (result,
 Call (None, Boolean commit(System.String, System.DateTime),
 [Value ("User"), PropertyGet (None, System.DateTime Now, [])]),
 IfThenElse (result, Value ("true"), Value ("false")))

Figure 4.7 illustrates the AST of the IfThenElse node:

IfThenElse

result Value(“true”) Value(“false”)

Figure 4.7 – the IfThenElse node

Referring to Figure 4.7:

1. The leftmost child node is the guard condition and is of type Quotations.Expr.

2. The central child node is evaluated if the guard condition evaluates to true. This

node is of type Quotations.Expr.

3. The rightmost child node is evaluated if the guard condition is false. This node

is of type Quotations.Expr.

From this discussion, it follows that a function may be called within a Let or Sequential or IfThenElse

node – i.e. a “parent node”. Clearly our weaver must therefore be able to gather information about

the parent node such that:

1. The weaver can advise the target function within the parent node.

2. The weaver can then recreate the parent node and insert back into it original location.

 43

4.3.4 Development of code quotation-based weaver

This section presents our weaver built using code quotations. The weaver carries out the following

steps, which is illustrated in Figure 4.8 and Figure 4.9 (on the following page):

1. Get an internal representation of the advices such that they can easily be added to the AST

data structure.

2. Get an internal representation of the source code as an AST.

3. Traverse the source code AST:

a. Identify the node(s) which represent the target function.

b. Weave the advices, i.e. replace the node identified in step 2(a) with the structure

created in step 1 – the weaver must ensure that the right parent node is created.

4. Return the modified AST.

Figure 4.8 – Processing steps for the weaver

 44

User source code

(F#)

Weaved program

(F#)

1. Get a representation of the

advices as an AST

2. Get a representation of the

source code as an AST
3a. Traverse the source code of the

AST and identify the call to the

target function

3b and 4. Weave in the advices and

return the modified AST

Figure 4.9 – Schematic representation of the weaving process

 45

Our weaver is implemented via the “weave” function and has the following function signature:

weave: aspectSpecification -> Expr -> Expr

Listing 4.21 – Function signature for the weave function

The weaver parameters are:

1. An object of type aspectSpecification which represents an aspect – we cover this type in

more details in Section 4.4.2.

2. A Quotations.Expr object representing the source program.

The weaver returns another expression which is the AST of the advised function. It is left to the caller

code to decide whether to compile the AST into a function for immediate execution, or, walk the

returned AST to carry out further custom actions [15].

The weaver code is shown below – this is a fairly simple function where most of the functionality to

traverse the AST and weave advices is delegated to the quotationAnalyser function:

/// Weaves aspects defined by the aspectSpecification object into the source AST.

/// Returns an AST containing the weaved program.

let weave (aspect : aspectSpecification) (sourceExpr : Expr) =

 // Scans the input AST to check if we can handle the parent node of the target

function

 // throws an exception if we cannot handle the parent type

 scanAST sourceExpr aspect.TargetFunctionName |> ignore

 // Retrieve a quotation analyser and execute it

 let qa = quotationAnalyser (sourceExpr) (aspect)

 qa

Listing 4.22 – The structure of the weave function

The full listing of the quotationAnalyser function is available in the CD attached, and via the online

repository. Section 4.5 presents the Visual Studio solution for the framework and provides details on

accessing the online repository. The quotationAnalyser carries out the following tasks:

1. Parse the aspectSpecification object to retrieve information about the target function

and the advice.

2. Traverse the expression tree recursively.

3. Identify one of the parent nodes discussed in Section 4.3.3.

4. Check the parent node to see if there is a call to the target function.

5. If there is a match, call supporting functions to handle the insertion of the advice.

 46

6. Recreate the parent node and return the advised parent node.

Currently, the framework has been tested against Call, IfThenElse and Let parent nodes.

Listing 4.23 shows a section of the quotationAnalyser function where we match a function call

whose parent node is a let expression, i.e. a function of the general form let identifier = f():

1

2

3

4

5

6

7

8

9

10

11

12

13

match expr with

| Let(var, expr, continuation) ->

 match checkMethBody expr targetFunctionName with

 | true ->

 // found a match

 let advised_continuation = qa continuation

 // inject the advices

 inject aspect.Advices.Application (beforeMethodInfoList,

afterMethodInfoList) advised_continuation expr var acceptedContextNodes.LetExpr

 | false -> // continue with the evaluation

 Expr.Let(var, expr, qa continuation)

Listing 4.23– Matching a target function wrapped within a let expression

In line 3, we check the method body of the let expression (c.f. with the representation shown in

Table 4.3) to detect if there is a function call to the target function by making a call to the

checkMethBody function, which has the following signature:

checkMethBody: Expr -> string -> bool

Listing 4.24 - Function signature for the checkMethBody function

The checkMethBody function takes an expression and a string which represents the name of the

target function. The function returns a Boolean indicating a match (or not).

On matching the target function, the weaver creates an expression representing the advised

function. This is achieved by a call to the inject function. The function has the format and signature

shown in the Listing below:

inject adviceType (beforeAdviceList, afterAdviceList) continuationExpr targetExpr

var contextNode

inject: apply -> MethodInfo list * MethodInfo list -> Expr -> Expr -> Var ->

acceptedContextNodes -> Expr

Listing 4.25 – Function declaration and signature of the inject function

 47

The rather large method signature contains the information required to construct the expression for

the advised function, namely:

1. The adviceType variable (of type apply) is a discriminated union which specifies whether

the advice is to be applied, before, after or around the target function. The implementation

of the discriminated union is as follows:

type apply =

 | After_function_call

 | Before_function_call

 | Around_function_call

Listing 4.26 - Implementation of the apply discriminated union

2. The second parameter is an F# tuple [96] containing two elements which are lists of

MethodInfo objects. This tuple represents the list of advices to inject before or after the

target function. This allows us to insert different advices before and after the target

function. The advices are passed in as MethodInfo objects, which are used within the .Net

Framework to represent information on a method, such as its name, its return parameter

and input parameters [62].

3. ContinuationExpr represents the expression which is to be added after the advised

function, for example this could contain the expression required to reconstitute the parent

node.

4. targetExpr represents the expression of the original target function.

5. var is an object of type Var [97,98] and can be used to represent the variable used within a

let parent node.

6. contextNode is a discriminated union of type acceptedContextNodes which is used

internally to create an appropriate parent node. The discriminated union is shown below:

type acceptedContextNodes =

 | LetExpr

 | CallExpr

Listing 4.27 - Implementation of the acceptedContextNodes discriminated union

We can use these to advise other type of parent node – for example, without any changes,

the framework supports weaving an advice within an IfThenElse statement.

The inject function uses other helper functions to create the appropriate expression tree. For

example, for example, the helper function below shows how we traverse the list of before advices

 48

(which recall is a list of MethodInfo objects) and create sequential calls to the advices. Finally, we

insert the call to the target function and return the expression tree.

1

2

3

4

5

6

7

let mergeNodesForCallExprBefore (adviceList : MethodInfo list) targetExpr =

 let rec constructSequence advList =

 match advList with

 | head :: tail -> Expr.Sequential(Expr.Call(head, []),

constructSequence tail)

 | [] -> targetExpr

 constructSequence adviceList

Listing 4.28 – Creating the before advice

The function in Listing 4.28 performs the following steps:

1. Traverse the list of advices.

2. Crate, for each advice create a Sequential node4, where the left expression is a call to the

advice, and the right expression is either:

a. Another advice – if we have not reached the end of the list of advices.

or

b. The target expression – if we have reached the end of the list of advices.

4.3.5 Before advice constraints

This section discusses some of the constraints on advices which arise due to the nature of functional

languages. Recall from Section 2.2 that in functional languages all functions must return a value. In

F# this means that within an F# computation the result of the last expression is also the returned

value. For example, in Listing 4.29, the function returns the string “returned value”, hence F#

infers that the return type is string:

Let f() = printfn “returned value”

Listing 4.29 – F# infers a string return type

However, changing Listing 4.29 to the one shown in Listing 4.30 where we add the Boolean true just

before the return type causes the compiler warning shown in Figure 4.10, below:

1

2

let f() = true

 "returned value"

Listing 4.30 – F# infers a string return type but with a warning

4 c.f. Table 4.2 for an explanation of the left and right nodes

 49

warning FS0020: This expression should have type 'unit', but has type 'bool'. Use 'ignore'
to discard the result of the expression, or 'let' to bind the result to a name.

Figure 4.10– Warning displayed when compiling the function shown in Listing 4.30

The warning indicates that F# is expecting a function which returns unit on line 1 of Listing 4.30.

However we have inserted an expression which returns the Boolean true. Intuitively, this warning

makes sense, as we have lost information (the Boolean value) in our computation. It is therefore a

requirement that our before advices should return unit.

4.3.6 After advice constraints

After advices are those which run after a target function executes. This provides the possibility to

intercept any intermediate result for custom processing.

To illustrate, consider the function below, which returns the result of another function hasAccess.

hasAccess returns true or false, depending on whether the user can be granted access. The

signature of the function is string -> bool.

let checkAccess (user: string) = hasAccess user

Listing 4.31 – Function to check a user’s access

It is possible to insert after advices to record the fact that this user was granted (or refused) access.

Assume that the after advice is called recordAccessCheck and accepts the user name and the result

of the check. Logically this is equivalent to re-engineering the code in Listing 4.31 as follows in Listing

4.32:

1

2

3

let checkAccess (user: string) = let result = hasAccess user

 recordAccessCheck user result

 result

Listing 4.32 – Manually advising a function with after advices

The following steps were carried out to manually advise the function:

1. Change the call to the hasAccess function such that its result is bound to a variable: result

– on line 1.

2. Call the advice and pass in the relevant arguments – on line 2.

3. On line 3, we return result, to preserve the function signature of the checkAccess

function, i.e. string -> bool.

Steps 1 to 3 construct a Let expression which has the format shown in Figure 4.11 (we have omitted

the leave nodes of the Call nodes for brevity):

 50

Let

result
Call

hasAccess
Sequential

Call recordAccessCheck result

Figure 4.11 – AST when capturing the intermediate result of a function call

In our weaver we therefore need to fit a Let expression to capture the intermediate result, as

illustrated by the top node in blue in Figure 4.11. We then process the result (maroon nodes in

Figure 4.11), and finally return a result of the same type as the result node (rightmost purple node in

Figure 4.11).

The function, below, shown in Listing 4.33 implements this AST transformation and is called by the

inject method:

1

2

3

4

5

6

let constructAfterAdvicesForCallExpr (adviceList : MethodInfo list) var =

 let rec constructSequence advList =

 match advList with

 | head :: tail ->

 Expr.Sequential(Expr.Call(head, [Expr.Var(var)]), constructSequence tail)

 | [] -> Expr.Var(var)

 Listing 4.33 – Injecting after advices, and capturing the intermediate result

The function shown in Listing 4.33 has the same format as the one shown in Listing 4.28: in lines 2 to

6 we traverse the list of advices and create sequential calls to the advices. The input to the advices is

the result of the function call – as underlined in Listing 4.33. In Section 5, we present a more

complex example where we capture the intermediate values of an execution in an after advice.

This design also leads to some constraints on the after advices:

1. After advices must also return unit, so that no warnings are generated when calling the after

advices and returning the intermediate result from the computation.

2. As a consequence of point 1, above, an after advice can therefore only consume an input

value. Within our weaver, our advices parameters are not allowed to be of a generic type -

i.e. they must be concrete types (e.g. primitives such as strings or more complex objects).

This is to ensure that there is no input mismatch when passing in the intermediate result to

the advice. We therefore apply some runtime type analysis to verify that the return type of

the target function matches the input type of the advice.

 51

4.3.7 Around advice constraints

The around advices are regular before and after advices, and hence have the same constraints:

1. The before and after advice must return a unit.

2. Similar to after advices, the around advice can have either unit or a non-generic type as an

input parameter.

4.3.8 Summary on the code quotation-based weaver

This section covered our weaver built using metaprogramming technologies. We explain how such a

weaver can transform the AST of a source program into another AST representing the advised

program. We began by providing a background on metaprogramming and presented the

technologies currently available in the .Net Framework. We explained that the preferred technology

was the use of code quotations which allows the retrieval of the AST with minimal effort – indeed

the AST can be retrieved through language keywords.

Our discussion also introduced the rationale and the requirement to decorate the top level function

definitions in the source program with the [<ReflectedDefinition>] attribute. Contrasting the

requirement to decorate top level function with this attribute with the obliviousness requirements

for AOP (Section 2.1), it can be argued that this approach is minimally intrusive and a weaver based

on metaprogramming constructs is much less intrusive that a monad-based weaver.

We highlighted how the parent node affects our weaver design – as we need to recreate the original

context of the function call after injecting the advices. Our weaver based on code quotations allows

the intermediate result when executing the function call to be passed on to the after advices.

4.4 Pointcuts and aspects for the quotation-based weaver

Our weave function described in Section 4.3 depends on an object of type aspectSpecification.

This type encapsulates the pointcut and advice information. This section covers the design of the

pointcut and advice constructs.

4.4.1 Pointcut design

A pointcut is a predicate used to specify the join points over which to apply the advices. From our

discussion in Section 2.1.1, the join points under consideration in this project are function calls only.

Our pointcut structure is required to provide the following functionalities:

1. Allow the user to create named or anonymous pointcuts [16].

2. The user must specify the name of the target function. It is not possible to overload a

function in F#, therefore the possibility of weaving the wrong advice is minimal.

 52

A suitable data structure to hold this information is an F# class [15,23,33,36], where the constructor

enforces the constraints listed above (Listing 4.34):

type pointcutSpecs(pointcutName : string, targetFunctionName : string) =

 member this.PointcutType =

 if pointcutName = "" then

 Anonymous_pointcut

 else

 Named_pointcut

 member this.PointcutName = pointcutName

 member this.TargetFunctionName = targetFunctionName

Listing 4.34 – the pointcutSpecs class

It is sufficient to pass in an empty string “” to the constructor of pointcutSpecs to set its internal

state to an Anonymous_pointcut.

4.4.2 Aspect design

Within AspectJ, aspects are Java constructs which encapsulates a crosscutting concern [16] [29].

Within this project, aspects are data structures which have a similar role. Within our framework, we

attempt to provide a function to simplify the process of populating this data structure. Different

strategies were investigated in order to craft a simple interface over the data structure:

1. Develop a fluent interface [99] using F# constructs.

2. Develop a custom language with its own syntax – effectively an external domain specific

language [99].

It was judged that proposal (2) was quite onerous, especially in light of the fact that we would need

to define our own grammar and implement a parser for the custom language. Tools such as Fslex

and Fsyacc [36,66] can be used to develop our tokeniser and parser [36], respectively. Another

interesting approach to parsing is FParse, a monadic parser combinator [100]. There is a non-

negligible learning curve incurred to use these.

As such, we follow proposal (1), and suggest the function createAspect, below, to populate the

aspect data structure (Listing 4.35), below:

 53

let createAspect (pointcutInformation : pointcutSpecs) application (beforeAdvices,

afterAdvices)=

 let spec = { Name = pointcutInformation.PointcutName

 ; Application = application

 ; TargetFunctionName = pointcutInformation.TargetFunctionName

 ; PointcutType = pointcutInformation.PointcutType

 ; AfterAdvices = afterAdvices

 ; BeforeAdvices = beforeAdvices

 }

 Spec

Listing 4.35 – Function to populate an aspectSpecification type

An appropriate data structure to hold the information related to the aspect is an F# record [36,101]

(Listing 4.36):

/// Supporting data structure to hold the aspect

type aspectSpecification = {

 Name : string

 Application : apply

 TargetFunctionName : string

 PointcutType : pointcut_type

 Advices : AdvicesInformation

 BeforeAdvices : AdvicesInformation

}

Listing 4.36 – The aspectSspecification type

The record values model the following information:

3. Name: The name of the pointcut.

4. Application: whether the advice is to be applied before, after or around the target function.

5. TargetFunctionName: the name of the function to advise.

6. PointcutType: indicates whether the pointcut is anonymous or named.

7. Advices: an object of type AdvicesInformation, which encapsulates the advices to weave

after the target function.

8. BeforeAdvices : an object of type AdvicesInformation which encapsulates the advices to

weave before the target function.

The AdvicesInformation type is shown below:

type AdvicesInformation(funcLibrary, adviceNames:string list, application: apply) =

 member this.FuncLibrary = funcLibrary

 member this.AdviceNames = adviceNames

 member this.Appplication = application

Listing 4.37 – The advicesInformation type

 54

The advices are static methods on an object (the funcLibrary parameter) and the names of the

member which are to be weaved are passed in as a list of string (the adviceNames parameter). The

application parameter specifies whether the advices are to be weaved before, after or around the

target function.

4.5 The AspectF Framework – a Visual Studio Solution

The framework developed in Section 4.3 and 4.4 is contained in a Visual Studio solution called

AspectF. The solution is available in the CD attached in Appendix C and via the online repository on

Atlassian Bitbucket (https://bitbucket.org/). The username and password are as follows:

1. Username Nitesh_bbk

2. Password: aspectffinal

The BitBucket documentation provides further information on how to import the source code to a

local machine [102].

The AspectF solution is organised in the following projects [103]:

 AspectF.Shared – which is an assembly [104] containing some shared types which do not

have any business logic.

 AspectF. Pointcuts – which is an assembly containing the pointcuts, advices and the aspect

types.

 AspectF.Weaver – which is an assembly containing the weaver.

 Tests – contains the xUnit [44] tests. The assembly generated by this project (Tests.dll) can

be opened in the xUnit Test Runner.

Please also note the following project:

 AspectF.Monads – contains the source code for the before, after and around monad-based

weaver.

The “Readme.txt” file contains system requirements and instruction on running the unit tests.

To use the framework, client code must include the “AspectF.Shared”, “AspectF.Pointcuts” and

“AspectF.Weaver” assemblies in their project. A sample usage of weaving a target program is shown

in Chapter 5.

 55

4.6 The F# compiler as a weaver

During the design of a weaver based on metaprogramming technologies, we investigated and

analysed the possibility of building a compiler extension to the F# compiler (fsc.exe). The design was

to extend the F# compiler to add another compiler switch [105]. With this compiler switch, the

compiler would do some pre-processing on the source code file and add advices. The output of the

pre-processing step would be new source code containing the advices. The regular F# compilation

process would then continue and generate an assembly or executable file. Similar approaches to

weaving currently exist in .Net, such as the Eos compiler [106].

The F# compiler source code is freely available for download [66][107]. Extending the F# compiler

was not one of the main weaving strategies proposed.

This section details some of the more interesting finds when analysing the F# compiler source code.

Please note that there exists very little information on the structure of the F# compiler. However,

some of the tools used are standard (e.g. Fslex [36,66] and Fsyacc [36,66]). The information in this

section is relevant for changeset number 64420 [108].

4.6.1 Building the compiler

The readme.html file available as part of the F# compiler download provide detailed information on

building the F# compiler. The F# compiler is itself written in F#. To compile this F# code into another

compiler, a “proto” version of the F# compiler is built from the current version of the F# compiler.

The “proto” compiler is then used to build the F# assemblies and executable files (such as

FSharp.Core.dll, FSharp.Compiler.dll, fsc.exe) using the new source code.

4.6.2 Attaching a debugger to step through the compile process

[109] highlights the process used to attach a debugger to step through the compile process in Visual

Studio. When stepping through the F# code of the compiler, the entry point is the main(argv)

function located in the fscmain.fs file.

The compiler is fairly complex, but the target source code (i.e. the code which we want to compile) is

tokenised by a call to Fslex and the sequence of tokens is processed by the compiler. A parser built

using Fsyacc parses the sequence of tokens to check that the source code is valid F#. The

configuration files for Fslex and Fsyacc – i.e. the definitions of what constitutes valid F# constructs

and terms [36] are located in the directories \src\fsharp\lex.fsl and \src\fsharp\pars.fsy, respectively.

 56

We can note the following functions and files:

1. The function ParseOneInputLexBuf handles the source code tokens returned from Fslex.

2. The file prim-types.fs contained all the core types of F#.

3. The file type definition TcConfigBuilder located in the build.fs file contains all compiler

switches – including those not “officially” documented.

4.6.3 Suggested strategy for building a compiler extension

The proposed strategy is to make changes to the F# compiler in order to define a new compiler

switch, for example --weave, followed by the file name containing the aspects. When the compiling

process starts, the compiler would inspect the aspects file and the source code file and merge the

two codes as defined by the pointcuts. The regular compilation would then be executed on the

resultant advised source code.

This approach is feasible as the compiler itself is written in F# which is a high level, declarative

language, hence is probably more comprehensive than a compiler written in, say, C. Generally, this

weaving strategy would provide a very high level of granularity during the weaving process.

Major drawbacks on this approach include the fact that the F# compiler remains a complex system,

and due to time constraints, this approach was not investigated thoroughly. Manipulating the F#

compiler is a static weaving strategy, which may not be the most suitable for all uses – i.e. dynamic

weaving might be preferable in some use cases. In addition, this approach would require the use a

specific compiler, maintained separately from the release cycle of the official F# compiler. As such,

there would be a maintenance overhead involved in regression testing our compiler extension with

every new releases of the official F# compiler.

4.7 Summary
This chapter detailed the technical implementation of our framework. We focused on the weaver

implementation as it is the central component of the framework (c.f. Figure 3.1). We showed the

implementation two types of weavers:

 A monad-based weaver implemented using computation expressions (Section 4.2).

 A code-quotation based weaver (Section 4.3).

 Monads makes weaving a trivial activity but they were judged to lack granularity and required too

many changes to client code – in effect our implementation of the monad-based weaver breaks the

concept of obliviousness. We therefore consider a weaver built using metaprogramming

technologies, namely through the use of code quotations. Code quotations provide us with a

 57

representation of source program as an abstract syntax tree (AST). Our code quotation-based

weaver consumes the AST of the source program, together with an aspectSpecification object

which encapsulates the pointcut and the advice, and returns an AST representing the advised

program. The advices can be made to execute, before, after or around the target function. We noted

some constraints on the advice constructs: before and after advices must return unit and after

advices are allowed one input parameter, which we can use to consume the result of the target

function. The same constraints apply to around advices.

Our research into a weaver leads us to consider developing a new compiler extension which would

weave the aspects into a source code file (Section 4.6). This strategy provides a lot of flexibility at the

expense of added complexity and maintenance.

 58

5. Usage and instrumentation – advising a

recursive function to estimate π

This section shows a usage of the weaver built using code quotations and performance results. Our

running example is a function which estimates π.

5.1 Implementing Machin’s formula in F#

Machin’s formula, shown below, is one algorithm used to estimate π [110]:

 ⁄
 ⁄

Formula 5.1 – Machin’s formula

Where:

 ∑

Formula 5.2 – An expansion of arctan x

A trivial implementation in F# is shown in Listing 5.1 below, which accepts an upper limit k for the

number of iterations to use when calculating the term arctan x. We shall use this implementation to

get some performance metrics.

let calcTerm x k =

 System.Math.Pow(-1.0, k) * System.Math.Pow(x, 2.0 * k + 1.0) / (2.0 * k + 1.0)

let (|Reachlim|_|) x lim =

 if x = lim then

 Some(x)

 else

 None

let arctan x k =

 let rec calc pow =

 match pow with

 | Reachlim k r -> calcTerm 0.0 pow

 | _ -> (calcTerm x pow) + calc (pow + 1.0)

 calc 0.0

let term1 = arctan (1 / 5.0) 10000.0

let term2 = arctan (1.0 / 239.0) 10000.0

let piEstimate = 4.0 * ((4.0 * term1) - term2)

Listing 5.1– Implementation of the Machin formula in F#

 59

In Listing 5.1 the calcTerm function evaluates one term of the summation shown in Formula 5.2. The

Reachlim active pattern returns an F# option [111] which indicates whether the evaluation has

reached the allowed limit. The arctan function computes arctan x up to a certain number of terms.

We make a call to the recursive arctan F# function twice, for the two terms in Formula 5.1. Finally

we estimate π and the result is bound to the piEstimate identifier.

We can now use the code quotation weaver (detailed in Section 4.3) to inject advices. Let’s assume

that the advices must capture the intermediate results of the calcTerm function for further

processing. The intermediate results are of type float [112], hence the advices have the following

function signatures, which matches the requirement for after advices (Section 4.3.6):

float -> unit

For illustrative purposes, let us assume that the advice prints out to screen, and an advice has the

following format:

let printparams f = printfn "the intermediate value: %f" (f)

Listing 5.2 – Example after advice

Our objective is therefore to change the implementation of the arctan function from the one shown

in Listing 5.1 to the one shown below – where the changes are in red:

let arctan x lim =

 let rec calc pow =

 match pow with

 | Reachlim lim r -> let res = calcTerm 0.0 pow // capture the intermediate result

 printparams res // prints out the result

 res // return the result

 | _ -> let res = (calcTerm x pow) + calc (pow + 1.0) // capture the intermediate result

 printparams res // prints out the result

 res // return the result

 calc 0.0

Listing 5.3 – An advised implementation of Machin’s Formula

 60

We construct the following advice/pointcut/aspect triplet to insert our after advice after the

calcTerm function:

let afterAdvices = new AdvicesInformation(new al(), ["printparams"],

apply.After_function_call)

let pointcutSpecs = (new pointcutSpecs("", "calcTerm"))

let aspect = createAspect pointcutSpecs apply.After_function_call (afterAdvices,

afterAdvices)

Listing 5.4 – Creating our advice/pointcut and aspect triplet

We then decorate the arctan function with the ReflectedDefinition attribute and generate its

expression using quotation markers <@ @> - a requirement described in Section 4.3.2. The aspect

object and the expression are then transformed by the weaver:

let transformedAST = weave (aspect) (sourceExpr)

Appendix A shows the original unadvised tree, and the advised tree – i.e. the result bound to the

transformedAST identifier

5.2 Estimating π – Comparing speed of execution

Using the CompiledUntyped method of the Microsoft.FSharp.Linq namespace of the F# PowerPack

[66], it is possible to compile the expression tree of the advised function and execute it. This allows

us to instrument the speed of execution of the advised function.

Our instrumentation relies on the System.Diagnostics.Stopwatch [113] object from the .Net

Framework. The StopWatch object is used to evaluate the time elapsed across different points of the

application. We measure the time elapsed across the following sub-processes:

1. Time spent executing the non-advised code.

2. Time spent executing “manually advised” code – i.e. where we manually place call to the

advice.

3. Time spent weaving the code.

4. Time spent compiling the advised expression tree and executing the returned function.

 61

 Our test setup is as follows:

 The timing operation is done using the default release build configuration in Visual Studio

2010. This has the minor effects of turning on the optimisation switch on the F# compiler.

We are using the default implementation of the release build configuration – i.e. the one

included with Visual Studio 2010 Ultimate [114].

 The application is compiled using the .Net 4.0 libraries and the default F# 2.0 included with

Visual Studio 2010.

 The hardware used is a standard desktop computer with an Intel i3 Core CPU (quad core).

However we do not take advantage of any parallelism.

 The time is initially measured in ticks, where the ratio of ticks per second is dependent on

whether the system has a high resolution system counter.

a. If the system does have such a timer, then the number of ticks per second is called

the frequency and changes every time the machine is rebooted [115]. The machine

used within the test runs has a high resolution system counter.

b. Otherwise, the value of a tick defaults to 1 tick for every 100 nanoseconds [116].

5.2.1 Instrumentation of the non-advised code

We construct an F# program which evaluates unadvised code – i. e. the program shown in Listing

5.1. We take 5 timing samples for each value of k and take an average the time taken to estimate π

with the given value of k. The results are shown in Table 5.1 and are plotted in Figure 5.1:

Table 5.1 – Time to execute an unadvised program for varying number of iterations

Maximum numbers of iterations

(k)

Duration (seconds)

0 0.003213636

1 0.003350539

10 0.003414003

50 0.00347489

100 0.003718269

250 0.003403091

500 0.003696043

1000 0.00429219

2500 0.005168637

 62

Figure 5.1 – Plot of Table 5.1

 We note that the curve shown in Figure 5.1 is upward sloping. This makes sense intuitively, since the

larger the number of iterations k, the more CPU operations are required and hence the longer will

the operation take. We can note that the curve descends slightly between k = 100 and k =250 before

rising again, perhaps due to some optimisation carried out transparently by the compiler. To

investigate this further a greater number of samples could have been taken.

5.2.2 Instrumentation of manually advised code

We construct an F# program where we manually insert the advices shown – c.f. Listing 5.3. The

results of executing the program for different values of iteration k, are shown in Table 5.2 below:

0

1

2

3

4

5

6

0 1 10 50 100 250 500 1000 2500

D
u

ra
ti

o
n

 (m
ill

is
e

co
n

d
s)

Maximum number of iterations (k)

Program duration (ms) vs. number of iterations for unadvised
program

 63

Table 5.2 – Time to execute a manually advised program for varying number of iterations

Maximum numbers of iterations

(k)

Duration (seconds)

0 0.011418237

1 0.013885502

10 0.02844561

25 0.067860322

50 0.134745453

100 0.274505423

250 0.594982392

500 0.996590817

1000 1.861183008

2500 4.467141598

Figure 5.2 – Plot of Table 5.2

The time to execute the manually advised function also increases as the number of iterations

increases. In this case, the execution is not only a CPU operation but also an IO operation as we are

printing to screen. The additional CPU operations and IO operation cause a degradation of

performance. For the simple case where k = 0, the performance is degraded by a factor of 255%.

0

1

2

3

4

5

0 1 10 25 50 100 250 500 1000 2500

D
u

ra
ti

o
n

 (s
ec

o
n

d
s)

Maximum number of iterations (k)

Program duration (seconds) vs. number of iterations for
manually advised program

 64

5.2.3 Instrumentation of weaved code

We construct an F# program which uses the weaver detailed in Section 4.3 to automatically advise

the program showing in Listing 5.1. The results of running the program for different values of k are

summarised in Table 5.3 and the results are plotted in Figure 5.3 below:

Table 5.3 – Time to execute a weaved program for varying number of iterations

Maximum numbers of iterations

(k)

Duration (seconds)

0 0.177468194

1 0.174280733

10 0.205149825

25 0.223888317

50 0.29621107

100 0.414801312

250 0.775149882

500 1.170822077

1000 2.099559668

2500 4.716360577

Figure 5.3 – Plot of Table 5.3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 10 25 50 100 250 500 1000 2500

D
u

ra
ti

o
n

 (s
ec

o
n

d
s)

Maximum numbers of iterations (k)

Program duration (seconds) vs. number of iterations for
weaved programme

 65

Figure 5.4 superposes Figure 5.2 and 5.3:

Figure 5.4 – Superposition of manually advised program vs. weaved program

From Figure 5.4, we can note that for small number of iterations, it appears that there is an almost

constant difference between running the manually advised program and the weaved program. This

difference is still present for larger values of k. Figure 5.5, below, shows a histogram of the time

difference between the manually advised program and the weaved program:

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 10 25 50 100 250 500 1000 2500

D
u

ra
ti

o
n

 (s
e

co
n

d
s)

Maximum numbers of iteration (k)

Comparison of program duration (seconds) -
manually advised vs. weaved

Execution of weaved
program (seconds)

Execution of manually
advised program
(seconds)

 66

Figure 5.5 – Difference in execution time

We note that the time difference between running the manually advised program and the weaved

program is around ~0.17 seconds. Notable exceptions include the cases where k = 100 and k > 1,000.

These are possibly due to compiler optimisations. This difference may have been smoothed out by

taking a larger number of samples.

When k = 0, the manually advised program take 1.14 x 10-2 seconds to complete (Table 5.2), whereas

the weaved program takes 1.775 x 10-1 seconds to complete (Table 5.3). Generally, the effects of the

IO operations (printing to screen) dominates over the effect caused by the CPU bound operations

(evaluating the terms of the Machin’s formula). This effect of printing a single line to screen (akin to

executing the advice once) was estimated to be around 1ms - however this measure was taken a few

days after the testing run with a different StopWatch frequency value, hence this number is an

approximation.

The timing results of the weaved program for the case where k = 0 indicates that another effect

dominates over the IO and the CPU bound operations for small values of k. This effect can traced to

the time taken to generate the AST of the weaved program, compile it and execute it. We can use

the data presented in Table 5.4, below, to estimate the time taken by this combined effect. In Table

5.4, we have broken down the timing of the execution into different sub-processes: time take to

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 10 25 50 100 250 500 1000 2500

M
an

u
al

 a
d

vi
se

d
 (s

e
co

n
d

s)
 -

W
ea

ve
d

 (
se

co
n

d
s)

Maximum number of iteration(k)

Performance difference between manually advised and
weaved programme (in seconds)

 67

weave each term – i.e. term1 and term2 in Listing 5.1, and the time taken to compile and execute

each term. Figure 5.6 is a plot of the data in Table 5.4

Table 5.4 – Breakdown of the time to execute the weaved program, for varying number of

iterations

Maximum
number of
iterations

Average time
to weave term

1
(seconds)

Average time to
weave term 2

(seconds)

Average time to
compile and

execute term 1
(seconds)

Average time to
compile and

execute term 2
(seconds)

0 0.01970853 0.00068619 0.14925207 0.00782141

1 0.01973095 0.00063678 0.14509156 0.00882143

10 0.02158513 0.00068974 0.1611892 0.02168575

25 0.01975305 0.00064502 0.16353188 0.03995837

50 0.01917812 0.00061395 0.20689174 0.06952726

100 0.01891215 0.00058544 0.25661259 0.13869113

250 0.02020881 0.00064013 0.50377266 0.25052828

500 0.01929527 0.0006319 0.68902591 0.461869

1000 0.01914358 0.00061683 1.17893074 0.90086851

2500 0.01996913 0.00072714 2.46331973 2.23234458

From Table 5.4, the total time (term1 + term2) to compile and execute the program for the case

where k = 0 is 0.157 seconds. This effect dominates over the total time taken to weave the advice

into the code (0.020 seconds).

Using the complete set of data (shown in Appendix B) we further note that the average time taken

to weave the first term is 1.975 x 10-2 seconds, with a standard deviation of 1.833 x 10-3 seconds.

The average time taken to weave the second term is 6.489 x 10-4 seconds with a rather large

standard deviation of 1.279 x 10-4 seconds.

 68

Figure 5.6

0

0.5

1

1.5

2

2.5

3

0 1 10 25 50 100 250 500 1000 2500

Ti
m

e
sp

en
t

in
 s

u
b

p
ro

ce
ss

 (s
e

co
n

d
s)

Maximum number of iterations (k)

Code weaving and excecution duration (seconds) per sub-process

Average time to weave term 1

Average time to weave term 2

Average time to compile and
execute term 1
Average time to compile and
execute term 2

 69

5.3 Summary

In this Chapter we have presented some performance comparison between an unadvised program, a

manually advised program and weaved program. The program used was an implementation of

Machin’s algorithm which is used to estimate π. In the simple example of a single iteration, our

manually advised program degrades the speed of the program by a factor of approximately 2.5,

mostly due to the IO operation of printing to screen. However the weaved program causes a speed

degradation by a factor of approximately 54 (for a single iteration)!

During our analysis in Section 5.2.3, we note that this degradation is largely caused by the

compilation of the quotation expression into a working program. Our original program in Listing 5.1,

is CPU bound, but becomes IO bound as our advices are printing to screen on every recursive pass.

As a consequence the compilation delay becomes negligible as the number of iteration increases. If

our program was CPU bound, this delay would be non-negligible. It is important to note that we are

not strictly required to compile the code, and execute it immediately. It is possible as [15] notes, to

walk the expression tree and interpret each node.

This chapter considers program performance to be a function of execution time only. Another

description of performance – which was not considered in these experiments, would be to measure

the size of the weaved program on disk and attempt to identify any code bloat the weaver

introduces compared to a manually advised program.

 70

6. Conclusion

This dissertation provides the background, design, development and demonstration of an AOP

framework for F#. We showed how we implemented the components of an AOP framework:

1. Join points are restricted to function calls.

2. Pointcuts are objects which allow the user to specify which function to advise.

3. Advices are functions to execute either before, after or around the target function.

4. Aspects are an encapsulation of advices and pointcuts.

A key component of our framework is the weaver. We considered two different designs for our

weaver: one using monads (Section 4.2.3) and other using metaprogramming technologies – namely

code quotations (Section 4.2.4). The monad-based weaver is constructed using computation

expressions which are unique to F# and provides syntactic support for monad constructs. After

experimenting with monads, we decided that the weaver developed using metaprogramming

technologies is more appropriate as it allow much more granularity.

After some research into the available metaprogramming techniques in the .Net Framework (Section

4.3.1), we opted to use code quotation, which is a technology specific to F#. Code quotation allows

one to retrieve a data structure which represents F# code. This data structure is known as an

abstract syntax tree where every node represents a construct in the F# language, such as a function

call, an if/else statement. F# also exposes some functionalities to simplify traversing the abstract

syntax tree and analyse each node of the tree.

Code quotation leads us to construct a static weaver [31], which inserts the advices at compile time

and returns an abstract syntax tree representing the advised program. We noted in Sections 4.3.6

and 4.3.7 that there are constraints on the types of function which we can use as advices.

This project delivers the framework in an F# solution, which we detail in Section 4.5. In Section 5, we

demonstrate the use of our framework to advise a CPU bound program. Some measurements we

taken to contrast the time taken to execute an unadvised program with an advised program. Our

approach to instrumentation was to compile and execute the abstract syntax tree representing the

weaved program. We noted that there was a penalty of about 0.157 seconds to compile and execute

a program, when the program only did a single iteration. Clearly, compilation and execution is an

expensive operation, at least with the libraries used from the F# PowerPack.

 71

We can make the following remarks on our code quotation based weaver:

1. The use of code quotations to generate a weaved program requires a substantial amount of

analysis to implement correctly. This is important not only to ensure that the original

program continues to function correctly but also to ensure that the weaved AST can be

compiled.

2. There is not a lot of documentation available on code quotations, hence a lot of work was

focused on experimenting with the available libraries.

3. Some of the libraries used in this project are from the F# PowerPack [66] library. These are

experimental libraries, developed by Microsoft but outside of the release cycle of F# or of

the .Net Framework.

In addition to developing an AOP framework, this project has required learning F#. Being a functional

language, F# allows the development of programs which are free of side effects [33]. Interestingly,

AOP opposes this notion as it precisely applies side effects to existing programs. There are, however,

many use cases for AOP, such as instrumentation, transaction management and caching. By carefully

crafting a weaver which guarantees that the original computations are unaltered, we obtain a clean

separation of concerns, and it remains possible to develop side effect free programs, which can then

be extended by transparently weaving in advices.

 72

7. Future work

We note the following possible future work:

 We have only provided kinded pointcuts which allows one to specify the function name and

signature to be advised. AspectJ also provides non-kinded pointcuts [16] which inject

advices based on the current program flow, lexical context or execution. The code quotation-

based weaver can be extended to accommodate for non-kinded pointcuts as we can reason

about the program (e.g. its flow) as we traverse the abstract syntax tree representing the

source program.

 Our join point model only covers function calls. Many more join points exists within F#, such

as exception handling, binding to a particular identifier, calling constructors or utilising

sequence expressions [33]. Further development work would be required to implement

these and provide a richer join point model.

 Following on the point above and as described in Section 4.3.4, the framework has been

tested against Call, IfThenElse and Let parent nodes. Further development work is required

to extend the set of nodes the framework can advise.

 Currently our pointcut structure requires a function name (Section 4.4.1) to identify a target

function. The weaver uses this function name to identify which function we should advise.

Although function overloading is not possible in F#, a better approach would be to use the

signature of the target function as a means of identification.

 We have provided support for named pointcuts, but at the moment these are not used

within the framework - further development is required to make greater use of named

pointcuts.

 An alternative to our weavers is to extend the F# compiler. Section 4.5 provided an overview

of the F# compiler. Extending the compiler provides a lot of flexibility at the expense of

added complexity.

 An objective to this project, but not fully met, was to package the framework as a set of

libraries for distribution. At the moment, this framework is experimental (but functional).

 73

Additional use cases are required to verify the suitability of the framework in its current

state and hence to be more confident in distributing it.

 Performance tuning could be done to improve the performance of the code quotation-based

weaver.

 In Chapter 5, we have used the time to compile and execute the weaved code as an

indicator of performance. Other metrics, such as the size of the compiled weaved code on

disk warrants investigation.

 In Figure 5.1 of Chapter 5, we have noted a dip around the values where k = 100 and k = 250,

further investigation would be required to ascertain the reasons for this dip.

 Despite lacking granularity, the monad-based weaver is a very clean solution and a good

solution drawn from functional programming principles. In addition, its performance might

be better than our code quotation-based weaver as it does not require any additional

compilation stage. Such possibilities warrant further investigation.

 Our weaver is currently a static weaver and works at the compilation stage. Dynamic

weaving – where code is weaved into a program at runtime can be more suitable in some

situations [32]. Our project proposal [8] provides some suggestions on the form dynamic

weaving could take. For example, we could inspect the program in its compiled form and

inject advices as it is about to be loaded into for execution.

 74

8. Bibliography

[1] G. Kiczales, J. Lamping, and A. Mendhekar, “Aspect-oriented programming,”
Proceedings of the European Conference on Object-Oriented Programming

(ECOOP), 1997.

[2] G. Kiczales, “Aspect-oriented programming,” ACM Computing Surveys, vol. 1241,

Dec. 1997, pp. 220-242.

[3] “F# - Microsoft Research,” http://research.microsoft.com/en-

us/um/cambridge/projects/fsharp/.

[4] “The AspectJ Project,” http://www.eclipse.org/aspectj/.

[5] D. Esposito and A. Saltarello, Microsoft .Net: Architecting Applications for the
Enterprise, Microsoft Press, 2009.

[6] “Microsoft Developer Network - Policy Injection Application Block,”
Http://msdn.microsoft.com/en-us/library/ff650672.aspx.

[7] “Spring.NET - Application Framework,” http://www.springframework.net/.

[8] N. Chacowry, “An Aspect Oriented Framework in F #. Project propsal submitted as

prerequisite for the MSc in Computer Science, Birkbeck University of London,” 2011.

[9] D. Dantas, D. Walker, and G. Washburn, “AspectML: A polymorphic aspect-oriented
functional programming language,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 30, 2008.

[10] http://www.openfoundry.org/of/projects/801, “AspectFun at the OpenFoundry,”
http://www.openfoundry.org/of/projects/801.

[11] M. Wang and B.C.D.S. Oliveira, “What does aspect-oriented programming mean for
functional programmers?,” Proceedings of the 2009 ACM SIGPLAN workshop on

Generic programming - WGP ’09, 2009, p. 37.

[12] H. Masuhara, H. Tatsuzawa, and A. Yonezawa, “Aspectual Caml: an aspect-oriented
functional language,” Proceedings of the tenth ACM SIGPLAN international

conference on Functional programming, ACM, 2005, p. 320–330.

[13] D. Walker, S. Zdancewic, and J. Ligatti, “A Theory of Aspects,” Proceeding ICFP ’03
Proceedings of the eighth ACM SIGPLAN international conference on Functional
programming, 2003.

[14] “The F # 2 . 0 Language Specification,” Microsoft Corporation, 2010.

[15] C. Smith, Programming F#, OʼReilly Media, Inc., Sebastopol CA, 2009.

[16] R. Laddad, AspectJ in action, Manning Publications Co. Greenwich, CT, USA, 2003.

[17] P. Hudak, “Languages Evolution , and Application of Functional Programming,”
Computing, vol. 21, 1989.

 75

[18] M. Fogus and C. Houser, The Joy of Clojure, Manning Publications Co. Greenwich,

CT, USA, 2011.

[19] D. Koenig, A. Glover, P. King, G. Laforge, and J. Skeet, Groovy in action, Manning

Publications Co. Greenwich, CT, USA, 20011.

[20] “Polyglot Programming,” http://polyglotprogramming.com/.

[21] “The Scala Programming Language,” http://www.scala-lang.org/.

[22] G. Washburn and S. Weirich, “Good advice for type-directed programming aspect-
oriented programming and extensible generic functions,” Proceedings of the 2006

ACM SIGPLAN workshop on Generic programming - WGP ’06, 2006, p. 33.

[23] “Microsoft Developer Network - Classes (F#),” http://msdn.microsoft.com/en-

us/library/dd233205.aspx.

[24] “Microsoft Developer Network - Object.GetType Method,”
http://msdn.microsoft.com/en-us/library/system.object.gettype.aspx.

[25] E.W. Dijkstra, “On the Role of Scientific Thought,” Selected Writings on Computing: A

Personal Perspective, 1982.

[26] K. Baley and D. Belcham, Brownfield Application Development in .Net, Manning

Publications Co. Greenwich, CT, USA, 2010.

[27] M. Marin, A.V. Deursen, and L. Moonen, “A Classification of Crosscutting Concerns,”
Proceedings of the 21st IEEE International Conference on Software Maintenance,

2005.

[28] R.E. Filman and D.P. Friedman, “Aspect-oriented programming is quantification and
obliviousness,” Workshop on Advanced Separation of Concerns, 2000.

[29] D.B. Tucker and S. Krishnamurthi, “Pointcuts and advice in higher-order languages,”
Proceedings of the 2nd international conference on Aspect-oriented software

development - AOSD ’03, 2003, pp. 158-167.

[30] “Aspect Oriented Programming with Spring,”
http://static.springsource.org/spring/docs/2.5.0/reference/aop.html.

[31] K. Czarnecki, Generative Programming - Principles and Techniques of Software
Engineering Base on Automated Configuration and Fragment-Based Component
Models, Department of Computer Science and Automation, Technical University of
Ilmenau: Dissertation submitted in partial fulfillment of the requirements for the degree

of Doktor-Ingenieur, 1998.

[32] “PostSharp - AOP on .Net - Run Time Weaving,”
http://www.sharpcrafters.com/aop.net/runtime-weaving.

[33] T. Petricek and J. Skeet, Real World Functional Programming, Manning Publications

Co. Greenwich, CT, USA, 2010.

 76

[34] K. Hazzard and J. Bock, Metaprogramming in .NET, MEAP Edition Manning Early

Access Program, Manning Publications Co. Greenwich, CT, USA, 2011.

[35] “Microsoft Developer Network - Type Inference (F#),” http://msdn.microsoft.com/en-
us/library/dd233180.aspx.

[36] R. Pickering, Beginning F#, Apress, 2009.

[37] “The CTO Corner - The F# Survival Guide ebook,” The CTO Corner:
http://www.ctocorner.com/fsharp/book/.

[38] J. Harrop, F# for Scientists, Wiley-Interscience, 2008.

[39] “Microsoft Developer Network - F# Interactive (fsi.exe) Reference,”
http://msdn.microsoft.com/en-us/library/dd233175.aspx.

[40] “Microsoft Developer Network - switch (C# Reference),” http://msdn.microsoft.com/en-

us/library/06tc147t.aspx.

[41] “Microsoft Visual Studio,” http://www.microsoft.com/visualstudio/en-us.

[42] “.NET Downloads, Developer Resources and Case Studies,”
http://www.microsoft.com/net.

[43] R. Osherove, The Art of Unit Testing, Manning Publications Co. Greenwich, CT, USA,

2009.

[44] “xUnit - Unit testing framework for C# and .Net (a successor to NUnit),”
http://xunit.codeplex.com/.

[45] W.D. Meuter, “Monads as a theoretical foundation for AOP,” Technology, 1997, pp. 1-

6.

[46] P. Wadler, “The essence of functional programming,” Proceedings of the 19th ACM
SIGPLANSIGACT symposium on Principles of programming languages, ACM Press,

1992, pp. 1-14.

[47] “Haskell Glossary - Monads,”
http://www.haskell.org/haskellwiki/Monad_%28sans_metaphors%29.

[48] B. Beckman, “Channel9 : Donʼt fear the Monad,”
http://channel9.msdn.com/Shows/Going+Deep/Brian-Beckman-Dont-fear-the-
Monads.

[49] S. Jones, “Tackling the awkward squad: monadic input/output, concurrency,
exceptions, and foreign-language calls in Haskell,” Engineering theories of software

construction, 2001, pp. 47-96.

[50] “Microsoft Developer Network - Symbol and Operator Reference (F#),”
http://msdn.microsoft.com/en-us/library/dd233228.aspx.

[51] “Microsoft Developer Network - Discriminated Unions (F#),”
http://msdn.microsoft.com/en-us/library/dd233226.aspx.

 77

[52] “Microsoft Developer Network - Lambda Expressions: The fun keyword,”
http://msdn.microsoft.com/en-us/library/dd233201.aspx.

[53] “Microsoft Developer Network - Expr.Sequential Method (F#),”
http://msdn.microsoft.com/en-us/library/ee353459.aspx.

[54] “Meta Programming - Online definition from Cunningham & Cunningham,”
Http://c2.com/cgi/wiki?MetaProgramming.

[55] J. Baker and W. Hsieh, “Runtime aspect weaving through metaprogramming,”
Proceedings of the 1st international conference on Aspect-oriented software

development, ACM, 2002, p. 86–95.

[56] É. Tanter, R. Toledo, G. Pothier, and J. Noyé, “Flexible metaprogramming and AOP in
Java,” Science of Computer Programming, vol. 72, Jun. 2008, pp. 22-30.

[57] G. Kiczales, J. des Rivieres, and D. Bobrow, The Art of the MetaObject Protocol, MIT

Press, 1991.

[58] “Microsoft Developer Network - System.Reflection Namespace,”
http://msdn.microsoft.com/en-us/library/system.reflection.aspx.

[59] J. Liberty, Programming C#, OʼReilly Media, Inc., Sebastopol CA, 2005.

[60] T. Petricek, “F # metaprogramming and classes,”
http://tomasp.net/blog/fsclassmeta.aspx.

[61] T. Petricek and D. Syme, “F # Web Tools : Rich client / server web applications in F
#,” Unpublished draft, available from http://fswebtools.codeplex.com/.

[62] “Microsoft Developer Network - MethodInfo Class,” http://msdn.microsoft.com/en-

us/library/system.reflection.methodinfo.aspx.

[63] “Microsoft Developer Network - System.CodeDOM Namespace,”
http://msdn.microsoft.com/en-us/library/system.codedom.aspx.

[64] “Microsoft Developer Network - Using the CodeDOM,” http://msdn.microsoft.com/en-

us/library/y2k85ax6.aspx.

[65] “Microsoft Developer Network - CodeDomProvider Class,”
http://msdn.microsoft.com/en-

us/library/system.codedom.compiler.codedomprovider.aspx.

[66] “F# PowerPack, with F# Compiler Source Drops,”
http://fsharppowerpack.codeplex.com/.

[67] “Microsoft Developer Network - Expression Trees (C# and Visual Basic),”
http://msdn.microsoft.com/en-us/library/bb397951.aspx.

[68] “Microsoft Developer Network - How to: Modify Expression Trees (C# and Visual
Basic),” http://msdn.microsoft.com/en-us/library/bb546136.aspx.

 78

[69] “Microsoft Developer Network - Expression Class,” http://msdn.microsoft.com/en-

us/library/system.linq.expressions.expression.aspx.

[70] F. Marguerie, S. Eichert, and J. Wooley, Linq in Action, Manning Publications Co.

Greenwich, CT, USA, 2008.

[71] J. Skeet, C# In Depth, Manning Publications Co. Greenwich, CT, USA, 2008.

[72] “Microsoft Developer Network - Code Quotations (F#),” http://msdn.microsoft.com/en-
us/library/dd233212.aspx#Y432.

[73] “Microsoft Developer Network - Quotations.Expr Class (F#),”
http://msdn.microsoft.com/en-us/library/ee370577.aspx.

[74] “F# Quotations Samples on CodePlex - Tomas Petricek,”
http://tomasp.net/blog/fsharp-quotation-samples.aspx.

[75] “Microsoft Developer Network - String.Replace Method,”
http://msdn.microsoft.com/en-us/library/system.string.replace.aspx.

[76] “Microsoft Developer Network - Generics (F#),” http://msdn.microsoft.com/en-

us/library/dd233215.aspx.

[77] “Microsoft Developer Network - Expr.Call Method (F#),” http://msdn.microsoft.com/en-

us/library/ee370395.aspx.

[78] “Microsoft Developer Network - Expr.Value Method (F#),”
http://msdn.microsoft.com/en-us/library/ee340519.aspx.

[79] “Forty Six and Two: Traversing and transforming F# quotations: A guided tour,”
http://fortysix-and-two.blogspot.com/2009/06/traversing-and-transforming-f.html.

[80] “Microsoft Developer Network - Active Patterns (F#),” http://msdn.microsoft.com/en-

us/library/dd233248.aspx.

[81] “Microsoft Developer Network - Quotations.DerivedPatterns Module (F#),”
http://msdn.microsoft.com/en-us/library/ee370434.aspx.

[82] “Microsoft Developer Network -
ExprShape.ShapeVar|ShapeLambda|ShapeCombination Active Pattern (F#),”
http://msdn.microsoft.com/en-us/library/ee370517.aspx.

[83] T. Petricek, “F# quotations visualizer - reloaded!,” http://tomasp.net/blog/quotvis-

reloaded.aspx.

[84] “Microsoft Developer Network - DerivedPatterns.MethodWithReflectedDefinition
Active Pattern (F#),” http://msdn.microsoft.com/en-us/library/ee353670.aspx.

[85] “Microsoft Developer Network - Patterns.Call Active Pattern (F#),”
http://msdn.microsoft.com/en-us/library/ee353474.aspx.

[86] “Microsoft Developer Network - Expr.Let Method (F#),” http://msdn.microsoft.com/en-
us/library/ee370277.aspx.

 79

[87] “Microsoft Developer Network - Patterns.Let Active Patterns (F#),”
http://msdn.microsoft.com/en-us/library/ee340284.aspx.

[88] “Microsoft Developer Network - Expr.Lambda Method (F#),”
http://msdn.microsoft.com/en-us/library/ee340341.aspx.

[89] “Microsoft Developer Network - Patterns.Lambda Active Pattern (F#),”
http://msdn.microsoft.com/en-us/library/ee340233.aspx.

[90] “Microsoft Developer Network - Expr.Sequential Method (F#),”
http://msdn.microsoft.com/en-us/library/ee353459.aspx.

[91] “Microsoft Developer Network - Patterns.Sequential Active Patterns (F#),”
http://msdn.microsoft.com/en-us/library/ee353710.aspx.

[92] “Microsoft Developer Network - Expr.Application Method (F#),”
http://msdn.microsoft.com/en-us/library/ee340386.aspx.

[93] “Microsoft Developer Network - Patterns.Application Active Pattern (F#),”
http://msdn.microsoft.com/en-us/library/ee353646.aspx.

[94] “Microsoft Developer Network - Expr.IfThenElse Method (F#),”
http://msdn.microsoft.com/en-us/library/ee370408.aspx.

[95] “Microsoft Developer Network - Patterns.IfThenElse Active Pattern (F#),”
http://msdn.microsoft.com/en-us/library/ee340456.aspx.

[96] “Microsoft Developer Network - Tuples,” http://msdn.microsoft.com/en-
us/library/dd233200.aspx.

[97] “Microsoft Developer Network - Expr.Var Method (F#),” http://msdn.microsoft.com/en-

us/library/ee353514.aspx.

[98] “Microsoft Developer Network - Quotations.Var Class (F#),”
http://msdn.microsoft.com/en-us/library/ee353442.aspx.

[99] A. Rahien, DSLs in Boo: Domain Specific Languages in .NET, Manning Publications

Co. Greenwich, CT, USA, 2010.

[100] “FParsec - A Parser Combinator Library for F#,” http://www.quanttec.com/fparsec/.

[101] “Microsoft Developer Network - Records (F#),” http://msdn.microsoft.com/en-
us/library/dd233184.aspx.

[102] “Bitbucket Documentation,”
http://confluence.atlassian.com/display/BITBUCKET/Bitbucket+Documentation+Home

;jsessionid=3B3900105B398F1A31AA1130FA1815ED.

[103] “Microsoft Developer Network - Using Visual Studio to Write F# Programs,”
http://msdn.microsoft.com/en-us/library/dd233169.aspx.

[104] “Microsoft Developer Network - Assemblies,” http://msdn.microsoft.com/en-
us/library/hk5f40ct%28v=vs.71%29.aspx.

 80

[105] “Microsoft Developer Network - Compiler Options (F#),” http://msdn.microsoft.com/en-

us/library/dd233171.aspx.

[106] “Eos: Aspect-oriented extension for C#,” http://www.cs.iastate.edu/~eos/.

[107] “Stack Overflow - how to build the f# compiler from source,”
http://stackoverflow.com/questions/4104480/how-to-build-the-f-compiler-from-source.

[108] “CodePlex - F# Compiler Source Changesets,”
http://fsharppowerpack.codeplex.com/SourceControl/list/changesets.

[109] “Occasional notes: F#: Building compiler from sources.,”
http://v2matveev.blogspot.com/2010/08/f-building-compiler-from-sources.html.

[110] E.W. Weisstein, “Machinʼs Formula - from Wolfram MathWorld,”
http://mathworld.wolfram.com/MachinsFormula.html.

[111] “Microsoft Developer Network - Options (F#),” http://msdn.microsoft.com/en-
us/library/dd233245.aspx.

[112] “Microsoft Developer Network - Double Structure (System),”
http://msdn.microsoft.com/en-us/library/system.double.aspx.

[113] “Microsoft Developer Network - Stopwatch Class,” http://msdn.microsoft.com/en-

us/library/system.diagnostics.stopwatch.aspx.

[114] “Microsoft Developer Network - How to: Set Debug and Release Configurations,”
http://msdn.microsoft.com/en-us/library/wx0123s5(v=VS.100).aspx.

[115] “Microsoft Developer Network - Stopwatch.Frequency Field,”
http://msdn.microsoft.com/en-us/library/system.diagnostics.stopwatch.frequency.aspx.

[116] “Microsoft Developer Network - Stopwatch.ElapsedTicks Property,”
http://msdn.microsoft.com/en-

us/library/system.diagnostics.stopwatch.elapsedticks.aspx#Y216.

[117] “The Java Virtual Machine Specification,” http://java.sun.com/docs/books/vmspec/.

[118] “Java API Specifications,” http://java.sun.com/reference/api/index.html.

 81

Appendix A – Unadvised and advised expression

trees for the arctan function

This appendix shows the unadvised expression tree for the arctan function shown in Listing 5.1. We

repeat this code below and the arctan function is in bold:

let calcTerm x k =

 System.Math.Pow(-1.0, k) * System.Math.Pow(x, 2.0 * k + 1.0) / (2.0 * k + 1.0)

let (|Reachlim|_|) x lim =

 if x = lim then

 Some(x)

 else

 None

let arctan x k =

 let rec calc pow =

 match pow with

 | Reachlim k r -> calcTerm 0.0 pow

 | _ -> (calcTerm x pow) + calc (pow + 1.0)

 calc 0.0

let term1 = arctan (1 / 5.0) 10000.0

let term2 = arctan (1.0 / 239.0) 10000.0

let piEstimate = 4.0 * ((4.0 * term1) - term2)

The expression tree for the unadvised program is shown below:

{Lambda (k,
 LetRecursive ([(calc,Lambda (pow,
 Let (activePatternResult,
 Call (None,
 Microsoft.FSharp.Core.FSharpOption`1[System.Double] |Reachlim|_|[Double](Double, Double),
 [k, pow]),
 IfThenElse (UnionCaseTest (activePatternResult,
 FSharpOption`1.Some),
 Let (r,
 PropertyGet (Some (activePatternResult),
 Double Value,
 []),
 Call (None,
 Double calcTerm(Double, Double),
 [Value (0.0),
 pow])),
 Call (None,
 Double op_Addition[Double,Double,Double](Double, Double),
 [Call (None,
 Double calcTerm(Double, Double),
 [x, pow]),
 Application (calc,
 Call (None,
 Double op_Addition[Double,Double,Double](Double, Double),
 [pow,
 Value (1.0)]))])))))],
 Application (calc, x)))}

Listing A.1 – Expression tree for the unadvised program

 82

Listing A.2, below shows the Listing for the advised program, where the calls to the advices are in

red.

Lambda (k,
 LetRecursive ([(calc,Lambda (pow,
 Let (activePatternResult,
 Call (None,
 Microsoft.FSharp.Core.FSharpOption`1[System.Double] |Reachlim|_|[Double](Double, Double),
 [k, pow]),
 IfThenElse (UnionCaseTest (activePatternResult,
 FSharpOption`1.Some),
 Let (r,
 PropertyGet (Some (activePatternResult),
 Double Value,
 []),
 Let (res,
 Call (None,
 Double calcTerm(Double, Double),
 [Value (0.0),
 pow]),
 Sequential (Call (None,
 Void printparams(Double),
 [res]),
 res))),
 Let (res,
 Call (None,
 Double op_Addition[Double,Double,Double](Double, Double),
 [Call (None,
 Double calcTerm(Double, Double),
 [x, pow]),
 Application (calc,
 Call (None,
 Double op_Addition[Double,Double,Double](Double, Double),
 [pow,
 Value (1.0)]))]),
 Sequential (Call (None,
 Void printparams(Double),
 [res]),
 res))))))],
 Application (calc, x)))

Listing A.2 – Expression tree for the unadvised program

The expression for the weaved program indicates that we are capturing the result of a call to

calcTerm and storing that result in an identifier called res. The value bound to res is then passed in

to the advice – the printParams function.

 83

Let (res,
 Call (None,
 Double calcTerm(Double, Double),
 [Value (0.0),
 pow]),
 Sequential (Call (None,
 Void printparams(Double),
 [res]),
 res)))

Figure A3 – Storing the result of calcTerm in a res variable

 84

Appendix B – Raw timing results for the weaved function
Number
of
iterations

Ticks taken to
evaluate term 1

Time taken to
evaluate term 1

Ticks taken
to evaluate term 2

Time taken to
evaluate term 2

Ticks taken to
 compile term
1

Time taken to
 compile term
1

Ticks taken to
 compile term
2

Time taken
to compile term
2

Frequency
(Ticks
per
second)

2,500 56,414 0.018883227 2,117 0.000708615 7,823,838 2.618841253 7,143,961 2.391268809 2,987,519

2,500 70,265 0.023519516 3,000 0.001004178 7,158,631 2.396179238 6,443,711 2.156876994 2,987,519

2,500 56,337 0.018857453 2,139 0.000715979 7,646,805 2.559583721 7,162,011 2.397310611 2,987,519

2,500 57,977 0.019406404 2,279 0.00076284 7,127,308 2.385694618 6,434,294 2.15372488 2,987,519

2,500 59,138 0.019795021 1,783 0.000596816 7,269,256 2.433208291 6,463,744 2.163582558 2,987,519

2,500 57,818 0.019353182 1,716 0.00057439 7,129,449 2.386411266 6,367,310 2.1313036 2,987,519

1,000 54,996 0.018408586 1,737 0.000581419 3,300,692 1.104827116 2,578,147 0.862972587 2,987,519

1,000 56,557 0.018931093 1,686 0.000564348 3,378,451 1.130855067 2,820,422 0.944068306 2,987,519

1,000 57,545 0.019261802 2,426 0.000812045 3,873,583 1.296588574 2,937,325 0.983198768 2,987,519

1,000 60,061 0.020103973 1,706 0.000571042 3,673,287 1.229544314 2,556,573 0.85575121 2,987,519

1,000 56,800 0.019012431 1,659 0.00055531 3,384,377 1.132838653 2,564,342 0.858351696 2,987,519

500 54,868 0.018365741 1,638 0.000548281 2,009,659 0.672684927 1,309,097 0.438188678 2,987,519

500 60,024 0.020091588 2,200 0.000736397 2,150,115 0.719699189 1,674,510 0.560501875 2,987,519

500 57,190 0.019142974 1,867 0.000624933 2,025,528 0.677996692 1,341,900 0.449168691 2,987,519

500 57,517 0.01925243 1,710 0.000572381 2,048,307 0.685621414 1,284,395 0.429920278 2,987,519

500 58,626 0.019623641 2,024 0.000677485 2,058,781 0.689127333 1,289,310 0.431565456 2,987,519

250 55,442 0.018557874 1,904 0.000637318 1,376,445 0.460731798 703,494 0.235477666 2,987,519

250 55,460 0.018563899 1,719 0.000575394 1,622,013 0.542929769 876,185 0.293281817 2,987,519

250 77,199 0.025840505 2,603 0.000871292 1,613,377 0.540039076 705,114 0.236019922 2,987,519

250 58,694 0.019646402 1,728 0.000578406 1,467,032 0.491053613 725,649 0.242893518 2,987,519

250 55,076 0.018435364 1,608 0.000538239 1,446,285 0.484109055 731,848 0.244968484 2,987,519

100 57,314 0.019184481 1,661 0.00055598 770,730 0.257983297 392,936 0.131525858 2,987,519

 85

Number
of
iterations

Ticks taken to
evaluate term 1

Time taken to
evaluate term 1

Ticks taken
to evaluate term 2

Time taken to
evaluate term 2

Ticks taken to
 compile term
1

Time taken to
 compile term
1

Ticks taken to
 compile term
2

Time taken
to compile term
2

Frequency
(Ticks
per
second)

100 56,204 0.018812935 1,649 0.000551963 768,279 0.257162883 429,272 0.143688459 2,987,519

100 56,593 0.018943143 1,734 0.000580415 764,408 0.255867159 460,108 0.154010067 2,987,519

100 55,071 0.01843369 1,710 0.000572381 758,817 0.253995707 398,225 0.133296223 2,987,519

100 57,320 0.019186489 1,991 0.000666439 770,941 0.258053924 391,171 0.130935067 2,987,519

50 61,837 0.020698446 1,869 0.000625603 689,658 0.230846398 211,995 0.070960218 2,987,519

50 56,268 0.018834357 1,804 0.000603846 608,530 0.203690755 204,202 0.068351699 2,987,519

50 54,970 0.018399883 1,699 0.000568699 577,755 0.193389565 207,595 0.069487424 2,987,519

50 56,139 0.018791178 1,635 0.000547277 624,627 0.209078838 208,996 0.069956375 2,987,519

50 57,261 0.01916674 2,164 0.000724347 589,895 0.197453138 205,782 0.068880566 2,987,519

25 60,278 0.020176608 1,920 0.000642674 503,044 0.168381858 117,350 0.039280085 2,987,519

25 56,762 0.018999712 1,798 0.000601837 475,705 0.159230786 116,976 0.039154897 2,987,519

25 62,541 0.020934093 2,431 0.000813719 481,181 0.161063746 120,969 0.040491458 2,987,519

25 57,627 0.01928925 1,718 0.000575059 490,403 0.164150588 120,592 0.040365266 2,987,519

25 57,855 0.019365567 1,768 0.000591795 492,440 0.164832424 120,995 0.040500161 2,987,519

10 55,781 0.018671346 1,663 0.000556649 534,389 0.178873841 63,242 0.021168736 2,987,519

10 56,242 0.018825654 1,688 0.000565017 461,169 0.154365211 77,181 0.02583448 2,987,519

10 56,186 0.01880691 1,696 0.000567695 473,119 0.158365185 78,640 0.026322845 2,987,519

10 76,280 0.025532892 2,196 0.000735058 465,918 0.155954824 54,021 0.018082228 2,987,519

10 77,941 0.026088872 3,060 0.001024261 473,184 0.158386942 50,849 0.017020478 2,987,519

1 66,086 0.022120696 2,141 0.000716648 422,936 0.141567635 24,810 0.00830455 2,987,519

1 56,134 0.018789504 1,594 0.000533553 426,243 0.142674574 26,637 0.008916094 2,987,519

1 59,465 0.019904476 1,897 0.000634975 441,538 0.147794206 27,050 0.009054336 2,987,519

1 56,645 0.018960549 2,177 0.000728698 426,540 0.142773987 25,518 0.008541536 2,987,519

1 56,403 0.018879545 1,703 0.000570038 450,062 0.15064741 27,756 0.009290652 2,987,519

0 56,220 0.01881829 1,731 0.000579411 419,884 0.140546052 20,464 0.006849831 2,987,519

 86

Number
of
iterations

Ticks taken to
evaluate term 1

Time taken to
evaluate term 1

Ticks taken
to evaluate term 2

Time taken to
evaluate term 2

Ticks taken to
 compile term
1

Time taken to
 compile term
1

Ticks taken to
 compile term
2

Time taken
to compile term
2

Frequency
(Ticks
per
second)

0 67,948 0.022743956 3,324 0.001112629 437,024 0.146283254 24,335 0.008145555 2,987,519

0 58,026 0.019422805 1,671 0.000559327 431,587 0.144463349 21,778 0.007289661 2,987,519

0 55,213 0.018481221 1,688 0.000565017 443,546 0.148466336 23,841 0.0079802 2,987,519

0 56,991 0.019076364 1,836 0.000614557 497,426 0.166501368 26,415 0.008841785 2,987,519

 87

Appendix C – CD with source code

{ CD containing source code is attached here.

Please refer to Section 4.5 for more information. }

