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Abstract 
 

This dissertation presents the research, design and development of an aspect-oriented framework 

for F#, a functional programming language. Our framework allows one to insert advices before, after 

or around the call to a particular function. We provide two distinct approaches to weaving the 

advice to the source code: using a monad-based weaver, and using a weaver built on 

metaprogramming technologies.  

 

Our weaver built using metaprogramming technologies translates a source program into a data 

structure which is amended as required to inject the advices. The weaver then returns another data 

structure representing the advised (or transformed) program. The weaver using metaprogramming 

technologies is judged to be more granular and less intrusive and hence is chosen as the weaver for 

our framework. 

 

We use our framework to advise a program which estimates π. In addition, we provide some timing 

comparison between a program where we manually insert the advices and one advised by the 

framework. Our results show a performance penalty when using the framework as we are required 

to make expensive function calls to compile and execute the transformed program. This dissertation 

provides some concluding remarks and suggestions for future work.   
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1. Introduction 

1.1 Background 
The dissertation presents the research, design and development of an aspect-oriented [1,2] 

framework for Microsoft’s implementation of a functional language: F# [3]. Aspect-oriented 

programming (AOP) is a programming paradigm where functionalities which apply across different 

modules are cleanly encapsulated into separate components. For example, a program may require 

security checks to ensure that a particular user has access to certain functionalities only. In this case, 

AOP provides a solution to cleanly separate out the security checks from the flow of the program. 

AOP is usually implemented via a dedicated framework. Such frameworks exist for object-oriented 

languages. Examples include AspectJ [4] for Java and Policy Injection Application Block [5,6] or 

Spring.Net [7] for .Net languages.  

We noted in the project proposal [8], that within function languages, AOP constructs are 

implemented via a dedicated programming language. Example includes AspectML [9], AspectFun 

[10,11], Aspectual Caml [12] or MinAML [13]. The project proposal [8] of this dissertation provides 

further analysis of AOP frameworks targeting functional languages. However, no such frameworks or 

AOP programming languages currently exist for F# - Microsoft’s implementation of a functional 

programming language [3,14]. 

1.2 Motivation 
This project is motivated by the following factors: 

a. There are no dedicated AOP frameworks available for F#. F# is a functional language based 

on the .Net Framework, and is a core language shipped with Visual Studio [15] – Microsoft’s 

integrated development environment. This is a strong indication of Microsoft’s objective of 

getting its flavour of a functional language operating within an industrial setting. In such a 

setting, there are many use cases where AOP is required, for example: auditing or 

instrumentation of code performance [16].  

 

b. This project provides an opportunity to study functional languages. Functional languages 

have a long history [17], but there has been a relatively recent resurgence in their 

popularity. This can be attested by the release of functional languages such as F# or Clojure 

[18], and the integration of functional language constructs (such as lambda functions) in 

object-oriented languages such as C# and Groovy [19]. Polyglot languages [20] such as Scala 

[21] support both object-oriented and functional programming constructs. 
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c. This project provides an opportunity to study AOP. In the project proposal [8], we provided a 

review of current AOP frameworks for functional languages and noted some of the issues 

encountered in existing implementations, such as the need to break referential transparency 

[11], or implement runtime type analysis [22]. This project therefore shows how F# 

functionalities such as the ability to define objects [23], or the ability to inspect the type of 

an object at runtime [24] can also address these implementation issues. 

1.3 Scope and objectives 
The objectives of this project are: 

1. Research AOP and develop an understanding of this programming paradigm (Section 2.1 and 

Chapter 3). 

2. Develop an understanding of F# (Section 2.2).  

3. Design the AOP constructs for F# (Chapter 4) and develop these constructs. 

4. Design a framework around the AOP constructs (Section 4.5) for reusability and distribution. 

5. Perform some time measurements to compare the performance of our framework against 

regular code (Chapter 5). 

1.4 Achievements 
In this project, and supported by this dissertation, we show the design and development of the AOP 

framework in F# (Chapter 4). We also show a usage of this framework in Chapter 5. Currently, the 

framework is experimental and a greater amount of use cases would need to be implemented 

before general distribution. 

1.5 Overview of dissertation 
Objectives 1 and 2 above are covered in Chapter 2 while objectives 3, 4 and 5, the main outcome of 

the dissertation are presented in Chapters 3, 4 and 5.   

In Chapter 2, we present a brief overview of aspect-oriented programming (AOP). This is followed by 

an overview of functional programming, with an emphasis on F# and its syntax. In Chapter 3, we 

detail the requirements for AOP framework we shall implement. Chapter 4 details the design choice 

and presents a technical presentation of our framework. In Chapter 5, we present metrics that 

contrasts the performance of a regular program with the one in which we have weaved some 

additional functionalities. Finally, Chapters 6 and 7 presents some concluding remarks and suggests 

future work.  
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2. Background on Aspect-Oriented Programming 

and Functional Languages 

This chapter provides a brief review of aspect-oriented programming (AOP) and functional languages 

- with an emphasis on F#. The project proposal [8] covers much of the theoretical background of 

AOP and functional languages, but we reiterate the important points within this chapter. The review 

helps in defining the issues that need to be addressed. 

2.1 Aspect-oriented programming (AOP) 

In the project proposal [8] for this dissertation, we reiterated the concept of separation of concern 

as an important concept in program design [25]. A common design pattern to achieve separation of 

concerns in large programs is to encapsulate the concerns into their own distinct layers, where each 

layer performs a specific functionality [5,26].  For example, an application might be split in three 

layers: a first layer which handles persistence to a database, a second layer to handle business 

objects and a third layer to display data to the user and handle user input. In Figure 2.1 these 

functionalities are represented by horizontal layers. 

However, there may be additional requirements for including concerns which affect all layers of an 

application. Such concerns include security, error handling, performance monitoring, thread 

synchronisation and transactions [26]. These features are formally referred to as cross-cutting 

concerns [5,27]. In Figure 2.1 we have modelled the security concern as a vertical layer which affects 

all other layers. 

User interface layer

Business logic layer

Persistence layer

S
e

c
u

ri
ty

 

Figure 2.1– Horizontal and vertical (cross-cutting) layers in an application 

Cross-cutting concerns have the undesirable property that they cause clutter and noise on program 

code. For example, in the proposal [8], we present sample C# code whose cohesion is degraded by 

other cross-cutting concerns. 
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AOP is a programming paradigm which allows the encapsulation of these cross-cutting concerns and 

provides constructs to weave transparently these cross-cutting concerns into working code. In the 

project proposal [8], we noted the following definition for AOP from [28]. As this definition is 

referred within this dissertation and forms a thread for our weaver design, we reiterate the 

definition here: 

AOP is […] the desire to make programming statements of the form: 

“In program P, whenever condition C arises, perform action A” 

Definition 2.1 - A language-neutral definition of AOP 

From Definition 2.1, there is a requirement for obliviousness in that the program P should have no 

knowledge of the action A.  

AOP consists of the following different components and these are explained in more details in the 

next sections: 

i. Join points 

ii. Pointcuts 

iii. Advices 

iv. Aspects 

2.1.1 Join points 

A multitude of events can arise during a program’s execution, such as method calls and exceptions. 

Join points are the set of events which can arise during the execution of a program. Referring back to 

Definition 2.1, the condition C is one such join point. 

AOP frameworks expose a join point model [16,27], which specifies the events that can occur and 

allows a user to attach an action when the event fires.  For our implementation, we propose to 

advise the join point set to function calls only – i.e.  the execution of a particular function. 

2.1.2 Pointcuts 

Pointcuts are used to define the subset of join points on which a specific action should be taken 

[16,29,30].  

2.1.3 Advices 

Advices define the actions that should be taken when a particular join point has been reached during 

the execution of a program. Referring back to Definition 2.1, the advice is the action A to be 

performed. Within the scope of this project, we use the following definitions: 
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 We say that a program or module is advised when an advice is attached to a module (e.g. a 

function) via a join point/pointcut 

 An unadvised program or module refers to one on which no advices have been attached. 

 Advising refers to the process of injecting an advice into a source program. 

 A target function is the function which is to be identified and advised.  

 A source program is the original program 

 A computation is a sequence of F# statements in a source program. 

An advice can be primed to execute: 

 Before the target function runs. We refer to these as before advices. 

 After the target function runs. We refer to these as after advices. 

 Before the target function runs, and also after the function runs. We refer to these as 

around advices. 

2.1.4 Aspects 

Aspects encapsulate crosscutting concerns [16] [29]. Within an AOP framework, aspects store the 

pointcut and the advice information. 

2.1.5 Weaving 

Referring back to Definition 2.1, a program P should have no knowledge of the action A. Clearly, 

there must be a mechanism to combine the source code of program P with the code defined in 

advice A. This mechanism is known as weaving [1,2,5,16,26] and is illustrated below, in Figure 2.2 

(adapted from [5,31]). In Figure 2.2, there are two aspects, “Aspect A” and “Aspect B” which are 

weaved to a source program: 
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Source code

Aspect A

Aspect B

Weaver

Woven

code

 

Figure 2.2 – Weaving aspects to source code 

Weaving – the merging of source code with aspects, can be done statically or dynamically: 

 Static weaving occurs at compile time. In this case the weaver modifies the source code by 

identifying the selected join points and injecting the advices. 

 Conversely, dynamic weaving is a strategy where the weaver inspects running code (or code 

that is about to be loaded at runtime) and applies advices as specified in the pointcut 

[16,32].  

2.2 Functional languages 

In the project proposal [8]  of the dissertation, we presented a background on functional languages 

and highlighted the following characteristics: 

 Functional programming languages are a sub-set of declarative programming languages [17] 

where the result of a program is achieved through the combination and execution of 

functions. By comparison, in imperative languages the result of a program is achieved 

through the execution of commands [33]. 



  12 
 

 Formally, functional languages are those which abide by the rules of lambda calculus. In 

lambda calculus, every construct is a function and hence every construct returns a value 

[33].  

 Functions can be passed in arguments to other functions, and functions can also be 

returned. Formally, we say that first-order functions can be passed as parameters to, or 

returned from, higher-order functions [33,34]. 

 An important concept for functional languages is that of referential transparency, i.e. 

“equals can be replaced by equals”. Referential transparency can assist in reasoning about a 

function’s output. As [11,17] highlights, the ability to reason about a program is reduced by 

AOP – as AOP transparently weaves additional functionalities and can alter a function’s 

output. 

  Functional languages have a type inference system [33,35], where the types used in a 

computation do not have to be explicitly declared. The project proposal [8] provides more 

details on type inference and its impact on AOP. 

In this section we introduce some additional characteristics of F# which are used extensively within 

the project. F# constructs which are specific to the topic being discussed (e.g. computation 

expressions) are introduced as we progress. This section does not aim to be a full introduction to F#. 

However for a good introduction into F# please refer to [15,33,36,37]. Furthermore, the project 

proposal [8] of the dissertation describes functional language constructs which we use and 

encounter during this project, namely currying, a more detailed treatment on type inference and 

monads. F# is a descendent of the Meta Language (ML) family of functional languages, and shares 

some syntax with OCaml [38], hence familiarity with these languages may be useful in 

comprehending the F# snippets we use in this dissertation. 

2.2.1 Function signatures 

This section on function signatures was not included in the proposal. We cover function signatures 

here as they are useful to gather information about a function’s purpose. Within F# (and functional 

languages in general), the function represents the underlying model of computation [17]. As 

mentioned previously, every function returns a value. As such, every function has an associated 

function signature which represents: 

 The set of inputs to the function (loosely analogous to input parameters). 

 The return type of the function. 
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A function signature for a function which accepts two inputs of type string and returns another 

string would be: 

 

string -> string -> string 

 

Listing 2.1 – A sample function signature 

For example, a possible implementation for this function could be: 

 

let concatenate (lhs:string) (rhs:string) = lhs + rhs 

 

Listing 2.2 – Sample function implementation 

In the listing above, the function name is “concatenate” and the inputs are lhs and rhs, both 

annotated with the type string. The type inference system of F# infers that the return type is also 

of type string [33]. 

In the function signature shown in Listing 2.1, we simplified by describing the two type parameters 

(string -> string) as the two input parameters of the function. More precisely, the function 

signature indicates a sequence of transformation from one type to another [33,37].  A more accurate 

reading of the function signature would be: “the function concatenate accepts one input of type 

string and returns another (anonymous) function. The new function accepts an input of type 

string as its parameter and returns an output of type string”. In effect this indicates that the 

following is possible: 

 

let partialConcatenate = concatenate “foo“ 

 

Listing 2.3 – Currying example 

This returns another function which is bound to the partialConcatenate identifier and has the 

function signature: 

 

string -> string 

 

Listing 2.4 – Function signature for the curried function 

The signature above can be read as: “the function partialConcatenate transforms an input string 

into another string”. This is an example of currying [33]. 
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Understanding function signatures enables one to gather information about the behaviour of a 

particular function. For example our weaver function (called weave ) which we introduce in Section 

4.3.4 has the signature: 

 

aspectInformation -> Expr -> Expr 

 

One can read this function as follows: “the function weave accepts an object which provides 

information on the aspect (aspectInformation), and returns another function. This new function 

accepts a representation of the source program (as an object of type Expr) and returns an object 

which represents the output (i.e. weaved) program as an object of type Expr”. 

2.2.2 F# Interactive (fsi) 

F# Interactive is a useful tool used in this project to develop the different components. F# Interactive 

provides a REPL (Read, Evaluate, Print, Loop) environment to test F# snippets [39]. This approach can 

assist the development process: once a fragment of F# produces the required output and is tested, 

the code is then copied into  F# files with an extension “.fs” for later compilation into an assembly 

[36] (the project proposal  [8] of the dissertation presents more information on .Net assemblies). 

Most of the snippets in the code listings of this project can be run via fsi. 

2.2.3 Active patterns 

This section covers pattern matching and active patterns. As we developed the weaver, we made 

extensive use of this construct, hence it is useful to provide a short explanation on active patterns. 

[36] provides a succinct introduction to active patterns and covers the complete and incomplete 

patterns constructs –this section focuses on  complete patterns only. 

Pattern matching is akin to a switch statement in C++ or C# [40], but with additional functionality 

such as the ability to analyse the input code and then “branch” into the appropriate path [36]. 

Pattern matching starts with the keyword match, followed by the identifier to be matched. The 

different possible matches are separated by pipes (|) [36]. A complete active pattern is a function 

which accepts an input and returns one pattern (also known as case) [36,37]. To illustrate, the 

example in Listing 2.5, below, shows an active pattern that analyses an input population value and 

returns a pattern indicating whether this population describes a village, town, city or 

megalopolis – obviously in real code, the program in Listing 2.5, below, would not have these magic 

numbers and error checking would be in place to validate the input (i.e. if population is negative): 
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let (|Village|Town|City|Megalopolis|) (population : int) =  

    if population < 100 then 

        Village 

    else if population >= 100 && population < 10000 then 

        Town 

    else if population >= 10000 && population < 1000000 then 

        City 

    else 

        Megalopolis 

 

Listing 2.5 - Simple active pattern 

We can call the active pattern through a pattern matching  construct as shown below: 

 

let eval population =  

    match population with 

    | Village -> printfn "Village" 

    | Town -> printfn "Town" 

    | City -> printfn "City" 

    | Megalopolis -> printfn "Megalopolis" 

 

Listing 2.6 - Calling the active pattern 

In the eval function above, the integer value of population is passed to the active pattern. The 

active pattern behaves like a function, and based on the value of population returns one of the 

possible patterns (Village or Town or City or Megalopolis) back to the caller. The pattern 

matching construct then branches appropriately. 

2.3 Summary 

This Chapter has introduced aspect-oriented programming (AOP) and functional programming with 

an emphasis on F#. AOP is a programming paradigm which allows the clean encapsulation of 

concerns and the weaving of those concerns into an existing program. 

We noted the following basic constructs of AOP: 

 Join points define the set of events on which one can attach actions to. Examples of event 

include method executions or exception handling. 

 Pointcut allows the selection of events. For example, it allows one to select a specific join 

point such as the execution of a particular method. 

 Advices represent the action to perform when the event has occurred. Advices can be 

primed to execute before, after or “around” the event occurrence.  

 Aspects represent the logical grouping of pointcuts and advices into one cross cutting 

concern –for example we use the term security aspect to define such a grouping. 

 Weaving is the process which transparently merges an aspect into a source program. 
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We provided a short background on functional languages and on F#. Function signatures were 

introduced and we explained how they can be interpreted. We also covered active patterns -  a 

construct which we use extensively within this project.  
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3. Requirements and development approach 

This chapter presents the requirement for our framework and presents the development 

methodology used. 

3.1 Requirements 

 The framework will be developed in F# and advise other programs written in F#. 

 Join point: Our join point model will be the execution of functions. 

 Pointcut: The framework will provide the ability to select join points by allowing the user to 

specify the target function. In the project proposal of the dissertation, we highlighted how 

AspectJ allows user to name the pointcut for re-use [16]. Our framework shall allow named 

and anonymous pointcuts. 

 Advices: the framework will allow the user to specify the additional modules to inject into a 

target. We propose to implement the ability to insert advices: 

o Before the execution of a target function. 

o After the execution of a target function. 

o Around the execution of a target function. 

 Our framework shall implement a weaver to inject the advices into the target program. 

Within this project we implemented two weavers, one using monads (Section 4.2), and 

another using metaprogramming technologies (Section 4.3). As discussed in Section 2.1, an 

important design consideration will be to ensure our weaver satisfies the concept of 

obliviousness. We propose to develop a static weaver (Section 2.1.5).  

 Our framework shall allow aspects to be defined such that pointcuts and advices can be 

grouped.  

Figure 3.1 illustrates the different components of the framework and how they process some user 

source code (leftmost box “User source code (F#)”). 
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User source code 

(F#)
Weaver

Pointcut definitionAdvice definition

Weaved code (F#)

Aspect

 

Figure 3.1 – Framework components 

We can note that a central component of the framework is the weaver. The weaver design impacts 

the design of the aspect, which in turn impacts the pointcut and the advice design. 

3.2 Development tools and methodology 

The framework was developed using the following software: 

 F# 2.0. [3,14]. 

 F# interactive (fsi) and Visual Studio 2010 [41]. 

 Version 4.0 of the .Net Framework [42]1. 

A test driven approach was taken [43]: unit tests were built using xUnit [44] during the development 

phase of the project. 

  

                                                             
1
  As described in the project proposal [8],  the .Net Framework provides a program runtime environment (the 

Common Language Runtime or CLR) and a set of libraries (the Framework Class Libraries or FCL) [59], which are 
analogous to Java’s Virtual Machine [117] and the Java Class Library [118]. 
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4. Framework design and implementation 

This chapter details the implementation of the framework. We emphasise the weaver design and 

implementation, as its design impacts all other components of the framework (as shown in Figure 

3.1, above). 

4.1 Weaver design 

A relatively large amount of design and development effort was focused on developing a weaver as 

it is a central component of the application. Recall from Section 2.1 that a successful weaving 

strategy abides by the rule of obliviousness. 

Two weaving strategies were investigated and developed:  

 A monad-based weaver (Section 4.2), where we shall see that the advice is encapsulated in 

what is termed a monadic type [33]. Monads provide constructs to weave these advices into 

a program. 

 A weaver based on metaprogramming technologies (Section 4.3), where advices are 

implemented as regular F# functions. Special language functionalities are provided to weave 

the advice function into the source program. 

4.2 Monad-based weavers 

4.2.1 Theoretical background on monads 

The use of monads as a weaving strategy was postulated in [45]. As per the project proposal [8], our 

first approach for a weaver is the use of monads. 

An introduction to monads is given in [46], and [47] provides more information on these 

programming construct. Within this section we provide a short introduction to monads, monads in 

F# and recap the suitability as a weaving strategy. 

Monads originate from the branch of mathematics known as group theory [48].In functional 

languages, a program is usually written such that for a known set of input(s), the program gives one 

output. This is a fundamental description of functional languages and allows one to reason about a 

program. However, there are often valid use cases which require a program to apply a side effect, 

for example printing to screen. Monads are used in functional programming languages to 

encapsulate these side effects [49], without affecting the original computation or logic of the 

program. 
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The core of the monad is the monadic type [33]. The purpose of the monadic type is to augment or 

enhance the current program, e.g. by applying some relevant side effect. A common notation for the 

monadic type is M<‟a> [33,48] where ‟a is a generic type representing the original type of the 

computation, and the monadic type M<„a>represents the functionalities/behaviours added by the 

monad.  

Monads further require the use of two operators, known within the literature as return and bind 

operators [33,45]: 

 Return is a first order function which lifts the original type „a to the monadic type M<‟a>, 

and therefore has the signature („a -> M<‟a>). This function is also known as unit [45]. 

 Bind is a higher-order function which allows the composition of monadic types together. In 

the project proposal, [8], we heuristically derived its signature:  

 

 

M<‟a> -> („a -> M<‟b>) -> M<‟b>. 

 

Figure 4.1 – Function signature of the bind operator 

 

From the signature above, bind is a function which takes a monadic type, and a function 

which returns a monadic type („a -> M<‟b>). The function signature implies that bind has 

sufficient knowledge of the monadic type M<„a> to unwrap the original value (of type „a) 

and pass in this value into the first order function (the second parameter). 

Combined together, these operators allow functions to be chained together into a computation. To 

illustrate, consider the forward pipe operator |> (with signature 'a -> ('a -> 'b) -> 'b) [50]. We 

can construct the following computation, if f(x) has a signature (int -> int): 5 |> f. In this example, 

we are passing in the integer value 5 into the function f(x). We expect the result to be of type int, 

given that f(x) accepts an integer and returns another integer. We assume now that there exists a 

requirement to augment the value 5 (of type integer) to another type M<int>. Clearly, we cannot 

reuse the forward pipe operator, as the function f(x) accepts an integer, not a value of the type 

M<int>. However, the solution is to create another function which has the same signature as the 

bind function, and making the changes to the function f(x): 

 Let f(x) have the signature (int -> M<int>) 

 Let bind be represented with the notation >>= 
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We can reconstruct the original computation chain as follows:  

 

return(5) >>= f 

 

Listing 4.1 – An example of monads 

From [45,49] and the discussion above, monads are suitable as a weaving strategy as we can use the 

monadic type M<‟a> to encapsulate our advices and use the bind operator to recreate the original 

computation of the unadvised program. 

4.2.2 F# support for monads 

Within F#, a construct known as computation expression2, provides syntactic support for monads. 

Smith [15] defines computation expressions as a construct which allows one to augment a certain 

computation with additional behaviour.  Computation expressions consist of the following 

components:  

 An F# class. In order to participate in a computation expression, the methods of the class are 

required to conform to specific function signature(s)3. For example, a member method 

called Bind will be automatically be used by the compiler as the monadic bind operator. 

 A computation expression builder [15] . 

Listing 4.2, below, illustrates a computation expression which applies a side effect (printing to 

screen). In the example, the original type („a) and the monadic type (M<‟a>) are both integers (i.e. 

„a is of type int).  

 

 

 

 

 

 

                                                             
2
 Computation expressions are also known as workflows [15]. Within this document, we use the term 

computation expression when describing an implementation in F# and the term monad to describe the general 
concept.  
3
 Please refer to Table 10.1 of [15] for a full list of methods which are given special treatment by the compiler 

and hence can participate in a computation expression. 
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type SideEffectBuilder(msg : string) =  

    let msg = msg 

 

    member this.Bind((x : int), (rest : int -> int)) =  

        printfn "The message: %s." msg 

        printfn "The result: %i." x 

        rest x 

 

    member  this.Return (x : int) = x 

 

let sideEffect msg = new SideEffectBuilder(msg) 

 

let double x = x * 2 

 

let printmsg = sideEffect "this is the injected test message"{ 

                    let! v1 = double 5 

                    let! v2 = double 10 

                    return 0 

               } 

 

printmsg 

 

Listing 4.2 – Computation expressions in F# 

The computation expression starts by defining the type of the computation expression builder: 

SideEffectBuilder (lines 1 to 9). The class has a Bind method (line 4) which prints a custom 

message to the screen and returns a value which has the same type as the monadic type. As the 

original and monadic types are both integers, the Return method accepts an integer and returns the 

same integer. The SideEffectBuilder type has a constructor (line 1) which accepts a custom 

message. 

On line 11 of Listing 4.2, we define the computation expression builder by creating an instance of the 

SideEffectBuilder class (line 11). We apply the side effect on a function called double, which 

doubles the input value (defined in line 13). 

This is followed by the computation expression itself, which is bound to an identifier printmsg. The 

computation expression (lines 16 to 18) has the appearance of regular F# code, except for the 

presence of the “!” marker appended to the let expressions. The compiler translates marker this to 

a call to the computation expressions builder’s Bind method. The first parameter of the bind 

expression is the result of the first call of the double function (double 5). The second parameter of 

the computation is the function call in the following line (double 10).  
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To illustrate the action of the compiler, the lines: 

 

let! v1 = double 5 

let! v2 = double 10 

return 0 

 

Listing 4.3 – Computation 

are expanded (also referred to as de-sugared) by the F# compiler into the following lines: 

 

sideEffect.Bind(double 5, 

                fun v1 -> sideEffect.Bind (double 10,                                                                                                         

                                           fun v2 ->  sideEffect.Return( 0 ) ) ) 

 

Listing 4.4 – De-sugared form of listing 4.3 

We can draw parallels with the example given in Listing 4.2 with AOP. Namely, the Listing shows a 

weaver which applies after advices to target code. The after advice is the side effect of printing to 

the screen and the target code is the computation wrapped within the curly brackets. This example 

forms the basis for a more complex weaver implementation. 

4.2.3  Development of a monad-based weaver using computation expressions 

This section discusses the implementation of a monad-based weaver using F# computation 

expressions. The source code is available in the CD in Appendix C and in the online repository 

(Section 4.5). 

Our implementation uses three single case discriminated unions [51] to represent before, after and 

around advices. These discriminated unions are concrete implementation of the monadic types 

M<‘a>. An F# discriminated union can be compared to the object-oriented construct of an abstract 

base class with a single level of inheritance [33]. A single case discriminated union is therefore 

analogous to an abstract base class with only one child. Listing 4.5 shows the definition of advice 

types: 

 

type BeforeAspect<'T> =  

    | Before of 'T 

 

type AfterAspect<'T> =  

    | After of 'T 

 

type AroundAspect<'TBefore, 'TAfter> =  

    | Around of 'TBefore * 'TAfter 

 

Listing 4.5 – Types of advices 
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Single case discriminated unions are used as they have some advantages when performing pattern 

matching and result decomposition [33]. The discriminated unions are of a generic type „T, which 

we can use to encapsulate a lambda function (i.e. an anonymous function [33,52]) representing the 

function to execute. Note that the AroundAspect is different in that it requires two types: „TBefore 

and „TAfter. We expand on this difference in Section 4.2.3.4. In the example below, the advice is a 

lambda function which takes any input and returns unit [36]  (unit is equivalent to void in C# or 

C++). 

 

let beforeaspect = Before( fun _ -> printfn "running advice.") 

 

Listing 4.6 – Lambda representing a before advice 

We now cover the specific implementations of the before, after and around computation expression 

builder types. 

4.2.3.1 The BeforeBuilder computation expression builder 

The computation expression builder type which applies a before advice is shown in Listing 4.7: 
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type BeforeBuilder() =  

 

    member this.Bind(Before(aspectfunc), func) =  

        aspectfunc() // execute the advice 

        func() 

 

    member this.Return(value) = Before(value) 

 

Listing 4.7 – Computation expression builder for the before advice 

The parameters of the Bind function are: 

 A monadic type which is constrained to the Before case. 

 A function with the signature (unit -> BeforeAspect<‟b>). 

4.2.3.2 BeforeBuilder Example 

We demonstrate the use of the before computation expression builder by showing how a message is 

printed to screen before a target function targetFunction() executes. The function 

targetFunction()has the signature (unit -> bool): 

 

let targetFunction() = printfn "executing target function." 

                       true 

 

Listing 4.8 – Sample target function 
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targetFunction() does not do anything very interesting, except for printing a message to screen 

and constantly returning true.  A computation expression which uses the computation expression 

builder is shown in Listing 4.9: 
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let before = BeforeBuilder() 

 

let beforeTestRunner(targetfunc) =  

    before { 

        let! res = beforeaspect 

        return targetfunc() 

    } 

     

// below is code to run the computation expression 

beforeTestRunner(targetFunction) |> ignore 

 

Listing 4.9 – Example usage of the before computation expression builder 

The computation expression bound to the beforeTestRunner identifier (line 3) and accepts a 

function of signature (unit -> „a), which matches our concrete implementation 

targetFunction() - which has the more constrained type (unit -> bool). 

After running the computation expression, the following expected output is printed to screen: 

 

running advice. 

executing target function. 

 

    

4.2.3.3 The AfterBuilder computation expression builder 

The builder for the after aspect is similar to the builder for the before aspect. The computation 

expression builder type is shown below: 
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type AfterBuilder() =  

 

    member this.Bind(After(aspectfunc), func) =  

        let (After(res)) = func() // call the target function and store the result 

        aspectfunc() // execute the advice 

        After(res) // return the result 

 

    member this.Return(value) = After(value) 

 

Listing 4.10 – Computation expression builder for the after advice 

The class is similar to the BeforeBuilder type and has a Bind and Return method. The main 

differences are: 
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 We now use the After discriminated union. 

 Within the Bind method, we are required to re-order the sequence of calls such that we 

begin by calling the target function and store its result (line 3). We then execute the advice 

and return the results of the target function (lines 4 and 5). 

An example usage is shown below:  

 

let aftereaspect = After( fun _ -> printfn "running advice.") 

 

let afterTestRunner(targetfunc) =  

    after { 

        let! res = aftereaspect 

        return targetfunc() 

    } 

     

afterTestRunner(targetFunction) |> ignore // Running the computation expression. 

 

Listing 4.11 – Example usage of the after computation expression builder 

After running the computation expression, the following expected output is printed to screen: 

 

executing target function. 

running advice. 

 

4.2.3.4 The AroundBuilder  computation expression builder 

The around aspect must accommodate for the before and after advices being different. The around 

aspect discriminated union is repeated below: 

 

type AroundAspect<'TBefore, 'TAfter> =  

    | Around of 'TBefore * 'TAfter 

 
   

The single case discriminated union requires a tuple [15], where „TBefore is a lambda function 

representing the before advice, and the „TAfter is a lambda function representing the after advice. 

The computation expression builder is shown in the Listing below: 
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type AroundBuilder() =  

 

    member x.Bind(Around(beforeFunc, afterFunc), func) =  

        beforeFunc() // call the before aspect 

        let res = func() // call the target function and store the result 

        afterFunc() // call the after aspect 

        res // return the result 

 

    member x.Return(value) = Around(value) 

 

Listing 4.12 - Computation expression builder for the around advice 
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The Bind method performs sequential calls [53] to the before advice (line 4), the target function (line 

5) and finally the after advice (line 6). The result of calling the target function is stored in a 

temporary variable res which is returned at the end of the computation. A sample usage is shown 

below: 
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// Create the advice to execute and the aspect 

let beforeF = fun _ -> printfn "running before advice." 

let afterF = fun _ -> printfn "running after advice." 

let aroundeaspect = Around( beforeF, afterF) 

 

let aroundTestRunner(targetfunc) =  

    around { 

        let! res = aroundeaspect 

        return (targetfunc(), None) 

    } 

     

aroundTestRunner(targetFunction) |> ignore // Running the computation expression. 

 

Listing 4.13 – Sample usage of the around computation expression builder 

In the Listing shown above, we begin by specifying two lambda functions which represent the before 

and after functions. We then create the around aspect which is bound to an identifier called 

aroundaspect. When the computation expression is run, the following expected results are printed 

to screen: 

 

running before advice. 

executing target function. 

running after advice. 

 

4.2.4 Discussion on monads 

From the implementation provided, we note the following advantages when using a monad-based 

weaver: 

 Monads provide clean access to function boundaries. 

 Weaving is trivial – the Bind method does most of the required weaving without changes to 

the original computation order. 

 Monads allow the encapsulation of any advices - the monadic type M<‟a> can encapsulate a 

wide range of advices. 

 Monads are well documented. 

We note the following disadvantages when using a monad-based weaving : 

 Constructing a pointcut selection language is complex and not intuitive. 
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 Monads do not easily comply with the important concept of obliviousness. To illustrate, we 

refer back to Listing 4.1 shown previously, which we repeat below: 

 

return(5) >>= f 

 

Implementing a monad-based weaving required changes to the function f as we need to 

change its signature from (int -> int) to (int -> M<int>). Arguably this can be 

achieved via a higher order function having the signature (int -> int) -> (int -> 

M<int>).  

 A monad-based approach lacks granularity. To illustrate, consider the following computation 

which achieves the business requirements of committing some data into a database: 

 

let save() = preptxn() 

             let transactionResult = executetxn() 

             transactionResult 

 

Listing 4.14 – A computation representing a trivial business logic 

 

Using the monadic constructs shown previously, it is trivial to attach before, after or around 

advices to the top level function save(). However, we cannot trivially attach an advice to the 

inner functions called by save(). As such, we cannot address a requirement to inject an 

advice to, say the executetxn() function without substantially re-engineering the save() 

function.  

4.2.5 Summary of a monad-based weaver 

This section has provided a background on monads and explained their usage within functional 

programming. Parallels between monads and AOP were drawn to provide justification to use 

monads as a weaving strategy. F# provides some (admittedly fairly unintuitive) language constructs 

for monads called computation expressions. Our implementation of monads which apply advices 

before, after and around a target function was implemented using computation expressions. 

We next highlighted some advantages and disadvantages of a weaver built using monads. The main 

disadvantage of this approach is that monads do not provide a satisfactory level of granularity – 

namely it is trivial to advise top level function (functions calling other functions), but difficult to 

advise functions called by the top level function. The disadvantages of a monadic approach lead us 

to design and develop a finer grained yet more complex weaving strategy through the use of 

metaprogramming technologies. 
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4.3 Code quotation-based weaver 
A definition [34] of metaprogramming is presented below: 

 

Metaprogramming is a term which refers to a computer program which transforms a source 

program into another program. 

 

Definition 4.1 - A definition for metaprogramming 

This is achieved by treating the source program as input data. Compilers are classical examples of 

programs that carry out such transformations [34,54]. Conceptually, a weaver performs the same 

transformation – namely the weaver takes a source, un-advised program, and manipulates it to 

inject the relevant advices. From Definition 4.1, the following steps are required to implement a 

weaver-based on metaprogramming: 

1. Retrieve a source program and convert it to some data structure. 

2. Analyse the data structure and detect the join points defined in the pointcut. 

3. Amend the data structure and inject the advices. 

4. Generate a working program from the amended data structure. 

Figure 4.2, on the following page, illustrates the weaving strategy. 
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User source code 

(F#)

Or

...

Or

...

Weaved program 

(F#)

1. Retrieve a source program into 

some data structure

2. and 3. Inspect the data structure 

and inject the advices
4. Generate a working program

 

Figure 4.2 - Weaving strategy using metaprogramming technologies 
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In Figure 4.2, the data structure for the source and advised program is illustrated as a linked list or a 

tree – the actual data structure is not important, as long we can traverse and amend it. 

 There are two general metaprogramming techniques for transforming a source program into 

another [31,55]: 

 Source transformation: is the act of transforming the source code of the base program 

before execution. This can achieved through compiler switches or compiler extensions. In 

Section 4.6 we present some analysis on the F# compiler. In all cases, source transformation 

technologies involve traversing an input data structure representing the source code and 

applying changes where required. 

 

 Dynamic reflection: can be loosely described as manipulating the source program at runtime. 

This can be achieved by using a meta-representation [31] of the programming constructs in 

the base code. Examples of these meta-representations include meta-objects [56,57]. Within 

F#, we can use objects from the System.Reflection [58] library to perform runtime analysis 

of the source program. 

These two technologies are not mutually exclusive, for example [55] presents a weaver which is a 

hybrid between source transformation and dynamic reflection. 

The .Net Framework [42,59] provides several libraries which exposes metaprogramming 

functionalities. These libraries provide access to both source transformation and dynamic reflection 

techniques. Table 4.1, below, describes these libraries and their comparative advantage. Based on 

the information in Table 4.1 we discuss our chosen technology to develop our weaver. 

4.3.1 Metaprogramming technologies in the .Net Framework 

Table 4.1, below, shows the different libraries available in the .Net Framework which can be used for 

metaprogramming. This Table also includes a discussion on code quotations [15,36,60,61] which is a 

metaprogramming construct specific to F#. 
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Table 4.1 – Summary of metaprogramming technologies in the .Net Framework 

Reflection 

Description The methods within the .Net System.Reflection 
namespace [58] provide functionalities to inspect and 
instantiate types from compiled or executing code.  

Source code information returned Information on compiled  / executing code (e.g. functions, 
properties) are made available as collections of objects (e.g 
MethodInfo [62]). 

Advantages Mature API (available since .Net 1.0 [34]). 

Disadvantages Does not give any indication as to how the program 
operates [15]. 

CodeDOM 

Description Provides a document-oriented approach to code generation 
[34,63]. CodeDOM is mainly focused on generating a code 
graph code which can be compiled immediately or saved to 
file for later compilation [34,64].  

Source code information returned Graph of objects within the System.CodeDOM namespace 
[63]. 

Advantages Allows generation of source code in a variety of .Net 
languages [34]. This might be useful for debugging 
purposes, however as noted in the disadvantages column, 
generating F# code is not natively supported. 

Disadvantages Not actively developed by Microsoft in recent years [34]. 
 
No functionalities exist to convert a string (i.e. an input 
source file) into an object graph which is critical for further 
manipulation.  
 
As of the time of writing, there are no native providers 
[34,65] to generate code into F# CodeDOM. Instead the F# 
CodeDOM provider is part of a separate experimental 
module – the F# PowerPack [66]. 

LINQ Expression Trees 

Description Presents code as a data structure for analysis, 
transformation and compilation [67,68]. 

Source code information returned Source code is expressed as a data structure where each 
node is an object deriving from the Expression class [69]. 
Collectively, the structure represents an abstract syntax 
tree (AST) [70]. 

Advantages Relatively mature technology – present in .Net since the 
.Net Framework 3.5 [71]. 

Disadvantages Support for expression trees is not available for F# in the 
core.Net 4.0 libraries, but available as part of the 
experimental F# PowerPack [66]. 
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Table 4.1 (continued) 

Code Quotations 

Description Allows to retrieval of F# code into a data structure 
through the use of keywords [15,36,72]. 

Source code information returned The data structure returned is an abstract syntax trees 
(AST) where every node of the tree is an object deriving 
from Quotations.Expr [73]. 

Advantages Allows the generation of source code AST via F# keywords 
(i.e. quotation markers). 
 
Dedicated functionalities are available to traverse and 
modify the AST – which we shall cover in later sections of 
this document. 
 
Provides a mechanism where it is possible to define holes 
in the AST. At a later phase, these holes can be filled in by 
an actual sub tree –the act of defining holes and then 
filling them is known as splicing [15,72]. 
 
Moreover, methods exist to convert a Quotations.Expr 
object into an Expression object [66] –where the latter 
object is of a type used in Linq. This allows for additional 
work to be carried out in C#, where expression trees are 
implemented as part of the core .Net libraries. 

Disadvantages Documentation available but generally quite brief. 
 
Some additional functionalities is provided in the 
experimental F# PowerPack  [66]. 

 

4.3.2 F# code quotations 

Code quotations are our preferred choice for a weaver. This choice is motivated by the fact that it is 

trivial to return a fragment of F# code into a data structure. This data structure (as noted in Table 

4.1) is known as an abstract syntax tree (AST) [61,70,74]. Within this dissertation we refer to this 

data structure as an AST or an expression tree.  As mentioned in Table 4.1, every node of the 

expression tree derives from the type Quotations.Expr [73]. 

 Listing 4.15 shows a simple use of code quotations where we use quotation markers [15,72] <@ @> 

to wrap F# code and get a data structure representing the wrapped code. The example below is a 

string replace function which is a façade over the .Net Framework’s String.Replace() method [75]. 

This method replaces a character in a string with another character. The implementation is trivial: 
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let stringReplace ( source : string ) ( oldChar : char ) ( newChar : char ) =       

                   source.Replace(oldChar, newChar) 

 

let quote = <@ stringReplace "test" 't' 'e' @> // retrieving the AST. 

 

 

Listing 4.15 – Implementation of the stringReplace function. 

The Listing above outputs the following in F# Interactive (fsi) [39]. The abstract syntax tree is shown 

in italics below: 

 
val stringReplace : string -> char -> char -> string 
 
val quote : Quotations.Expr<string> = 
  Call (None, System.String stringReplace(System.String, Char, Char), 
      [Value ("test"), Value ('t'), Value ('e')]) 
 

Listing 4.16 – fsi output 

The lines in italics indicate that the abstract syntax tree is an object of generic type [76] 

Quotations.Expr<„a>, where <‟a> is the return type of the expression [15] – here of type string. 

Wrapping F# code with the <@ @> quotation markers returns an object of the generic type: 

Quotations.Expr<‟a>, whereas wrapping F# code with the <@@ @@> quotation markers returns 

object of the non-generic type: Quotations.Expr [15].  

In Listing 4.16 above, we have four nodes in our AST, which we illustrate in the figure below: 

 

Call

Value(“test”) Value(„t‟) Value(„e‟)
 

Figure 4.3 – Abstract syntax tree for the stringReplace function 

The parent node is a node of type Call, which represents a function call [15,77]: 

 

Call (none,System.String stringReplace (System.String, Char, Char), [ Value 

(“test”), Value(„t‟), Value(„e‟) ] ) 

 

The leaf nodes are of type Value which represents the literal values “test”, ‘t’ and ‘e’ [15,78]. Many 

different types of nodes exist, representing other F# constructs such as let bindings, tuples, curried 
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functions – more information is available from [73],-  and we cover some of the common ones in 

Section 4.3.3. As the AST is a recursive data structure, each node may represent another object of 

type Quotations.Expr.  

We focus on the Call nodes as these are the nodes on which we need to attach before, after or 

around advices. 

From Listing 4.16 we can decompose the Call node into three parameters: 

1. The object that the function is being called on, which in the example shown in Listing 4.16 

case is none. 

2. The name and signature of the function. More precisely, the second parameter is an object 

of type MethodInfo which contains metadata about the method (or function) being called 

[62]. 

3. The last parameter is a list of the function parameters. In this example, the three parameters 

are bound to the string “test” and the characters „t‟ and „c‟.  

Using pattern matching [15,36] it is possible to recursively traverse an AST with the objective of 

identifying and inspecting each node. Each node can be inspected and decomposed into its 

constituent parts – e.g. retrieve the mutable MethodInfo object for inspection and modification.  

The general approach to traversing the input AST (and the one generally described in literature 

[15,36,79]) is to write a recursive function which carries out pattern matching using active patterns 

[15,36,80]. There are many active patterns available to decompose an AST, and these are 

documented in [81]. For ease of use, however, Microsoft has provided three general patterns which 

cover all other (more fine grained) patterns [15,82]: 

1. ShapeVar matches a value. 

2. ShapeLambda matches a function value. 

3. ShapeCombination matches “anything else”, for example a combination of other nodes – a 

simple example is the Call node which combines other nodes. This pattern allows one to 

“drill” further into sub-expressions. 

We can develop a simple non-tail recursive function qa (quotation analyser) to traverse an input AST 

and output the same AST. The Listing below shows the function qa:  
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let rec qa expr =  

    match expr with 

    | ShapeVar(var) -> Expr.Var(var) 

    | ShapeLambda(var, lambdaBody) -> Expr.Lambda(var, qa lambdaBody) 

    | ShapeCombination(h, exprs) -> RebuildShapeCombination(h, exprs |> List.map(qa)) 

 

let result = qa quote 

 

Listing 4.17 – A general recursive function to traverse an expression tree 

The Listing below shows the (unexciting!) fsi outputs when the input is the AST from the 

stringReplace function. 

 
val qa : Expr -> Expr 
val result : Expr = 
  Call (None, System.String stringReplace(System.String, Char, Char), 
      [Value ("test"), Value ('t'), Value ('e')]) 
 

Listing 4.18 – Output when parsing the input expression tree via the quotation analyser in Listing 4.17 

We can now modify the qa function, such that it transforms the input AST and swaps the new 

character with the old character (i.e. the last two parameters of stringReplace are swapped). In 

Listing 4.19, below, the changes are highlighted in red. 

 

let rec qaReverse expr =  

    match expr with 

    | Call(obj, methBody, args) ->  

        let firstParameter = args.Item 1 

        let secondParameter = args.Item 2 

 

        let reversedArgs = [args.Item 0; secondParameter; firstParameter] 

        Expr.Call(methBody, reversedArgs) 

    | ShapeVar(var) -> Expr.Var(var) 

    | ShapeLambda(var, lambdaBody) -> Expr.Lambda(var, qaReverse lambdaBody) 

    | ShapeCombination(h, exprs) -> RebuildShapeCombination(h, exprs |> 

List.map(qaReverse)) 

let resultReverse = qaReverse quote 

 

Listing 4.19– A recursive function to traverse and apply transformations to a quotation tree 

In the body of the qaReverse function, we have added a finer grained match to the Call pattern. 

When we have matched the (only) call to String.Replace, we swap the second and third 

parameters of the call to String.Replace. Obviously, qaReverse is not very generic, but serves to 

illustrate the general concept of pattern matching and AST transformation. 
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The results from F# Interactive are shown below, where the inversion of parameters is in bold and 

underlined: 

 
val qaReverse : Expr -> Expr 
 
val resultReverse : Expr = 
  Call (None, System.String stringReplace(System.String, Char, Char), 
      [Value ("test"), Value ('e'), Value ('t')]) 
 

Listing 4.20 – Transformed AST 

It is possible to compile and execute the ASTs bound to the result and resultReverse identifiers 

using methods available in the F# PowerPack experimental library [15,66]. In this case, result and 

resultReverse evaluate to “eese” and “ttst”, respectively. 

It is important to note an important drawback when attempting to retrieve the AST of an F# 

computation (e.g. a sequence of function calls) through quotation markers, as we have done so far in 

Listing 4.15. Namely, it is not possible to retrieve the AST of any functions called within the 

computation – i.e. we have the same issue as for monads and can only retrieve the AST of the top 

level function and not any function called by the computation. 

One F# attribute does allow function bodies to be included in the returned quotation: the 

[<ReflectedDefinition>] attribute [15,36,83]. This attribute needs to be applied to the top level 

function. The MethodWithReflectedDefinition active pattern [84] allows one to inspect the 

functions called by the top level function. 

In this section, we have provided some information on metaprogramming techniques and focused 

on F# code quotations.  Code quotations allow the retrieval of the AST of a fragment of F# code. We 

followed this discussion with examples where we recursively traversed and manipulated the AST of a 

trivial stringReplace function.  

Our approach for a weaver using metaprogramming consists of the following steps:  

1. Retrieve the AST of the target code. 

2. Detect the calls to the target function. 

3. Manipulate the AST to inject advices. 

4. Return the modified AST. 

4.3.3 F# abstract syntax tree nodes 

In Section 4.3.2, we noted the Call node and we introduced the notion that within F# different 

nodes exist. For example, nodes exist to represent a let binding, or a curried function, an if else 
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statement etc…  Table 4.2, below, shows the different types of node, and Table 4.3 presents the F# 

snippets which generate the corresponding node.  

Note that our F# snippets use a commit function with the following signature – i.e. a function which 

accepts a username and a date and returns a Boolean value: 

 

commit : string -> System.DateTime -> bool 

 

and the following function, which accepts a string and returns a unit: 

 

logmsg: string -> unit 

 

 

Table 4.2 – Main types of nodes in F# code quotations 

# Node Description 

1 Expr.Call [77][85] Represents a call to a function, when all its 
parameters are bound – i.e. this is a direct 
function call.  

2 Expr.Let [86][87] Represents the execution of a function 
call, with its result bound to an identifier. 
This node also holds the continuation of 
the expression – i.e. the rest of the F# 
code within which the identifier is in 
scope. 

3 Expr.Lambda [88][89] Represents an anonymous function. 

4 Expr.Sequential [90,91] Represents the execution of an expression 
(which might be a function call) followed 
by another. 

5 Expr.Application [92][93] Represents the partial application of a 
value to a function – i.e. a curried function 
[33]. 

6 Expr.IfThenElse [94,95] Represents an if/then/else statement. The 
if/then branches may be a call to a 
function or another expression. 
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Table 4.3 – Demonstration of generating F# nodes 

# Sample Output 

1 F# snippet to generate an Expr.Call node: 

 

<@ commit "User" System.DateTime.Now @> 

 

Output from fsi: 

 

Call (None, Boolean commit(System.String, System.DateTime), 

      [Value ("User"), PropertyGet (None, System.DateTime Now, [])]) 

2 F# snippet to generate an Expr.Let node: 

 

<@  

     let res = commit "User" System.DateTime.Now  

     res 

@> 

 

Output from fsi: 

 

Let (res, 

     Call (None, Boolean commit(System.String, System.DateTime), 

           [Value ("User"), PropertyGet (None, System.DateTime Now, 

[])]), res) 

Figure 4.4 shows the AST of the Let node: 

 

Let

res Call commit res
 

Figure 4.4 – AST for the Let node 

Referring to Figure 4.4: 

4. The left child node is a variable which holds the result of the let expression. 

The left child is an object of type Var. 

5. The middle child node represents the body of the let expression. The middle 

node is of type Quotations.Expr. 

6. The right child node represents the continuation of the let expression – more 
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# Sample Output 

precisely the rest of the computation where the variable (defined in the left 

most node) is in scope. The right child node is an object of type Quotations. 

Expr.  

 

3 F# snippet to generate an Expr.Lambda node: 

 

<@ commit @> 

 

Output from fsi: 

 

Lambda (username, 

        Lambda (time, 

                Call (None, Boolean commit(System.String, 

System.DateTime), 

                      [username, time]))) 

Figure 4.5 shows the AST of the lambda node: 

Lambda

username

Lambda

time Call commit
 

Figure 4.5 – AST for the Lambda nodes 

Referring to Figure 4.5: 

1. Each Lambda function node consists of a left child node and a right child node. 

2. The left child is a single argument of type Var. 

3. The right child is an object of type Quotations.Expr which represents the 

body of the lambda function. 

 

4 F# snippet to generate an Expr.Sequential node: 

 

<@ logmsg "msg 1" 

   logmsg "msg 2" 
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# Sample Output 

@> 

 

Output from fsi: 

Sequential (Call (None, Void logmsg(System.String), [Value ("msg 1")]), 

          Call (None, Void logmsg(System.String), [Value ("msg 2")])) 

 

Figure 4.6 shows the AST of the Sequential node: 

Sequential

Call logmsg Call logmsg
 

Figure 4.6– the Sequential node 

Referring to Figure 4.6: 

4. The leftmost child node represents the first expression to be evaluated, in this 

case a call to the logmsg function. The node is of type Quotations.Expr. 

5. The rightmost child node represents the second expression to be evaluated. 

The node is of type Quotations.Expr. 

5 F# snippet to generate an Expr.Application node: 

 

<@ let transactionResult = commit 

   let curried = transactionResult "User" 

   curried System.DateTime.Now 

@> 

 

Output from fsi: 

 

Let (transactionResult, 

   Lambda (username, 

           Lambda (time, 

                   Call (None, Boolean commit(System.String, 

System.DateTime), 

                         [username, time]))), 

   Let (curried, Application (transactionResult, Value ("User")), 

        Application (curried, PropertyGet (None, System.DateTime Now, 

[])))) 
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# Sample Output 

6 F# snippet to generate an Expr.IfThenElse node: 

<@  

    let result = commit "User" System.DateTime.Now 

    match result with  

    | true -> "true" 

    | false -> "false" 

 @> 

  

Output from fsi – the IfThenElse node is underlined: 

Let (result, 
   Call (None, Boolean commit(System.String, System.DateTime), 
         [Value ("User"), PropertyGet (None, System.DateTime Now, [])]), 
   IfThenElse (result, Value ("true"), Value ("false"))) 

  

Figure 4.7 illustrates the AST of the IfThenElse node: 

 

IfThenElse 

result Value(“true”) Value(“false”)
 

Figure 4.7 – the IfThenElse node 

Referring to Figure 4.7: 

1. The leftmost child node is the guard condition and is of type Quotations.Expr. 

2. The central child node is evaluated if the guard condition evaluates to true. This 

node is of type Quotations.Expr. 

3. The rightmost child node is evaluated if the guard condition is false. This node 

is of type Quotations.Expr. 

 

From this discussion, it follows that a function may be called within a Let or Sequential or IfThenElse 

node – i.e. a “parent node”. Clearly our weaver must therefore be able to gather information about 

the parent node such that: 

1. The weaver can advise the target function within the parent node. 

2.  The weaver can then recreate the parent node and insert back into it original location. 
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4.3.4 Development of code quotation-based weaver 

This section presents our weaver built using code quotations. The weaver carries out the following 

steps, which is illustrated in Figure 4.8 and Figure 4.9 (on the following page): 

1. Get an internal representation of the advices such that they can easily be added to the AST 

data structure. 

2. Get an internal representation of the source code as an AST. 

3. Traverse the source code AST: 

a. Identify the node(s) which represent the target function. 

b. Weave the advices, i.e. replace the node identified in step 2(a) with the structure 

created in step 1 – the weaver must ensure that the right parent node is created. 

4. Return the modified AST. 

Figure 4.8 – Processing steps for the weaver  
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User source code 

(F#)

Weaved program 

(F#)

1. Get a representation of the 

advices as an AST

2. Get a representation of the 

source code as an AST
3a. Traverse the source code of the 

AST and identify the call to the 

target function

3b and 4. Weave in the advices and 

return the modified AST

 

Figure 4.9 – Schematic representation of the weaving process 
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Our weaver is implemented via the “weave” function and has the following function signature: 

 

weave: aspectSpecification -> Expr -> Expr 

 

Listing 4.21 – Function signature for the weave function 

The weaver parameters are: 

1. An object of type aspectSpecification which represents an aspect – we cover this type in 

more details in Section 4.4.2. 

2. A Quotations.Expr object representing the source program.  

The weaver returns another expression which is the AST of the advised function. It is left to the caller 

code to decide whether to compile the AST into a function for immediate execution, or, walk the 

returned AST to carry out further custom actions [15]. 

The weaver code is shown below – this is a fairly simple function where most of the functionality to 

traverse the AST and weave advices is delegated to the quotationAnalyser function: 

 

/// Weaves aspects defined by the aspectSpecification object into the source AST. 

/// Returns an AST containing the weaved program. 

let weave ( aspect :  aspectSpecification ) ( sourceExpr : Expr ) =  

 

    // Scans the input AST to check if we can handle the parent node of the target 

function 

    // throws an exception if we cannot handle the parent type 

    scanAST sourceExpr aspect.TargetFunctionName |> ignore 

 

    // Retrieve a quotation analyser and execute it 

    let qa = quotationAnalyser (sourceExpr) (aspect) 

    qa 

 

Listing 4.22 – The structure of the weave function 

The full listing of the quotationAnalyser function is available in the CD attached, and via the online 

repository. Section 4.5 presents the Visual Studio solution for the framework and provides details on 

accessing the online repository. The quotationAnalyser carries out the following tasks: 

1. Parse the aspectSpecification object to retrieve information about the target function 

and the advice.  

2. Traverse the expression tree recursively. 

3. Identify one of the parent nodes discussed in Section 4.3.3. 

4. Check the parent node to see if there is a call to the target function. 

5. If there is a match, call supporting functions to handle the insertion of the advice. 
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6. Recreate the parent node and return the advised parent node.  

Currently, the framework has been tested against Call, IfThenElse and Let parent nodes. 

Listing 4.23 shows a section of the quotationAnalyser function where we match a function call 

whose parent node is a let expression, i.e. a function of the general form let identifier = f(): 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

 

match expr with 

| Let(var, expr, continuation) -> 

    match checkMethBody expr targetFunctionName with 

    | true ->   

        // found a match 

        let advised_continuation = qa continuation 

     

        // inject the advices 

        inject aspect.Advices.Application (beforeMethodInfoList, 

afterMethodInfoList) advised_continuation expr var acceptedContextNodes.LetExpr 

         

    | false -> // continue with the evaluation 

               Expr.Let(var, expr, qa continuation) 

 

Listing 4.23– Matching a target function wrapped within a let expression 

In line 3, we check the method body of the let expression (c.f. with the representation shown in 

Table 4.3) to detect if there is a function call to the target function by making a call to the 

checkMethBody function, which has the following signature: 

 

checkMethBody: Expr -> string -> bool 

 

Listing 4.24 - Function signature for the checkMethBody function 

The checkMethBody function takes an expression and a string which represents the name of the 

target function. The function returns a Boolean indicating a match (or not).  

On matching the target function, the weaver creates an expression representing the advised 

function. This is achieved by a call to the inject function. The function has the format and signature 

shown in the Listing below: 

 

inject adviceType (beforeAdviceList, afterAdviceList) continuationExpr targetExpr 

var contextNode 

 

inject: apply -> MethodInfo list * MethodInfo list -> Expr -> Expr -> Var -> 

acceptedContextNodes -> Expr 

 

Listing 4.25 – Function declaration and signature of the inject function 
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The rather large method signature contains the information required to construct the expression for 

the advised function, namely: 

1. The adviceType variable (of type apply) is a discriminated union which specifies whether 

the advice is to be applied, before, after or around the target function. The implementation 

of the discriminated union is as follows: 

 

type apply = 

    | After_function_call 

    | Before_function_call 

    | Around_function_call 

 

Listing 4.26  - Implementation of the apply discriminated union 

 

2. The second parameter is an F# tuple [96] containing two elements which are lists of 

MethodInfo objects. This tuple represents the list of advices to inject before or after the 

target function. This allows us to insert different advices before and after the target 

function. The advices are passed in as MethodInfo objects, which are used within the .Net 

Framework to represent information on a method, such as its name, its return parameter 

and input parameters [62]. 

3. ContinuationExpr represents the expression which is to be added after the advised 

function, for example this could contain the expression required to reconstitute the parent 

node. 

4. targetExpr represents the expression of the original target function. 

5. var is an object of type Var [97,98] and can be used to represent the variable used within a 

let parent node. 

6. contextNode is a discriminated union  of type acceptedContextNodes which is used 

internally to create an appropriate parent node. The discriminated union is shown below: 

 

type acceptedContextNodes =  

    | LetExpr 

    | CallExpr 

 

Listing 4.27 - Implementation of the acceptedContextNodes discriminated union 

We can use these to advise other type of parent node – for example, without any changes, 

the framework supports weaving an advice within an IfThenElse statement.  

The inject function uses other helper functions to create the appropriate expression tree. For 

example, for example, the helper function below shows how we traverse the list of before advices 
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(which recall is a list of MethodInfo objects) and create sequential calls to the advices. Finally, we 

insert the call to the target function and return the expression tree. 

 

1 

2 

3 

4 

5 

6 

7 

 

 

let mergeNodesForCallExprBefore (adviceList : MethodInfo list) targetExpr =  

     let rec constructSequence advList =  

         match advList with  

         | head :: tail -> Expr.Sequential(Expr.Call(head, []), 

constructSequence tail) 

         | [] -> targetExpr 

     constructSequence adviceList 

Listing 4.28 – Creating the before advice 

The function in Listing 4.28 performs the following steps: 

1. Traverse the list of advices. 

2. Crate, for each advice create a Sequential node4, where the left expression is a call to the 

advice, and the right expression is either: 

a. Another advice – if we have not reached the end of the list of advices. 

or 

b. The target expression – if we have reached the end of the list of advices. 

4.3.5 Before advice constraints 

This section discusses some of the constraints on advices which arise due to the nature of functional 

languages. Recall from Section 2.2 that in functional languages all functions must return a value. In 

F# this means that within an F# computation the result of the last expression is also the returned 

value. For example, in Listing 4.29, the function returns the string “returned value”, hence F# 

infers that the return type is string: 

 

Let f() = printfn “returned value” 

Listing 4.29 – F# infers a string return type 

However, changing Listing 4.29 to the one shown in Listing 4.30 where we add the Boolean true just 

before the return type causes the compiler warning shown in Figure 4.10, below: 

 

1 

2 

 

let f() = true 

          "returned value" 

 

Listing 4.30 – F# infers a string return type but with a warning 

 

                                                             
4 c.f. Table 4.2 for an explanation of the left and right nodes 
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warning FS0020: This expression should have type 'unit', but has type 'bool'. Use 'ignore' 
to discard the result of the expression, or 'let' to bind the result to a name. 

Figure 4.10– Warning displayed when compiling the function shown in Listing 4.30 

The warning indicates that F# is expecting a function which returns unit on line 1 of Listing 4.30. 

However we have inserted an expression which returns the Boolean true. Intuitively, this warning 

makes sense, as we have lost information (the Boolean value) in our computation. It is therefore a 

requirement that our before advices should return unit. 

4.3.6 After advice constraints 

After advices are those which run after a target function executes. This provides the possibility to 

intercept any intermediate result for custom processing. 

To illustrate, consider the function below, which returns the result of another function hasAccess. 

hasAccess returns true or false, depending on whether the user can be granted access. The 

signature of the function is string -> bool. 

 

let checkAccess (user: string) = hasAccess user 

 

Listing 4.31 – Function to check a user’s access 

It is possible to insert after advices to record the fact that this user was granted (or refused) access. 

Assume that the after advice is called recordAccessCheck and accepts the user name and the result 

of the check. Logically this is equivalent to re-engineering the code in Listing 4.31 as follows in Listing 

4.32: 

 

1 

2 

3 

 

let checkAccess (user: string) = let result = hasAccess user 

                                 recordAccessCheck user result 

                                 result 

 

Listing 4.32 – Manually advising a function with after advices 

The following steps were carried out to manually advise the function: 

1. Change the call to the hasAccess function such that its result is bound to a variable: result 

– on line 1. 

2. Call the advice and pass in the relevant arguments – on line 2. 

3. On line 3, we return result, to preserve the function signature of the checkAccess 

function, i.e. string -> bool. 

Steps 1 to 3 construct a Let expression which has the format shown in Figure 4.11 (we have omitted 

the leave nodes of the Call nodes for brevity): 
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Let

result
Call 

hasAccess
Sequential

Call recordAccessCheck result

Figure 4.11 – AST when capturing the intermediate result of a function call 

In our weaver we therefore need to fit a Let expression to capture the intermediate result, as 

illustrated by the top node in blue in Figure 4.11. We then process the result (maroon nodes in 

Figure 4.11), and finally return a result of the same type as the result node (rightmost purple node in 

Figure 4.11).  

The function, below, shown in Listing 4.33 implements this AST transformation and is called by the 

inject method: 

 

1 

2 

3 

4 

5 

6 

 

let constructAfterAdvicesForCallExpr (adviceList : MethodInfo list) var = 

    let rec constructSequence advList =  

        match advList with  

        | head :: tail -> 

            Expr.Sequential(Expr.Call(head, [Expr.Var(var)]), constructSequence tail) 

        | [] -> Expr.Var(var) 

 

 Listing 4.33 – Injecting after advices, and capturing the intermediate result 

The function shown in Listing 4.33 has the same format as the one shown in Listing 4.28: in lines 2 to 

6 we traverse the list of advices and create sequential calls to the advices. The input to the advices is 

the result of the function call – as underlined in Listing 4.33. In Section 5, we present a more 

complex example where we capture the intermediate values of an execution in an after advice.  

This design also leads to some constraints on the after advices: 

1. After advices must also return unit, so that no warnings are generated when calling the after 

advices and returning the intermediate result from the computation. 

2. As a consequence of point 1, above, an after advice can therefore only consume an input 

value. Within our weaver, our advices parameters are not allowed to be of a generic type -  

i.e. they must be concrete types (e.g. primitives such as strings or more complex objects). 

This is to ensure that there is no input mismatch when passing in the intermediate result to 

the advice. We therefore apply some runtime type analysis to verify that the return type of 

the target function matches the input type of the advice. 



  51 
 

4.3.7 Around advice constraints 

The around advices are regular before and after advices, and hence have the same constraints: 

1. The before and after advice must return a unit. 

2. Similar to after advices, the around advice can have either unit or a non-generic type as an 

input parameter.  

4.3.8 Summary on the code quotation-based weaver 

This section covered our weaver built using metaprogramming technologies. We explain how such a 

weaver can transform the AST of a source program into another AST representing the advised 

program. We began by providing a background on metaprogramming and presented the 

technologies currently available in the .Net Framework. We explained that the preferred technology 

was the use of code quotations which allows the retrieval of the AST with minimal effort – indeed 

the AST can be retrieved through language keywords.  

Our discussion also introduced the rationale and the requirement to decorate the top level function 

definitions in the source program with the [<ReflectedDefinition>] attribute. Contrasting the 

requirement to decorate top level function with this attribute with the obliviousness requirements 

for AOP (Section 2.1), it can be argued that this approach is minimally intrusive and a weaver based 

on metaprogramming constructs is much less intrusive that a monad-based weaver. 

We highlighted how the parent node affects our weaver design – as we need to recreate the original 

context of the function call after injecting the advices. Our weaver based on code quotations allows 

the intermediate result when executing the function call to be passed on to the after advices. 

4.4 Pointcuts and aspects for the quotation-based weaver 

Our weave function described in Section 4.3 depends on an object of type aspectSpecification. 

This type encapsulates the pointcut and advice information. This section covers the design of the 

pointcut and advice constructs.  

4.4.1 Pointcut design 

A pointcut is a predicate used to specify the join points over which to apply the advices. From our 

discussion in Section 2.1.1, the join points under consideration in this project are function calls only. 

Our pointcut structure is required to provide the following functionalities: 

1. Allow the user to create named or anonymous pointcuts [16]. 

2. The user must specify the name of the target function. It is not possible to overload a 

function in F#, therefore the possibility of weaving the wrong advice is minimal.  
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A suitable data structure to hold this information is an F# class [15,23,33,36], where the constructor 

enforces the constraints listed above (Listing 4.34): 

 

type pointcutSpecs(pointcutName : string, targetFunctionName : string) =  

 

    member this.PointcutType =  

                if pointcutName = "" then 

                    Anonymous_pointcut 

                else 

                    Named_pointcut 

 

    member this.PointcutName = pointcutName 

 

    member this.TargetFunctionName = targetFunctionName 

 

Listing 4.34 – the pointcutSpecs class 

It is sufficient to pass in an empty string “” to the constructor of pointcutSpecs to set its internal 

state to an Anonymous_pointcut.  

4.4.2 Aspect design 

Within AspectJ, aspects are Java constructs which encapsulates a crosscutting concern [16] [29]. 

Within this project, aspects are data structures which have a similar role. Within our framework, we 

attempt to provide a function to simplify the process of populating this data structure. Different 

strategies were investigated in order to craft a simple interface over the data structure: 

1. Develop a fluent interface [99] using F# constructs. 

2. Develop a custom language with its own syntax – effectively an external domain specific 

language [99]. 

It was judged that proposal (2) was quite onerous, especially in light of the fact that we would need 

to define our own grammar and implement a parser for the custom language. Tools such as Fslex 

and Fsyacc [36,66] can be used to develop our tokeniser and parser [36], respectively. Another 

interesting approach to parsing is FParse,  a monadic parser combinator [100]. There is a non-

negligible learning curve incurred to use these. 

As such, we follow proposal (1), and suggest the function createAspect, below, to populate the 

aspect data structure (Listing 4.35), below:  
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let createAspect ( pointcutInformation : pointcutSpecs) application (beforeAdvices, 

afterAdvices)=  

    let spec = {   Name = pointcutInformation.PointcutName 

                 ; Application = application 

                 ; TargetFunctionName = pointcutInformation.TargetFunctionName 

                 ; PointcutType = pointcutInformation.PointcutType 

                 ; AfterAdvices = afterAdvices 

                 ; BeforeAdvices = beforeAdvices 

               } 

    Spec 

 

Listing 4.35 – Function to populate an aspectSpecification type 

An appropriate data structure to hold the information related to the aspect is an F# record [36,101] 

(Listing 4.36): 

 

/// Supporting data structure to hold the aspect 

type aspectSpecification = { 

    Name : string 

    Application : apply 

    TargetFunctionName : string 

    PointcutType : pointcut_type 

    Advices : AdvicesInformation 

    BeforeAdvices : AdvicesInformation 

} 

 

Listing 4.36 – The aspectSspecification type 

The record values model the following information: 

3. Name: The name of the pointcut. 

4. Application: whether the advice is to be applied before, after or around the target function. 

5. TargetFunctionName: the name of the function to advise. 

6. PointcutType: indicates whether the pointcut is anonymous or named. 

7. Advices: an object of type AdvicesInformation, which encapsulates the advices to weave 

after the target function. 

8. BeforeAdvices : an object of type AdvicesInformation which encapsulates the advices to 

weave before the target function. 

The AdvicesInformation type is shown below:  

 

type AdvicesInformation(funcLibrary, adviceNames:string list, application: apply) =  

    member this.FuncLibrary = funcLibrary 

    member this.AdviceNames = adviceNames 

    member this.Appplication = application 

 

Listing 4.37 – The advicesInformation type 
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The advices are static methods on an object (the funcLibrary parameter) and the names of the 

member which are to be weaved are passed in as a list of string (the adviceNames parameter). The 

application parameter specifies whether the advices are to be weaved before, after or around the 

target function. 

4.5 The AspectF Framework – a Visual Studio Solution 

The framework developed in Section 4.3 and 4.4 is contained in a Visual Studio solution called 

AspectF. The solution is available in the CD attached in Appendix C and via the online repository on 

Atlassian Bitbucket (https://bitbucket.org/). The username and password are as follows: 

1. Username Nitesh_bbk 

2. Password: aspectffinal  

The BitBucket documentation provides further information on how to import the source code to a 

local machine [102]. 

The AspectF solution is organised in the following projects [103]: 

 AspectF.Shared – which is an assembly [104] containing some shared types which do not 

have any business logic. 

 AspectF. Pointcuts – which is an assembly containing the pointcuts, advices and the aspect 

types. 

 AspectF.Weaver – which is an assembly containing the weaver. 

 Tests – contains the xUnit  [44] tests. The assembly generated by this project (Tests.dll) can 

be opened in the xUnit Test Runner. 

Please also note the following project: 

 AspectF.Monads – contains the source code for the before, after and around monad-based 

weaver. 

The “Readme.txt” file contains system requirements and instruction on running the unit tests. 

To use the framework, client code must include the “AspectF.Shared”, “AspectF.Pointcuts” and 

“AspectF.Weaver” assemblies in their project. A sample usage of weaving a target program is shown 

in Chapter 5. 
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4.6 The F# compiler as a weaver 

During the design of a weaver based on metaprogramming technologies, we investigated and 

analysed the possibility of building a compiler extension to the F# compiler (fsc.exe). The design was 

to extend the F# compiler to add another compiler switch [105]. With this compiler switch, the 

compiler would do some pre-processing on the source code file and add advices. The output of the 

pre-processing step would be new source code containing the advices. The regular F# compilation 

process would then continue and generate an assembly or executable file. Similar approaches to 

weaving currently exist in .Net, such as the Eos compiler [106]. 

The F# compiler source code is freely available for download [66][107]. Extending the F# compiler 

was not one of the main weaving strategies proposed.  

This section details some of the more interesting finds when analysing the F# compiler source code. 

Please note that there exists very little information on the structure of the F# compiler. However, 

some of the tools used are standard (e.g. Fslex [36,66] and Fsyacc [36,66]). The information in this 

section is relevant for changeset number 64420 [108].  

4.6.1 Building the compiler 

The readme.html file available as part of the F# compiler download provide detailed information on 

building the F# compiler. The F# compiler is itself written in F#. To compile this F# code into another 

compiler, a “proto” version of the F# compiler is built from the current version of the F# compiler. 

The “proto” compiler is then used to build the F# assemblies and executable files (such as 

FSharp.Core.dll, FSharp.Compiler.dll, fsc.exe) using the new source code. 

4.6.2 Attaching a debugger to step through the compile process 

[109] highlights the process used to attach a debugger to step through the compile process in Visual 

Studio. When stepping through the F# code of the compiler, the entry point is the main(argv) 

function located in the fscmain.fs file.  

The compiler is fairly complex, but the target source code (i.e. the code which we want to compile) is 

tokenised by a call to Fslex and the sequence of tokens is processed by the compiler. A parser built 

using Fsyacc parses the sequence of tokens to check that the source code is valid F#. The 

configuration files for Fslex and Fsyacc – i.e. the definitions of what constitutes valid F# constructs 

and terms [36] are located in the directories \src\fsharp\lex.fsl and \src\fsharp\pars.fsy, respectively. 
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We can note the following functions and files: 

1. The function ParseOneInputLexBuf handles the source code tokens returned from Fslex. 

2. The file prim-types.fs contained all the core types of F#. 

3. The file type definition TcConfigBuilder located in the build.fs file contains all compiler 

switches – including those not “officially” documented. 

4.6.3 Suggested strategy for building a compiler extension 

The proposed strategy is to make changes to the F# compiler in order to define a new compiler 

switch, for example --weave, followed by the file name containing the aspects. When the compiling 

process starts, the compiler would inspect the aspects file and the source code file and merge the 

two codes as defined by the pointcuts. The regular compilation would then be executed on the 

resultant advised source code. 

This approach is feasible as the compiler itself is written in F# which is a high level, declarative 

language, hence is probably more comprehensive than a compiler written in, say, C. Generally, this 

weaving strategy would provide a very high level of granularity during the weaving process. 

Major drawbacks on this approach include the fact that the F# compiler remains a complex system, 

and due to time constraints, this approach was not investigated thoroughly. Manipulating the F# 

compiler is a static weaving strategy, which may not be the most suitable for all uses – i.e. dynamic 

weaving might be preferable in some use cases. In addition, this approach would require the use a 

specific compiler, maintained separately from the release cycle of the official F# compiler. As such, 

there would be a maintenance overhead involved in regression testing our compiler extension with 

every new releases of the official F# compiler. 

4.7 Summary 
This chapter detailed the technical implementation of our framework. We focused on the weaver 

implementation as it is the central component of the framework (c.f. Figure 3.1). We showed the 

implementation two types of weavers: 

 A monad-based weaver implemented using computation expressions (Section 4.2). 

 A code-quotation based weaver (Section 4.3). 

 Monads makes weaving a trivial activity but they were judged to lack granularity and required too 

many changes to client code – in effect our implementation of the monad-based weaver breaks the 

concept of obliviousness. We therefore consider a weaver built using metaprogramming 

technologies, namely through the use of code quotations. Code quotations provide us with a 
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representation of source program as an abstract syntax tree (AST). Our code quotation-based 

weaver consumes the AST of the source program, together with an aspectSpecification object 

which encapsulates the pointcut and the advice, and returns an AST representing the advised 

program. The advices can be made to execute, before, after or around the target function. We noted 

some constraints on the advice constructs: before and after advices must return unit and after 

advices are allowed one input parameter, which we can use to consume the result of the target 

function. The same constraints apply to around advices. 

Our research into a weaver leads us to consider developing a new compiler extension which would 

weave the aspects into a source code file (Section 4.6). This strategy provides a lot of flexibility at the 

expense of added complexity and maintenance.  
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5. Usage and instrumentation – advising a 

recursive function to estimate π 

This section shows a usage of the weaver built using code quotations and performance results. Our 

running example is a function which estimates π. 

5.1 Implementing Machin’s formula in F# 

Machin’s formula, shown below, is one algorithm used to estimate π [110]: 

 

 
          

 ⁄         
   ⁄  

Formula 5.1 – Machin’s formula 

Where: 

         ∑
          

    

 

   

 

Formula 5.2 – An expansion of arctan x 

A trivial implementation in F# is shown in Listing  5.1 below, which accepts an upper limit k for the 

number of iterations to use when calculating the term arctan x. We shall use this implementation to 

get some performance metrics. 

 

 

let calcTerm x k =  

    System.Math.Pow(-1.0, k) * System.Math.Pow(x, 2.0 * k + 1.0) / (2.0 * k + 1.0) 

 

let (|Reachlim|_|) x lim =  

    if x = lim then 

        Some(x) 

    else 

        None 

 

let arctan x k  =  

    let rec calc pow = 

        match pow with 

        | Reachlim k r -> calcTerm 0.0 pow 

        | _ -> (calcTerm x pow) + calc ( pow + 1.0 ) 

    calc 0.0 

 

let term1 = arctan (1 / 5.0) 10000.0 

let term2 = arctan (1.0 / 239.0) 10000.0 

let piEstimate = 4.0 * ( (4.0 * term1) - term2 ) 

 

 

Listing 5.1– Implementation of the Machin formula in F# 
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In Listing 5.1 the calcTerm function evaluates one term of the summation shown in Formula 5.2. The 

Reachlim active pattern returns an F# option [111] which indicates whether the evaluation has 

reached the allowed limit.  The arctan function computes arctan x up to a certain number of terms. 

We make a call to the recursive arctan F# function twice, for the two terms in Formula 5.1. Finally 

we estimate π and the result is bound to the piEstimate identifier. 

We can now use the code quotation weaver (detailed in Section 4.3) to inject advices. Let’s assume 

that the advices must capture the intermediate results of the calcTerm function for further 

processing. The intermediate results are of type float [112], hence the advices have the following 

function signatures, which matches the requirement for after advices (Section 4.3.6): 

 

float -> unit 

 

      

For illustrative purposes, let us assume that the advice prints out to screen, and an advice has the 

following format: 

 

let printparams f = printfn "the intermediate value: %f" (f) 

 

Listing 5.2 – Example after advice 

Our objective is therefore to change the implementation of the arctan function from the one shown 

in Listing 5.1 to the one shown below – where the changes are in red: 

 

let arctan x lim =  

    let rec calc pow = 

        match pow with 

        | Reachlim lim r -> let res = calcTerm 0.0 pow // capture the intermediate result 

                            printparams res // prints out the result 

                            res // return the result 

        | _ ->  let res = (calcTerm x pow) + calc ( pow + 1.0 ) // capture the intermediate result 

                printparams res // prints out the result 

                res // return the result 

    calc 0.0 

 

Listing 5.3 – An advised implementation of Machin’s Formula 
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We construct the following advice/pointcut/aspect triplet to insert our after advice after the 

calcTerm function: 

 

let afterAdvices = new AdvicesInformation(new al(), ["printparams"], 

apply.After_function_call) 

 

let pointcutSpecs = (new pointcutSpecs("", "calcTerm")) 

 

let aspect = createAspect pointcutSpecs apply.After_function_call (afterAdvices, 

afterAdvices) 

 

Listing 5.4 – Creating our advice/pointcut and aspect triplet 

We then decorate the arctan function with the ReflectedDefinition attribute and generate its 

expression using quotation markers <@  @> - a requirement described in Section 4.3.2. The aspect 

object and the expression are then transformed by the weaver: 

 

let transformedAST = weave (aspect) (sourceExpr) 

 

  

Appendix A shows the original unadvised tree, and the advised tree – i.e. the result bound to the 

transformedAST identifier  

5.2 Estimating π – Comparing speed of execution 

Using the CompiledUntyped method of the Microsoft.FSharp.Linq namespace of the F# PowerPack 

[66], it is possible to compile the expression tree of the advised function and execute it. This allows 

us to instrument the speed of execution of the advised function. 

Our instrumentation relies on the System.Diagnostics.Stopwatch [113] object from the .Net 

Framework. The StopWatch object is used to evaluate the time elapsed across different points of the 

application. We measure the time elapsed across the following sub-processes: 

1. Time spent executing the non-advised code. 

2. Time spent executing “manually advised” code – i.e. where we manually place call to the 

advice. 

3. Time spent weaving the code. 

4. Time spent compiling the advised expression tree and executing the returned function. 
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 Our test setup is as follows: 

 The timing operation is done using the default release build configuration in Visual Studio 

2010. This has the minor effects of turning on the optimisation switch on the F# compiler. 

We are using the default implementation of the release build configuration – i.e. the one 

included with Visual Studio 2010 Ultimate [114]. 

 The application is compiled using the .Net 4.0 libraries and the default F# 2.0 included with 

Visual Studio 2010. 

 The hardware used is a standard desktop computer with an Intel i3 Core CPU (quad core). 

However we do not take advantage of any parallelism. 

 The time is initially measured in ticks, where the ratio of ticks per second is dependent on 

whether the system has a high resolution system counter.  

a. If the system does have such a timer, then the number of ticks per second is called 

the frequency and changes every time the machine is rebooted [115]. The machine 

used within the test runs has a high resolution system counter. 

b. Otherwise, the value of a tick defaults to 1 tick for every 100 nanoseconds [116]. 

5.2.1 Instrumentation of the non-advised code 

We construct an F# program which evaluates unadvised code – i. e. the program shown in Listing 

5.1. We take 5 timing samples for each value of k and take an average the time taken to estimate π 

with the given value of k. The results are shown in Table 5.1 and are plotted in Figure 5.1: 

Table 5.1 – Time to execute an unadvised program for varying number of iterations 

Maximum numbers of iterations  

(k) 

Duration (seconds) 

0 0.003213636 

1 0.003350539 

10 0.003414003 

50 0.00347489 

100 0.003718269 

250 0.003403091 

500 0.003696043 

1000 0.00429219 

2500 0.005168637 
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Figure 5.1 – Plot of Table 5.1 

 We note that the curve shown in Figure 5.1 is upward sloping. This makes sense intuitively, since the 

larger the number of iterations k, the more CPU operations are required and hence the longer will 

the operation take. We can note that the curve descends slightly between k = 100 and k =250 before 

rising again, perhaps due to some optimisation carried out transparently by the compiler. To 

investigate this further a greater number of samples could have been taken.  

5.2.2 Instrumentation of manually advised code 

We construct an F# program where we manually insert the advices shown – c.f. Listing 5.3. The 

results of executing the program for different values of iteration k, are shown in Table 5.2 below: 
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Table 5.2 – Time to execute a manually advised program for varying number of iterations 

Maximum numbers of iterations 

(k) 

Duration (seconds) 

0 0.011418237 

1 0.013885502 

10 0.02844561 

25 0.067860322 

50 0.134745453 

100 0.274505423 

250 0.594982392 

500 0.996590817 

1000 1.861183008 

2500 4.467141598 

 

  

Figure 5.2 – Plot of Table 5.2 

The time to execute the manually advised function also increases as the number of iterations 

increases. In this case, the execution is not only a CPU operation but also an IO operation as we are 

printing to screen. The additional CPU operations and IO operation cause a degradation of 

performance. For the simple case where k = 0, the performance is degraded by a factor of 255%.  
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5.2.3 Instrumentation of weaved code 

We construct an F# program which uses the weaver detailed in Section 4.3 to automatically advise 

the program showing in Listing 5.1. The results of running the program for different values of k are 

summarised in Table 5.3 and the results are plotted in Figure 5.3 below: 

Table 5.3 – Time to execute a weaved program for varying number of iterations 

Maximum numbers of iterations 

(k) 

Duration (seconds) 

0 0.177468194 

1 0.174280733 

10 0.205149825 

25 0.223888317 

50 0.29621107 

100 0.414801312 

250 0.775149882 

500 1.170822077 

1000 2.099559668 

2500 4.716360577 

 

 

Figure 5.3 – Plot of Table 5.3 
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Figure 5.4 superposes Figure 5.2 and 5.3: 

 

Figure 5.4 – Superposition of manually advised program vs. weaved program 

From Figure 5.4, we can note that for small number of iterations, it appears that there is an almost 

constant difference between running the manually advised program and the weaved program. This 

difference is still present for larger values of k. Figure 5.5, below, shows a histogram of the time 

difference between the manually advised program and the weaved program: 
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Figure 5.5 – Difference in execution time  

We note that the time difference between running the manually advised program and the weaved 

program is around ~0.17 seconds. Notable exceptions include the cases where k = 100 and k > 1,000. 

These are possibly due to compiler optimisations. This difference may have been smoothed out by 

taking a larger number of samples.  

When k = 0, the manually advised program take 1.14 x 10-2 seconds to complete (Table 5.2), whereas 

the weaved program takes 1.775 x 10-1 seconds to complete (Table 5.3). Generally, the effects of the 

IO operations (printing to screen) dominates over the effect caused by the CPU bound operations 

(evaluating the terms of the Machin’s formula). This effect of printing a single line to screen (akin to 

executing the advice once) was estimated to be around 1ms - however this measure was taken a few 

days after the testing run with a different StopWatch frequency value, hence this number is an 

approximation.  

The timing results of the weaved program for the case where k = 0 indicates that another effect 

dominates over the IO and the CPU bound operations for small values of k. This effect can traced to 

the time taken to generate the AST of the weaved program, compile it and execute it. We can use 

the data presented in Table 5.4, below, to estimate the time taken by this combined effect. In Table 

5.4, we have broken down the timing of the execution into different sub-processes: time take to 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 10 25 50 100 250 500 1000 2500

M
an

u
al

 a
d

vi
se

d
 (s

e
co

n
d

s)
 - 

W
ea

ve
d

 (
se

co
n

d
s)

 

Maximum number of iteration(k) 

Performance  difference between manually advised and 
weaved programme (in seconds) 



  67 
 

weave each term – i.e. term1 and term2 in Listing 5.1, and the time taken to compile and execute 

each term. Figure 5.6 is a plot of the data in Table 5.4 

Table 5.4 – Breakdown of the time to execute the weaved program, for varying number of 

iterations 

Maximum 
number of 
iterations 

Average time 
to weave term 

1 
(seconds) 

Average time to 
weave term 2 

(seconds) 

Average time to 
compile and 

execute term 1 
(seconds) 

Average time to 
compile and 

execute term 2 
(seconds) 

0 0.01970853 0.00068619 0.14925207 0.00782141 

1 0.01973095 0.00063678 0.14509156 0.00882143 

10 0.02158513 0.00068974 0.1611892 0.02168575 

25 0.01975305 0.00064502 0.16353188 0.03995837 

50 0.01917812 0.00061395 0.20689174 0.06952726 

100 0.01891215 0.00058544 0.25661259 0.13869113 

250 0.02020881 0.00064013 0.50377266 0.25052828 

500 0.01929527 0.0006319 0.68902591 0.461869 

1000 0.01914358 0.00061683 1.17893074 0.90086851 

2500 0.01996913 0.00072714 2.46331973 2.23234458 

 

From Table 5.4, the total time (term1 + term2) to compile and execute the program for the case 

where k = 0 is 0.157 seconds. This effect dominates over the total time taken to weave the advice 

into the code (0.020 seconds).  

Using the complete set of data (shown in Appendix B) we further note that the average time taken 

to weave the first term is 1.975 x 10-2 seconds, with a standard deviation of 1.833 x 10-3 seconds.  

The average time taken to weave the second term is 6.489 x 10-4 seconds with a rather large 

standard deviation of 1.279 x 10-4 seconds.  
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5.3 Summary 

In this Chapter we have presented some performance comparison between an unadvised program, a 

manually advised program and weaved program. The program used was an implementation of 

Machin’s algorithm which is used to estimate π. In the simple example of a single iteration, our 

manually advised program degrades the speed of the program by a factor of approximately 2.5, 

mostly due to the IO operation of printing to screen. However the weaved program causes a speed 

degradation by a factor of approximately 54 (for a single iteration)! 

During our analysis in Section 5.2.3, we note that this degradation is largely caused by the 

compilation of the quotation expression into a working program.  Our original program in Listing 5.1, 

is CPU bound, but becomes IO bound as our advices are printing to screen on every recursive pass. 

As a consequence the compilation delay becomes negligible as the number of iteration increases. If 

our program was CPU bound, this delay would be non-negligible. It is important to note that we are 

not strictly required to compile the code, and execute it immediately. It is possible as [15] notes, to 

walk the expression tree and interpret each node. 

This chapter considers program performance to be a function of execution time only. Another 

description of performance – which was not considered in these experiments, would be to measure 

the size of the weaved program on disk and attempt to identify any code bloat the weaver 

introduces compared to a manually advised program. 
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6. Conclusion 

This dissertation provides the background, design, development and demonstration of an AOP 

framework for F#. We showed how we implemented the components of an AOP framework: 

1. Join points are restricted to function calls. 

2. Pointcuts are objects which allow the user to specify which function to advise. 

3. Advices are functions to execute either before, after or around the target function. 

4. Aspects are an encapsulation of advices and pointcuts. 

A key component of our framework is the weaver. We considered two different designs for our 

weaver: one using monads (Section 4.2.3) and other using metaprogramming technologies – namely 

code quotations (Section 4.2.4). The monad-based weaver is constructed using computation 

expressions which are unique to F# and provides syntactic support for monad constructs. After 

experimenting with monads, we decided that the weaver developed using metaprogramming 

technologies is more appropriate as it allow much more granularity. 

After some research into the available metaprogramming techniques in the .Net Framework (Section 

4.3.1), we opted to use code quotation, which is a technology specific to F#. Code quotation allows 

one to retrieve a data structure which represents F# code. This data structure is known as an 

abstract syntax tree where every node represents a construct in the F# language, such as a function 

call, an if/else statement.  F# also exposes some functionalities to simplify traversing the abstract 

syntax tree and analyse each node of the tree.  

Code quotation leads us to construct a static weaver [31], which inserts the advices at compile time 

and returns an abstract syntax tree representing the advised program. We noted in Sections 4.3.6 

and 4.3.7 that there are constraints on the types of function which we can use as advices.  

This project delivers the framework in an F# solution, which we detail in Section 4.5. In Section 5, we 

demonstrate the use of our framework to advise a CPU bound program. Some measurements we 

taken to contrast the time taken to execute an unadvised program with an advised program. Our 

approach to instrumentation was to compile and execute the abstract syntax tree representing the 

weaved program. We noted that there was a penalty of about 0.157 seconds to compile and execute 

a program, when the program only did a single iteration. Clearly, compilation and execution is an 

expensive operation, at least with the libraries used from the F# PowerPack. 
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We can make the following remarks on our code quotation based weaver: 

1. The use of code quotations to generate a weaved program requires a substantial amount of 

analysis to implement correctly. This is important not only to ensure that the original 

program continues to function correctly but also to ensure that the weaved AST can be 

compiled.  

2. There is not a lot of documentation available on code quotations, hence a lot of work was 

focused on experimenting with the available libraries. 

3. Some of the libraries used in this project are from the F# PowerPack [66] library. These are 

experimental libraries, developed by Microsoft but outside of the release cycle of F# or of 

the .Net Framework. 

In addition to developing an AOP framework, this project has required learning F#. Being a functional 

language, F# allows the development of programs which are free of side effects [33]. Interestingly, 

AOP opposes this notion as it precisely applies side effects to existing programs. There are, however, 

many use cases for AOP, such as instrumentation, transaction management and caching. By carefully 

crafting a weaver which guarantees that the original computations are unaltered, we obtain a clean 

separation of concerns, and it remains possible to develop side effect free programs, which can then 

be extended by transparently weaving in advices. 
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7. Future work 

We note the following possible future work: 

 We have only provided kinded pointcuts which allows one to specify the function name and 

signature to be advised. AspectJ also provides non-kinded pointcuts  [16] which inject 

advices based on the current program flow, lexical context or execution. The code quotation-

based weaver can be extended to accommodate for non-kinded pointcuts as we can reason 

about the program (e.g. its flow) as we traverse the abstract syntax tree representing the 

source program. 

 

 Our join point model only covers function calls. Many more join points exists within F#, such 

as exception handling, binding to a particular identifier, calling constructors or utilising 

sequence expressions [33]. Further development work would be required to implement 

these and provide a richer join point model. 

 

 Following on the point above and as described in Section 4.3.4, the framework has been 

tested against Call, IfThenElse and Let parent nodes. Further development work is required 

to extend the set of nodes the framework can advise.  

 

 Currently our pointcut structure requires a function name (Section 4.4.1) to identify a target 

function. The weaver uses this function name to identify which function we should advise. 

Although function overloading is not possible in F#, a better approach would be to use the 

signature of the target function as a means of identification. 

 

 We have provided support for named pointcuts, but at the moment these are not used 

within the framework - further development is required to make greater use of named 

pointcuts. 

 

 An alternative to our weavers is to extend the F# compiler. Section 4.5 provided an overview 

of the F# compiler. Extending the compiler provides a lot of flexibility at the expense of 

added complexity. 

 

 An objective to this project, but not fully met, was to package the framework as a set of 

libraries for distribution. At the moment, this framework is experimental (but functional). 
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Additional use cases are required to verify the suitability of the framework in its current 

state and hence to be more confident in distributing it. 

 

 Performance tuning could be done to improve the performance of the code quotation-based 

weaver. 

 

 In Chapter 5, we have used the time to compile and execute the weaved code as an 

indicator of performance. Other metrics, such as the size of the compiled weaved code on 

disk warrants investigation. 

 

 In Figure 5.1 of Chapter 5, we have noted a dip around the values where k = 100 and k = 250, 

further investigation would be required to ascertain the reasons for this dip.  

 

 Despite lacking granularity, the monad-based weaver is a very clean solution and a good 

solution drawn from functional programming principles. In addition, its performance might 

be better than our code quotation-based weaver as it does not require any additional 

compilation stage.  Such possibilities warrant further investigation. 

  

 Our weaver is currently a static weaver and works at the compilation stage. Dynamic 

weaving – where code is weaved into a program at runtime can be more suitable in some 

situations [32]. Our project proposal [8] provides some suggestions on the form dynamic 

weaving could take. For example, we could inspect the program in its compiled form and 

inject advices as it is about to be loaded into for execution. 
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Appendix A – Unadvised and advised expression 

trees for the arctan function 

This appendix shows the unadvised expression tree for the arctan function shown in Listing 5.1. We 

repeat this code below and the arctan function is in bold: 

 

let calcTerm x k =  

    System.Math.Pow(-1.0, k) * System.Math.Pow(x, 2.0 * k + 1.0) / (2.0 * k + 1.0) 

 

let (|Reachlim|_|) x lim =  

    if x = lim then 

        Some(x) 

    else 

        None 

 

let arctan x k  =  

    let rec calc pow = 

        match pow with 

        | Reachlim k r -> calcTerm 0.0 pow 

        | _ -> (calcTerm x pow) + calc ( pow + 1.0 ) 

    calc 0.0 

 

let term1 = arctan (1 / 5.0) 10000.0 

let term2 = arctan (1.0 / 239.0) 10000.0 

let piEstimate = 4.0 * ( (4.0 * term1) - term2 ) 

 

The expression tree for the unadvised program is shown below: 

 
{Lambda (k, 
        LetRecursive ([(calc,Lambda (pow, 
                                     Let (activePatternResult, 
                                          Call (None, 
                                                Microsoft.FSharp.Core.FSharpOption`1[System.Double] |Reachlim|_|[Double](Double, Double), 
                                                [k, pow]), 
                                          IfThenElse (UnionCaseTest (activePatternResult, 
                                                                     FSharpOption`1.Some), 
                                                      Let (r, 
                                                           PropertyGet (Some (activePatternResult), 
                                                                        Double Value, 
                                                                        []), 
                                                           Call (None, 
                                                                 Double calcTerm(Double, Double), 
                                                                 [Value (0.0), 
                                                                  pow])), 
                                                      Call (None, 
                                                            Double op_Addition[Double,Double,Double](Double, Double), 
                                                            [Call (None, 
                                                                   Double calcTerm(Double, Double), 
                                                                   [x, pow]), 
                                                             Application (calc, 
                                                                          Call (None, 
                                                                                Double op_Addition[Double,Double,Double](Double, Double), 
                                                                                [pow, 
                                                                                 Value (1.0)]))])))))], 
                      Application (calc, x)))} 
 

Listing A.1 – Expression tree for the unadvised program 
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Listing A.2, below shows the Listing for the advised program, where the calls to the advices are in 

red.  

 
Lambda (k, 
        LetRecursive ([(calc,Lambda (pow, 
                                     Let (activePatternResult, 
                                          Call (None, 
                                                Microsoft.FSharp.Core.FSharpOption`1[System.Double] |Reachlim|_|[Double](Double, Double), 
                                                [k, pow]), 
                                          IfThenElse (UnionCaseTest (activePatternResult, 
                                                                     FSharpOption`1.Some), 
                                                      Let (r, 
                                                           PropertyGet (Some (activePatternResult), 
                                                                        Double Value, 
                                                                        []), 
                                                           Let (res, 
                                                                Call (None, 
                                                                      Double calcTerm(Double, Double), 
                                                                      [Value (0.0), 
                                                                       pow]), 
                                                                Sequential (Call (None, 
                                                                                  Void printparams(Double), 
                                                                                  [res]), 
                                                                            res))), 
                                                      Let (res, 
                                                           Call (None, 
                                                                 Double op_Addition[Double,Double,Double](Double, Double), 
                                                                 [Call (None, 
                                                                        Double calcTerm(Double, Double), 
                                                                        [x, pow]), 
                                                                  Application (calc, 
                                                                               Call (None, 
                                                                                     Double op_Addition[Double,Double,Double](Double, Double), 
                                                                                     [pow, 
                                                                                      Value (1.0)]))]), 
                                                           Sequential (Call (None, 
                                                                             Void printparams(Double), 
                                                                             [res]), 
                                                                       res))))))], 
                      Application (calc, x))) 
 

Listing A.2 – Expression tree for the unadvised program 

The expression for the weaved program indicates that we are capturing the result of a call to 

calcTerm and storing that result in an identifier called res. The value bound to res is then passed in 

to the advice – the printParams function. 
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Let (res, 
 Call (None, 
    Double calcTerm(Double, Double), 
    [Value (0.0), 
     pow]), 
 Sequential (Call (None, 
              Void printparams(Double), 
                                [res]), 
    res))) 

 

Figure A3 – Storing the result of calcTerm in a res variable 
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Appendix  B – Raw timing results for the weaved function 
Number 
of  
iterations 

Ticks taken to  
evaluate term 1 

Time taken to  
evaluate term 1 

Ticks taken  
to evaluate term 2 

Time taken to  
evaluate term 2 

Ticks taken to 
 compile term 
1 

Time taken to 
 compile term 
1 

Ticks taken to 
 compile term 
2 

Time taken 
to compile term 
2 

Frequency  
(Ticks 
per 
second) 

2,500 56,414 0.018883227 2,117 0.000708615 7,823,838 2.618841253 7,143,961 2.391268809 2,987,519 

2,500 70,265 0.023519516 3,000 0.001004178 7,158,631 2.396179238 6,443,711 2.156876994 2,987,519 

2,500 56,337 0.018857453 2,139 0.000715979 7,646,805 2.559583721 7,162,011 2.397310611 2,987,519 

2,500 57,977 0.019406404 2,279 0.00076284 7,127,308 2.385694618 6,434,294 2.15372488 2,987,519 

2,500 59,138 0.019795021 1,783 0.000596816 7,269,256 2.433208291 6,463,744 2.163582558 2,987,519 

2,500 57,818 0.019353182 1,716 0.00057439 7,129,449 2.386411266 6,367,310 2.1313036 2,987,519 

1,000 54,996 0.018408586 1,737 0.000581419 3,300,692 1.104827116 2,578,147 0.862972587 2,987,519 

1,000 56,557 0.018931093 1,686 0.000564348 3,378,451 1.130855067 2,820,422 0.944068306 2,987,519 

1,000 57,545 0.019261802 2,426 0.000812045 3,873,583 1.296588574 2,937,325 0.983198768 2,987,519 

1,000 60,061 0.020103973 1,706 0.000571042 3,673,287 1.229544314 2,556,573 0.85575121 2,987,519 

1,000 56,800 0.019012431 1,659 0.00055531 3,384,377 1.132838653 2,564,342 0.858351696 2,987,519 

500 54,868 0.018365741 1,638 0.000548281 2,009,659 0.672684927 1,309,097 0.438188678 2,987,519 

500 60,024 0.020091588 2,200 0.000736397 2,150,115 0.719699189 1,674,510 0.560501875 2,987,519 

500 57,190 0.019142974 1,867 0.000624933 2,025,528 0.677996692 1,341,900 0.449168691 2,987,519 

500 57,517 0.01925243 1,710 0.000572381 2,048,307 0.685621414 1,284,395 0.429920278 2,987,519 

500 58,626 0.019623641 2,024 0.000677485 2,058,781 0.689127333 1,289,310 0.431565456 2,987,519 

250 55,442 0.018557874 1,904 0.000637318 1,376,445 0.460731798 703,494 0.235477666 2,987,519 

250 55,460 0.018563899 1,719 0.000575394 1,622,013 0.542929769 876,185 0.293281817 2,987,519 

250 77,199 0.025840505 2,603 0.000871292 1,613,377 0.540039076 705,114 0.236019922 2,987,519 

250 58,694 0.019646402 1,728 0.000578406 1,467,032 0.491053613 725,649 0.242893518 2,987,519 

250 55,076 0.018435364 1,608 0.000538239 1,446,285 0.484109055 731,848 0.244968484 2,987,519 

100 57,314 0.019184481 1,661 0.00055598 770,730 0.257983297 392,936 0.131525858 2,987,519 
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Number 
of  
iterations 

Ticks taken to  
evaluate term 1 

Time taken to  
evaluate term 1 

Ticks taken  
to evaluate term 2 

Time taken to  
evaluate term 2 

Ticks taken to 
 compile term 
1 

Time taken to 
 compile term 
1 

Ticks taken to 
 compile term 
2 

Time taken 
to compile term 
2 

Frequency  
(Ticks 
per 
second) 

100 56,204 0.018812935 1,649 0.000551963 768,279 0.257162883 429,272 0.143688459 2,987,519 

100 56,593 0.018943143 1,734 0.000580415 764,408 0.255867159 460,108 0.154010067 2,987,519 

100 55,071 0.01843369 1,710 0.000572381 758,817 0.253995707 398,225 0.133296223 2,987,519 

100 57,320 0.019186489 1,991 0.000666439 770,941 0.258053924 391,171 0.130935067 2,987,519 

50 61,837 0.020698446 1,869 0.000625603 689,658 0.230846398 211,995 0.070960218 2,987,519 

50 56,268 0.018834357 1,804 0.000603846 608,530 0.203690755 204,202 0.068351699 2,987,519 

50 54,970 0.018399883 1,699 0.000568699 577,755 0.193389565 207,595 0.069487424 2,987,519 

50 56,139 0.018791178 1,635 0.000547277 624,627 0.209078838 208,996 0.069956375 2,987,519 

50 57,261 0.01916674 2,164 0.000724347 589,895 0.197453138 205,782 0.068880566 2,987,519 

25 60,278 0.020176608 1,920 0.000642674 503,044 0.168381858 117,350 0.039280085 2,987,519 

25 56,762 0.018999712 1,798 0.000601837 475,705 0.159230786 116,976 0.039154897 2,987,519 

25 62,541 0.020934093 2,431 0.000813719 481,181 0.161063746 120,969 0.040491458 2,987,519 

25 57,627 0.01928925 1,718 0.000575059 490,403 0.164150588 120,592 0.040365266 2,987,519 

25 57,855 0.019365567 1,768 0.000591795 492,440 0.164832424 120,995 0.040500161 2,987,519 

10 55,781 0.018671346 1,663 0.000556649 534,389 0.178873841 63,242 0.021168736 2,987,519 

10 56,242 0.018825654 1,688 0.000565017 461,169 0.154365211 77,181 0.02583448 2,987,519 

10 56,186 0.01880691 1,696 0.000567695 473,119 0.158365185 78,640 0.026322845 2,987,519 

10 76,280 0.025532892 2,196 0.000735058 465,918 0.155954824 54,021 0.018082228 2,987,519 

10 77,941 0.026088872 3,060 0.001024261 473,184 0.158386942 50,849 0.017020478 2,987,519 

1 66,086 0.022120696 2,141 0.000716648 422,936 0.141567635 24,810 0.00830455 2,987,519 

1 56,134 0.018789504 1,594 0.000533553 426,243 0.142674574 26,637 0.008916094 2,987,519 

1 59,465 0.019904476 1,897 0.000634975 441,538 0.147794206 27,050 0.009054336 2,987,519 

1 56,645 0.018960549 2,177 0.000728698 426,540 0.142773987 25,518 0.008541536 2,987,519 

1 56,403 0.018879545 1,703 0.000570038 450,062 0.15064741 27,756 0.009290652 2,987,519 

0 56,220 0.01881829 1,731 0.000579411 419,884 0.140546052 20,464 0.006849831 2,987,519 
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Number 
of  
iterations 

Ticks taken to  
evaluate term 1 

Time taken to  
evaluate term 1 

Ticks taken  
to evaluate term 2 

Time taken to  
evaluate term 2 

Ticks taken to 
 compile term 
1 

Time taken to 
 compile term 
1 

Ticks taken to 
 compile term 
2 

Time taken 
to compile term 
2 

Frequency  
(Ticks 
per 
second) 

0 67,948 0.022743956 3,324 0.001112629 437,024 0.146283254 24,335 0.008145555 2,987,519 

0 58,026 0.019422805 1,671 0.000559327 431,587 0.144463349 21,778 0.007289661 2,987,519 

0 55,213 0.018481221 1,688 0.000565017 443,546 0.148466336 23,841 0.0079802 2,987,519 

0 56,991 0.019076364 1,836 0.000614557 497,426 0.166501368 26,415 0.008841785 2,987,519 
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Appendix C – CD with source code 
 

 

 

 

 

 

 

 

 

 

 

 

{ CD containing source code is attached here. 

Please refer to Section 4.5 for more information. }  


