
First steps in creative computational thinking with natural 
language programming and Lego Mindstorms

A dissertation submitted in partial fulfilment of the requirements for the MSc 
in Learning Technologies

by Geoffrey Falk

London Knowledge Lab, Birkbeck College and Institute of Education, University of 
London

September 2013



This report is substantially  the result of my own work except where explicitly indicated in the 
text. I give my  permission for it to be submitted to the JISC Plagiarism Detection Service. I have 
read and understood the sections on plagiarism in the Programme booklet and the School’s 
website.

The report may be freely copied and distributed provided the source is explicitly acknowledged.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

2



Abstract

In this project, an Android application was developed to help promote the development of 
creative computational thinking in the Key Stage 1 and 2 classroom. Based on natural language 
and Lego Mindstorms robots, the application was particularly  focused on engaging children and 
teachers who would not naturally  be interested in programming. The application was developed 
over a three month period in several iterations, and the finished product was tested with groups 
of children at local schools. The approach gained lots of interest from students and teachers 
alike, with one Principal sufficiently  impressed to want to start investing in Mindstorms for his 
school. This report summarizes the stages of development for the application, its design, 
implementation and test results. The report concludes with a comparison of other programming 
applications, and suggests ways forward for the development of the application.

A video demonstration of the application together with some clips from user testing sessions 
can be found here: http://vimeo.com/user13559532/roboliterate

First steps in creative computational thinking with natural language programming and Lego Mindstorms

3

http://vimeo.com/user13559532/roboliterate
http://vimeo.com/user13559532/roboliterate


1. ....................................................................Chapter 1: Aims and Objectives! 7

1.1. .......................................................................................................Overall aims! 7

1.2. ..................................................................................Pedagogical background! 7

1.3. .......................................................................................Technical background! 9

1.4. ..........................................................................................................Objectives! 9

2. ........................................................................................Chapter 2. Approach! 11

2.1. .......................................................................Natural language programming! 12

2.2. .......................................................................................LCP Bluetooth control! 13

3. ..................................................................................Chapter 3. Methodology! 14

3.1. ...............................................................Requirements gathering - June-July ! 14

3.2. ..............................................................................................Prototyping - July! 14

3.3. ...........................................................................Ontology development - July ! 14

3.4. ..........................................................Two phase development - July-August ! 14

3.5. .............................................................................Integration testing - August ! 14

3.6. .............................................................................System testing - September! 14

3.7. ..................................................................................User testing - September! 14

4. ..............................................................Chapter 4. Requirements Gathering! 15

4.1. ...........................................................................................................Interviews! 15

4.2. ............................................................................................Document analysis! 16

4.3. ........................................................................................................Prototyping! 16

5. .........................................................Chapter 5. Requirements Specification! 20

5.1. ...........................................................................................User Requirements! 20

5.2. ...................................................................................Technical requirements:! 22

5.3. ..............................................................................................NLP  specification! 23

6. ............................................................................Chapter 6. Software Design! 24

6.1. ....................................................................................................Overall design! 24

6.2. ..............................................................................UI and UI Controller Layers! 24

6.3. ...........................................................................................................RLit Layer! 25

First steps in creative computational thinking with natural language programming and Lego Mindstorms

4



6.4. .................................................................Robot communication architecture! 28

7. ..............................................................Chapter 7. Software Implementation! 30

7.1. ............................................................................................................UI Design! 30

7.2. ..................................................................UI Layer technical implementation! 38

7.3. .............................................................................................UI Controller layer! 39

7.4. .................................................................................................RLit Model layer! 41

7.5. .................................Interaction of UI Controller layer and RLit model layer! 45

7.6. ..............................................RLit Interpreter and Instruction class package ! 46

7.7. ......................................................................................................Storage layer! 48

7.8. ............................................................Bluetooth connection implementation! 48

7.9. ...........................................................................Robot Communication Layer! 49

8. ............................................................................Chapter 8. Software testing! 56

8.1. ..................................................Prototype iterative test driven development ! 56

8.2. .............................................................................................Integration testing! 57

8.3. ...................................................................................................System testing! 58

8.4. ..................................................................................................User evaluation! 60

9. ...........................................................................................Chapter 9. Results! 62

9.1. ......................................................................................................Story writing! 63

9.2. ............................................................................................Program execution! 64

9.3. .........................................................................................General impressions! 66

10. .......................................................................................Chapter 10. Analysis! 67

11. .....................................................................Chapter 11. Critical comparison! 68

11.1. .......................................................................................................Engagement ! 68

11.2. ..................................................................Promoting computational thinking! 69

12. ...................................................................................Chapter 12. Conclusion! 71

13. .....................................................................................................Bibliography! 72

14. .....................................................Appendix A:  RLit Ontological framework! 75

14.1. ...........................................................................................................RLit Story! 75

First steps in creative computational thinking with natural language programming and Lego Mindstorms

5



14.2. ...................................................................................................RLit Sentences! 76

14.3. .......................................................................................................RLit Phrases! 77

15. ......................................................................Appendix B: RLit Phrase Maps! 79

16. ...................................Appendix C: Table of RLit Phrases and their values! 81

First steps in creative computational thinking with natural language programming and Lego Mindstorms

6



1. Chapter 1: Aims and Objectives

1.1. Overall aims

The aim of this project is to develop an application that can help introduce creative 
computational thinking into the Key  Stage 1 and 2 classroom. A new Computing programme of 
study  is being introduced into the National Curriculum from September 2014, in broad 
recognition that computational skill is now a basic skill that is required by  everyone. It means 
that, for the first time, primary  teachers will be required to plan and deliver lessons that teach 
basic programming skills (D.f.Education 2013). 

There are a burgeoning number of products on the market which can be used to help teach 
such skills, including Bee-bots, floor turtles that follow in the tradition of Logo (Terrapin, 2013) , 
and a range of tablet applications, for example ‘Move the Turtle (Turtle, 2013). However, for 
beginner programmers the overriding bias is placed on developing skills rather than inspiring 
creativity  (see the critical review in Chapter 10), and this may  not be enough to engage the 
imaginations of teachers and pupils who are less enthused by  the process of programming itself 
than by  the creative things that can be done with it. This application aims to help redress that 
balance.

1.2. Pedagogical background

The project is inspired by  the work of Seymour Papert and others at MIT Media Lab who since 
the 1980s have repeatedly  shown how computational thinking can be encouraged in children. A 
recurring approach has been to connect abstract programming concepts with the physical 
world, via Logo turtles in the 1980s, physical micro-worlds and latterly  Lego Mindstorms robots 
(Alimisis & Moro, 2007; McNerney, 2004; Papert, 1980). As a consequence, many  schools and 
after-school clubs have starting running robotics courses, and there are competitive leagues to 
motivate children to become better programmers, for example RoboCup Junior(Eguchi, 2012). 
However, as discussed in the project proposal, these advances are taking place against the 
background of declining numbers of children studying computer science and science and 
maths-based subjects at higher levels(Falk, 2013). It must be the hoped that the new 
Computing curriculum will change this.

There must be a concern, however, that taking a isolated skills-based approach to teaching 
computing, even if it uses robotics, may  not have the desired effect for some students. In their 
paper ‘New Pathways into Robotics: Strategies for Broadening Participation’,  Rusk et al. quote 
this research finding from the American Association of University Women (2000): 

‘‘Girls and other nontraditional users of computer science – who are not enamoured of 
technology for technology’s sake – may be far more interested in using the technology if they 
encounter it in the context of a discipline that interests them...computation should be integrated 
across the curriculum, into such subject areas and disciplines as art, music, and literature, as 
well as engineering and science’ (Rusk, Resnick, Berg, & Pezalla-Granlund, 2008). 

Rusk et al.(2008) propose that, for many learners, instead of focussing on design challenges, 
like building cars or moving robots through obstacle courses, structuring workshops around 
shared themes and storytelling would be more effective at engaging a wider diversity  of 
students from early childhood onwards. Their work with programming tool Scratch has shown 
this to be true at least for older learners. As reviewed in the project proposal, Scratch allows 
users to create stories, art and games via a block programming interface, and now hosts more 
than 3 million projects. 

First steps in creative computational thinking with natural language programming and Lego Mindstorms

7



It has been a major success, however according to the statistics on MIT’s site, and shown in 
Figure 1.1, the vast majority  of users are of middle school age and above, peaking at age 15 
(MIT, 2013b). No programming environment has yet appeared for younger children that can 
inspire the creativity and dedication of Scratch users.

As Ken Robinson says, ‘focusing on skills in isolation can kill interest in any discipline...(t)he real 
driver of creativity is an appetite for discovery  and a passion for the work itself.’ (Robinson, 

Scratch, (MIT, 2013a)

Fig 1.1 Table showing total users of Scratch, sorted by age, September 2013 (http://
stats.scratch.mit.edu/community/)

First steps in creative computational thinking with natural language programming and Lego Mindstorms

8

http://stats.scratch.mit.edu/community/
http://stats.scratch.mit.edu/community/
http://stats.scratch.mit.edu/community/
http://stats.scratch.mit.edu/community/


2013). This is clearly  true based on creativity  and passion shown by  the Scratch community 
(Resnick, 2012). 

At this critical time, it is vital that younger and less confident programmers can be inspired in the 
same way  as ‘Scratchers’ are, and not be turned off by  endless ‘recipe-style’ lessons (Alimisis, 
2012) in order to meet the new curriculum requirements. If this happens, many  more children 
may be driven away  from IT and the sciences. But for busy  teachers who are non-specialists in 
computing, getting it right will require lots of support. This project aims to make a small 
contribution towards this. 

1.3. Technical background

From a technical point of view, the project proposal outlined the rationale for basing the project 
on Lego Mindstorms and Android. Young pupils have been found to engage easily  with the 
robots, possibly  because they  are comfortable with playing with Lego bricks, and doing so 
reminds them of toys rather than assignments (Klassner & Anderson, 2003). They  are also very 
powerful, with complex behaviours made available through coordinated use of the motors and 
sensors. This makes them more appropriate for context rich activities such as storytelling than 
the more basic Lego WeDo range, for example (Lego, 2013c). 

As for Android, the platform is becoming rapidly  more ubiquitous than iOS (IDC, 2013),  and 
unlike iOS, Android devices can communicate via Bluetooth with the Mindstorms NXT model. In 
general, young children feel very comfortable using handsets, with a huge variety  of games and 
educational applications available on Google Play for 4 year olds and upwards (Google, 2013f). 

The original plan was to develop the software for the new Mindstorms EV3 model, thus being at 
the forefront of mobile development for this platform. In the end, the EV3 was never delivered, 
so the project would deal solely  with the legacy  NXT model, which has been on the market 
since July  2006 (Lego, 2013b). The technology for communication between Android devices 
and NXT via Bluetooth is well established, and has been integrated into products and platforms 
such as MindDROID (Lego, 2012), Cellbots (Cellbots, 2011), and leJOS ((leJOS, 2011). 
However none have arguably  provided the range of Bluetooth control that this application 
provides, making comprehensive use of Lego’s Bluetooth Developer’s kit (Lego, 2006) to do 
much more than simply controlling the NXT’s movement. By  pushing NXT to its limits, the 
technical aim of the project is to lay  the groundwork for future development with EV3. Making 
space for this would be one of the guiding principles of the system design for this project.

1.4. Objectives

In summary, the objectives of the project were to develop an Android application that controls a 
Mindstorms robot, and that does the following:

1.4.1. Promote computational thinking 

The application should be able to be used to teach objectives from the new National Curriculum 
Computing Programmes of Study for Key Stage 1 and 2. More specifically, the application 
should be shown to convey  some of the key  computational thinking concepts and practices 
identified by Brennan & Resnick (2012) in their paper ‘New frameworks for studying and 
assessing the development of computational thinking.’

1.4.2. Possess a fast learning curve

The application should provide an interface that young students and teachers can pick up and 
use instantly, without the need for a skills-based tutoring system. In other words, the interface 
should be ‘intuitive’ enough to allow users to start creating without them first needing to go 
through lots of recipe-style lessons to learn a new language of symbols.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

9



1.4.3. Appeal to the ‘dramatists’

As mentioned in the proposal, Bers (2008) discusses how young children start out by  being 
‘both little storytellers and little engineers”, but a division happens later on in schooling as a 
some children lose confidence in the new abstractions in the curriculum that they  cannot tie to 
concrete experience. In another study, researchers at Harvard’s Project Zero (Shotwell et al. 
1979) show how children can be classified at an early  age as either ‘patterners’ or 
‘dramatists’ (Rusk et al., 2008). The objective of this application will be to engage the dramatists 
as well as the patterners. 

1.4.4. Be future ready

The application should work with Mindstorms NXT but be designed and implemented in such a 
way that it will be relatively easy to adapt to the EV3 in the future.

A participant in RoboCup Junior’s ‘Dance’ category 
(RoboCupJunior, 2013)

Lego Mindstorms EV3 - next generation of robot (Lego, 
2013a)

First steps in creative computational thinking with natural language programming and Lego Mindstorms

10



2. Chapter 2. Approach

After the proposal was submitted in June, the approach to development had to evolve in 
response to requirements gathered in the early stages of the project.

The approach has remained closely  aligned to using storytelling as a method for engaging 
children in programming. Technically, the project has kept the proposed approach of using an 
Android device to remotely  control a NXT ‘Robot Educator’ Mindstorms robot (Falk, 2013). As 
requested by the tutor, the latest Android OS was used, JellyBean.

The major change has been with interface design, and the use of ‘macro-behaviours’. These 
were defined in the proposal in a similar way to Logo’s ‘procedures’, which can be broken down, 
reused and adapted by  advanced users. The intention in the proposal was to provide a two-
layered approach, with beginners sequencing the macro-behaviours along a simple timeline to 
tell their story, as shown in Figure 2.1, whilst the advanced students could drill down and adapt 
the procedures/behaviours with a Scratch-style interface, as shown in Figure 2.2.

After some paper testing and several iterations of the prototype it became clear that neither 
level would sufficiently  meet the objectives of the project. The basic interface was simply  not 
powerful enough to allow users to tell a story  - with this interface it is impossible to answer 
important questions like ‘What  is the robot hunting?’, ‘Who is speaking?’, ‘Who or what  is he 

Figure 2.1 The ‘basic’ interface from the proposal

Figure 2.2 The ‘advanced’ interface from the proposal

First steps in creative computational thinking with natural language programming and Lego Mindstorms

11



running away from?’ - questions that are central to building a meaningful story. As well as 
having no sense of the actors, no dialogues could be built. Finally, it was clear after building the 
prototype that the rigid movements of the robot and quiet speakers could not adequately  convey 
these simple behaviours without more information being provided to the user.

The advanced ‘Scratch’-style interface had different issues - like Scratch, the blocks and drop 
downs were simply too complicated for the younger users.  

An alternative ‘middle-way’ approach had to be found that would provide enough detail for 
meaningful stories, but in a straightforward way. At this stage, it was decided that if the 
application was to hook ‘storytellers’, it was worth trying an interface that was familiar and 
comfortable to them - an interface that used natural language.

2.1. Natural language programming

The language of ‘sentences’ , ‘words’ and ‘texts’ is often used when describing the parts of a 
programming language - for example,  in Logo these are all considered sentences:

   [200 50]
   [forward 100 right 90]

! ! (Logo Foundation, 2012)

However, in a natural language sense, these sentences are more like a list of words. ‘A natural 
language program’ (NLP) is differentiated in that it has a set of ontological rules that govern how 
sentences can be constructed and interpreted to form ‘real’ readable sentences that reflect 
written language(Wikipedia, 2013b)(Wikipedia, 2013a)(Wikipedia, 2013b).

The use of natural language in computing was first popularised in the late 70s and 80s with text 
adventures such as Colossal Cave  and The Hitchhikers Guide to the Galaxy  (BBC, 2008). 
There still exists a strong interactive fiction (IF) community that uses engines such as Inform7 to 
author IF games using natural language programming (Inform7, 2013) . In the commercial 
world, sEnglish is a NLP that is used to control robots and manufacturing processes . 

One statement in particular on the sEnglish website indicates how NLP could be useful in the 
educational setting:

“NLP does not separate programming from the application meaning. The program is the 
manual and the manual is the program" (SysBrain, 2007).

This suggests NLP could be of benefit when teaching computational thinking in the classroom. 
Teachers could potentially discuss programming concepts and practices without ever having to 
leave the language of the program itself. Another benefit highlighted on the website is that NLP 
can be shared with both fellow coders and non-specialists alike. - as an NLP program reads like 
an English document, anyone can potentially  understand it. Again, for the objectives of this 
project, this seemed a very  good fit - to have a programming language that could be easily 
shared between groups of students, and understood by  both non-specialist teachers and 
beginning pupils.

Other potential benefits of using NLP:

• it is interface neutral, allow children to write programs even if they  are not actually  with a 
device. This would be important for classrooms with a pressure on resources

First steps in creative computational thinking with natural language programming and Lego Mindstorms

12



• Programs could be written on the board, on handouts, or cut up for paper assembling 
exercises. Sentences could be segmented into flip books and used to collaboratively  write 
programs as a whole class or in groups

• NLP offers a much more accessible way  to program for the blind and hard of seeing than 
other visually based programming interfaces

• It is firmly  cross curricular. Aside from introducing literacy into computing, it could work the 
other way round with program writing becoming a valid activity during Literacy time

In choosing NLP as an approach, there was a worry  that it would just be too challenging to 
achieve in the timespan of the project, with the demands of creating a whole new ontology-
based language for the interface, however I thought it was an affordable risk considering the 
potential benefits. 

2.2. LCP Bluetooth control

Through several iterations of prototyping, it became clear that all control needed to reside with 
the Android device, and that Bluetooth communication was the best means of achieving this. If 
the application was going to be telling users’ stories, then the power of Android to control both 
audio played by the device and the movements of the robot was needed.

Approaches that were considered in the proposal, such as replacing the NXT firmware with 
Java-based leJOS (leJOS, 2011), were rejected because in tests it was discovered that leJOS 
only  provides a small fraction of the control over NXT via Bluetooth than what is provided by the 
Lego Communication Protocol (LCP). To get the maximum amount of functionality  out of the 
Bluetooth connection, it was considered better to deal directly  with LCP, and its component byte 
code that underlies all Bluetooth communication between the device and Android. Lego has 
very  clear documentation on all the byte code calls and this was used extensively  (Lego, 2006), 
along with examples taken from the MindDROID application, (Lego, 2012)

First steps in creative computational thinking with natural language programming and Lego Mindstorms

13



3. Chapter 3. Methodology

As outlined in the proposal, a phased-development approach was followed, preceded by a 
phase of rapid, iterative prototype development. The prototypes ensured that by  the time the 
main development cycles started in August, the scope of the project was clear.

The first phase in June completed the requirements gathering that began with the proposal, and 
in July  a series of prototypes were developed and tested. After a final specification was 
developed, the final development occurred in two phases, beginning with development of the UI 
and model components, and ending with the robot control component in August. After 
integration testing, the finished application was tested with children and teachers in local 
schools.

3.1. Requirements gathering - June-July

Interviews and observations were carried out with three children over a two week period using 
pre-existing software developed for Android and Mindstorms, and other tablet software that 
covers objectives related to the new Computing programme of study. The results of the latter 
study are contained in the Critical comparison chapter at the end of the report. 

During the same period, there was extensive document analysis, during which time I learned 
Android and Lego Communication Protocol.

3.2. Prototyping - July

Four iterations of prototype were built in rapid succession that explored in increasingly  depths 
the scope of control that Android could have over a NXT robot using LCP. The results of the 
prototypes would define the final requirements of the application

3.3. Ontology development - July

The ontology for the ‘RLit’ language was developed and paper tested.

3.4. Two phase development - July-August

The main application was developed in two phases, the first focussing on the model and UI 
layer, and the second focussing on the robot control layer. The latter phase was heavily  based 
on the learning gained from the prototypes

3.5. Integration testing - August

Finally, the different components were combined and tested extensively, entailing a lot of 
refactoring of all components

3.6. System testing - September

The application was tested as a system in September with the help of three children, and further 
refactoring was needed

3.7. User testing - September

The final application was tested with three groups of four children at a local school in Jaffa, 
Israel.

Detailed descriptions of each phase follow.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

14



4. Chapter 4. Requirements Gathering

Aside from the background research outlined in the project proposal and summarised above, 
three methods were used to gather requirements for the project - Interviews, Document Analysis 
and Prototype development and testing.

4.1. Interviews

Three children were interviewed and observed over a two week period using various pieces of 
software for both developing general programming skills and for controlling a Mindstorms robot. 
The latter included MindDROID (Lego, 2012), and NXT Remote Control (Fedor, 2011), both of 
which offer basic remote control over the robot’s motors. Aiden’s experiences with the 
programming software is covered in more detail in the Critical review section at the end of this 
report.

Aiden (aged 9) performs near the top in his class in English and Maths, and is quick to master 
computer interfaces. He is a member of Club Penguin and visits it on average once every  week, 
mainly  to play  the games. He has been given a Wordpress site, which he sporadically  updates it 
with performances and puppet shows. He plays the piano and shows aptitude in all subjects, 
but especially  keen on creating music and writing stories. He could be classified as a 
‘dramatist’. 

He quickly lost interest in the various remote controller applications available for Mindstorms. 

He showed interest in writing stories for the robot to act out, but when he was shown the 
proposed interfaces for this project, he wasn’t sure what either one did. When told that they 
were to help him tell a story  with the NXT, he couldn’t say  how he would achieve this. It was 
clear from his reaction that serious thought needed to be put into both interfaces from the 
proposal.

When asked about what he would like to control the robot to do, he mentioned that he’d like to 
create an adventure story with the robot.

Leo (6) is beginning to write, but struggles in school with Maths in particular. His interests are 
street dancing, art and football. He is not confident using the computer, and generally plays 
games on CBBC and Cbeebies, and getting print outs to colour in.

He enjoyed using the MindDROID application, and was skilled at moving the robot around the 
room. When asked what he would like to get the robot to do, he mentioned ‘chasing people’ and 
‘you tell it do something and it does it’. He liked the fact that the proposal’s interface offered the 
chance to ‘HUNT’ and ‘CRY’ but when asked how he would make a story  using these elements, 
he wasn’t sure.

LIla (5) got on really  well with NXT Remote Control and MindDROID applications. Although her 
reading level wasn’t at a level where she was confident to read the words in the ‘basic’ interface, 
when it was explained what she would have to do, she said she would like to tell a story  about a 
fairy  robot who ‘does magic’, but couldn’t explain what she would have to press to achieve this 
with the interface.

Early  requirements gathered from this stage therefore reinforced the research that storytelling 
could be an good way to engage the ‘dramatists’, and that it was important for the application to 
allow for complex interactions making use of both motors and sensors. However it was also 
clear that the proposed interfaces were not sufficiently  rich or user-friendly to achieve this, and 
major reworking would be needed.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

15



4.2. Document analysis

As an Android beginner, I had to start with the basics and work my  way  through the various 
training modules available on the Android Developers’ site (Google, 2013a). Then, to 
understand BluetoothAdapter API for Android, I analysed the sample Android application 
‘Bluetooth Chat‘ that demonstrates how to search for and connect with Bluetooth devices 
(Google, 2012). To understand the byte-code calls involved in Lego Communication Protocol, I 
analysed the online Developer’s API documentation (Lego, 2006), which was also served as a 
constant reference throughout development. Lego’s MindDROID application for Android 
provided important examples for how to apply LCP in a working application (Lego, 2012).

4.3. Prototyping

4.3.1. Prototype 1- Testing connections

Based on the results of the interviews, and document analysis, a series of prototypes were then 
developed to test the technology and get reactions from the interviewees.

The first prototype, shown in Figure 4.1, was developed to test connection via Bluetooth with the 
Mindstorms NXT robot. The code relied heavily  on the implementation code of Google’s 
Bluetooth Chat sample application, and few problems were experienced making this 
connection.

Once a connection was successfully  made, a new  Activity was created which would serve as 
the main Activity for controlling the robot. This formed the basis for the second prototype.

At this point, the application was to be called ‘Robot Theatre’.

Figure 4.1 User Interface for 
Prototype 1

First steps in creative computational thinking with natural language programming and Lego Mindstorms

16



4.3.2. Prototype 2 - Controlling the robot via Bluetooth

The next prototype was built in rapid iterations, aiming to test increasingly  complex sequences 
of robot actions to see what would be possible via Bluetooth. The completed prototype is shown 
in Figure 4.2.

 All interactions with the robot were coded on the main UI Thread, so the application would 
pause during each interaction. The purpose of this was to quickly identify  glitches in the 
communication code.

Step 1: Send a simple instruction

The prototype sent a simple instruction to the robot, not requiring any  reply  - to beep at a certain 
tone and duration.

This first test was successful, and I was able to begin planning an architecture that would allow 
sequences of instructions to be executed. 

Step 2: Send a sequence of instructions

The second step was to perform a series of instructions sequentially  - “Make a Square’ - with 
the following code.

program.addInstruction(Move.getInstance(RobotInstruction.NO_DELAY,10,50,true));
program.addInstruction(Turn.getInstance(RobotInstruction.NO_DELAY,90,50,true));
program.addInstruction(Move.getInstance(RobotInstruction.NO_DELAY,10,50,true));
program.addInstruction(Turn.getInstance(RobotInstruction.NO_DELAY,90,50,true));
! ! ! ! ! ! etc.

In this step, difficulties were experienced maintaining an accurate ongoing measurement of 
distance and angle of turn of the robot, due to Bluetooth reliability  issues - high and jittering 
latency, limited throughput and general stability  issues (Gobel, 2011). This was combined with 
the NXT latency in sending replies back to Android - up to 100ms for each command (Lego, 

Figure 4.2 User interface for 
Prototype 2

First steps in creative computational thinking with natural language programming and Lego Mindstorms

17



2006). Instead of abandoning Bluetooth, which would have resulted in a complete change of 
approach, I decided to adjust the architecture so that only  a minimum number of ‘reply’ 
commands would be needed for each action. So, for drawing the sides of a square, instead of 
constantly  polling the NXT for the tacho count (rotations) of the motors, a fixed distance to travel 
was sent the robot. When the motor speed was detected to be 0, the next command (Turn) was 
sent, and so on. Although this still didn’t provide the smoothness and accuracy  needed for a 
mathematically  exact square, it was considered good enough to accomplish the aims of this 
project.

Step 3: Sequence of instructions with sensor listening

The next stage in the prototype was to build a sequence of instructions that included the 
monitoring of a sensor.  For this purpose, the simplest test was to use the Switch sensor 
because it  is a passive sensor that has a simple boolean ON/OFF value. The test was to 
reverse the robot until it hits a wall, whereby the switch sensor would be pushed, and the robot 
would stop moving.

An event listener class was introduced which continually monitored the switch sensor in a while 
loop until it detected a positive boolean. Once this was detected, the sequence continued to the 
next instruction.

This stage proved successful, meaning it would be possible to include event listeners in the final 
specification.

4.3.3. Prototype 3: Complex behaviours

To push things further, I tried to ‘make the robot fearful’. This involved constructing a sequence 
of actions that included using the ultrasonic sensor to detect the proximity  of an object. This 
provided more challenges since the ultrasonic sensor is a digital sensor with its own 
microprocessor, and requires a special set of LCP calls utilising the sensor’s I²C (Inter-
Integrated Circuit) communication bus (Lego, 2006).

Another step  was to test how sounds could be uploaded to the robot - I wanted the robot to say 
‘Leave me alone!’ as part of the ‘Be fearful’ sequence. This was implemented through document 

Figure 4.3 User interface 
for Prototype 3

First steps in creative computational thinking with natural language programming and Lego Mindstorms

18



analysis of LCP and the example used in the MindDROID application, and a separate class was 
developed to do this. A variety of different sounds were tested.

This also proved successful. At this stage, I decided there were enough interactions to provide 
rich choices to build stories.

4.3.4. Prototype 4: Service architecture

The final stage in prototyping was to test how robot control could be achieved via a background 
Service rather than on the main UI Thread. This was achieved through analysing Google’s 
documentation on Bound Services (Google, 2013b) and other projects that had implemented 
service architecture to communicate with Bluetooth devices (for example, see Gobel 2011)

With all Bluetooth communication moving from the UI thread to a background service thread, 
the application no longer ‘hanged’ whilst communicating with the robot.

During this phase, in discussion with another primary  school teacher, the application name was 
finalised as ‘RoboLiterate’, since the application deals with robots and the only  prerequisite for 
users would be that they  were literate in basic English. The name also emphasises that the 
programming language that is ‘understood’ is literal English.

Figure 4.4 User interface for 
Prototype 4

First steps in creative computational thinking with natural language programming and Lego Mindstorms

19



5. Chapter 5. Requirements Specification

Enough details had now been gathered to define the final requirements. The following sections 
summarise the user and technical requirements.

5.1. User Requirements

Users should be able to write and run programs using complete English sentences via an NLP 
interface. The interface should be straightforward enough for a literate 6 year old to use, and 
allow users to do the following:

• write a program, or ‘story’, in full English sentences on an Android device

• adapt a ‘story’ written by another user

• save their ‘story’ for later

• run and test their ‘story’ on a connected NXT Mindstorms robot

Figure 5.1 summarizes the use cases for these overall requirements. 

5.1.1.  Use Case 1: Write a new RLit Story

Users should be able to author stories, sentence at a time. In building a sentence, users 
sequence phrases together, which then form a sentence and the sentence in turn becomes part 
of the story. Users should also be able to reedit sentences or delete them once they have been 
added to the ‘story’.

Figure 5.2 shows a use case for the above requirements.

RoboLiterate Android Application

User

Write a new 
RLit story

Perform my 
RLit story

Save my RLit 
story

Adapt a saved 
RLit story

Figure 5.1 Summary use case diagram 
for RoboLiterate application

First steps in creative computational thinking with natural language programming and Lego Mindstorms

20



5.1.2. Use Case 2 and 3: Adapt and save stories

Since the ability  to reuse and adapt other people’s work has been identified as a key practice for 
developing computational thinking (Brennan & Resnick, 2012), it was important to include in the 
user requirements the ability  to adapt stories written by  other users which have been saved on 
the system. This would hopefully  help users get inspired and not always begin with a ‘blank 
slate’. 

This requirement entails the third use case, which is the ability  to save one’s story  once it is 
written.

5.1.3. Use Case 4: Run and test stories whilst connected to a Mindstorms 
robot

Once written, the stories are interpreted by  the application into code-readable Instructions that 
are executed in sequence by the robot and Android device.

Before a story  can be performed, the user should be able to scan for, select and connect with a 
compatible Mindstorms robot via Bluetooth and configure the ports so they  match the onscreen 
display. This should be achieved in as simple a way as possible.

Whilst the story/program is being executed, the user needs to be able to monitor on the Android 
screen what is happening, including having information on:

• file upload status

• any errors

Figure 5.2  Use case diagram for writing RLit stories

Write a new RLit story

User

Add a new 
sentence

Add phrase to  
sentence

Delete phrase 
from end of 
sentence

Edit an old 
sentence

Delete 
sentence

«extends»

First steps in creative computational thinking with natural language programming and Lego Mindstorms

21



• Information on when the program has begun and ended

• What stage in the program execution they are at, so that they can pinpoint errors such as 
infinite loops, hanging event listeners, etc.

Figure 5.3 shows a use case diagram for these requirements.

5.2. Technical requirements:

The main technical requirements were:

• to implement a JellyBean Android application that remotely controls an NXT robot

• to coordinate the robot’s actions with Android sounds and music

• to map this coordination to the sequence of instructions defined by the user

• to translate the instructions from NLP sentences as defined by defined RLit ontology, specified 
below

• to upload sounds to the NXT

• to read information from the following NXT sensors: ultrasonic, sound, light, switch

• to read the ‘tacho count’ (motor rotations) from each NXT motor port

• to direct the NXT to move in a direction, rotate, play sounds and beep

Figure 5.3 Use case diagram for running and testing RLit 
programs.

User

Connect to 
robot

Play the story

Rerun the 
story

Map port 
configuration 

to robot

Monitor 
console 
display

«includes»

Perform my RLit story

Select device 
from list

«includes»

First steps in creative computational thinking with natural language programming and Lego Mindstorms

22



• to ensure the application can work with the EV3 in the future

• to work on both handset and tablet size screens. 

5.3. NLP  specification

Part of the specification stage was to define in detail the ontological rules governing the NLP 
language,  ‘RLit’. These rules needed to be in place before system design could begin.

As this ended up assuming the workload of a separate project in its own right, the fine details of 
RLit and design decisions taken along the way are contained in Appendix A. What follows is the 
main points as they relate to the main user and technical requirements of the project:

• The language needed to provide a range of sentence constructions that would allow the user 
to control a Mindstorms robot via Bluetooth, including setting motor actions, reading sensors, 
and playing sounds and notes. 

• The language would also need to allow users to coordinate with this music tracks and spoken 
dialogue from the Android device. 

• The language would not need to provide users with the fine grained control over the motors 
and sensors that, for example., the Lego NXT-G software does (Griffin, 2010).  So, for this 
project, it would be sufficient to have a sentence like ‘ROBOT moves forward a little and 
steadily.’ 

• The language should however retain the potential to be developed in this direction in future 
iterations to allow for controlling variables such as speed, distance, degrees of turn and 
sensor thresholds.

• The language would need to include the ability for looping statements, and event handling. 
This was essential in order to cover some of the programming objectives in the Key Stage 1 
and 2 Computing curriculum

• The language would need to support concurrency, so that more than one event could happen 
at the same time, for example moving the robot around whilst playing music from the Android 
device. This would bring a freedom to the user’s programs and also allow for interesting 
situations that would require the user to debug. Again, this is a stated objective in the Key 
Stage 2 curriculum.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

23



6. Chapter 6. Software Design

The following sections outline in detail the system design of each tier with further explanation as 
to the design decisions made at each stage.

6.1. Overall design

UI Layer (XML) UI Controller 
Layer

RLit Layer

Robot 
Communication 

Layer
RLit Program 

Execution<<bind>>

Storage Layer

Figure 6.1 Overall architecture of RoboLiterate

RoboLiterate is designed as a multi-tier application, based on Android’s MVC (Model View 
Controller) architecture (Google, 2013a). A summary of the architecture is shown in Figure 6.1.

6.2. UI and UI Controller Layers

The UI layer is composed solely of XML and resource files which are accessed and inflated by 
Activity  and Fragment classes in the UI Controller layer. The controller layer also provides 
access to the RLit model layer, which contains classes implementing the ontology  of the RLit 
natural programming language, as detailed in Appendix A. The controller layer connects with a 
storage data layer that is composed of an SQLite database, allowing users to save and load 
stories and sounds.

After the controller layer connects via Bluetooth with the robot device, all subsequent 
communication with the robot is managed by  a background Service, which the controller layer 
binds to. The controller sends via Messenger objects all the information required for the service 
to communicate with the robot, including configuration choices and RLit program instructions. 
Robot and other program events are then relayed back to the UI controller layer in the same 
way.

This separation of concerns provides maximum flexibility  for expansion and adaptation in the 
future. By separating out the UI layer from the controller layer, any  number of different 
permutations of design can be used without affecting the rest of the application. Similarly, the 
RLit model can be used independently in a different application environment.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

24



6.3. RLit Layer

6.3.1. Overall structure of RLit

‘RLit’ is designed as a natural programming  language (NLP) specifically  for the purposes of this 
project. 

Like other NLPs, RLit’s foundation unit is the ‘sentence’. Each sentence represents a distinct 
instruction for controlling either the robot or Android device. The phrases within each sentence 
modulate how  and when these instructions are performed. In turn, a set of sentences make up a 
‘story’. The ‘story’ defines how the sentences are executed relative to each other. Once written, 
an interpreter analyses the story  and converts it into a ‘program’ that can be subsequently 
executed. Figure 6.2 illustrates the mapping between RLit components and Robot program 
components.

Unlike a fully  developed NLP, the user is guided through writing an RLit sentence, step by  step. 
This ensures that the process is as simple as possible, especially for Key Stage 1 pupils. 

6.3.2. RLit Phrase hierarchy

Phrases are organised into hierarchical structures defining their exact ordering in sentences. 
Figure 6.3 shows a fragment of this structure. Two possible routes for RLit phrase combinations 
are shown, one for combinations that instruct the robot to move, and the other to instruct the 
robot to wait for a target reading from the ultrasonic sensor. Each group of phrases has an ID, 
and their children are shown by  the arrows. So if the phrases ‘First’ then ‘ROBOT’ are selected, 
all phrases that have the parent ID of ROBOT (ID 10), are displayed to the user. If the phrase 
‘moves forward’ is selected, then all phrases with parent ID 105 are shown. This process 
continues until all possible phrases are exhausted.

Figure 6.2 Relationship between RLit elements and program instructions

First steps in creative computational thinking with natural language programming and Lego Mindstorms

25



RLit was developed according to an ontological framework which provides enough power for 
users to program the robot in ways that can only  otherwise be achieved using Lego’s NXT-G 
software, RobotC (RobotC, 2012), etc. However, fine grained control was deliberately  left out 
(e.g. instead of saying ‘Move Forward 10 units’, ‘Move forward quite a bit’) to provide a soft 
storytelling environment for users rather than a mathematically  exact one. However, this 
functionality can be added at a later date.

Figure 6.4 shows a sequence diagram illustrating how users build their stories through adding 
phrases to make sequences of sentences. The figure also shows how the story that users 
create needs to then be interpreted by the system into a list of instructions for the robot and 
Android device to perform.

Figure 6.3 Fragment of RLit’s hierarchical design

ID: 1

First Then After x 
seconds

At the 
same time

ID: 105

moves forward 

moves back 

ID: 107

until it 
sees

ID: 10

ROBOT

ID: 104
waits

ID: 1105

a little

continuously

a lot
etc.

ID: 1107

something 
far.

something 
close.

etc.

ID: 11105

and slowly.

and steadily.

and quickly.
etc.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

26



Appendix A contains further details on the ontological structure of RLit.

Appendix B contains a map of RLit’s complete phrase structure.

6.3.3. Translating RLit into Instructions

The role of the interpreter in RoboLiterate is to take the Stories constructed in RLit and convert 
them to sets of instructions that the robot and Android device can execute. 

The interpreter ascertains which Instruction type to create based on the InstructionID provided 
by the verb phrase in each sentence. 

Each Instruction is represented by  a unique ID, and several RLit verb phrases can share the 
same Instruction ID if they  describe variations on the same Instructions. For example, the RLit 
verb phrases ‘move back’ , ‘move forward’, and ‘stop moving’ all share the Instruction ID 
INSTRUCTION_ROBOT_MOVE. The verb phrases ‘turn left’ and ‘turn right’ share the 
Instruction ID INSTRUCTION_ROBOT_TURN. On the other hand, there’s only  one way  to 
beep, so the verb phrase ‘BEEP’ is unique in being the only  verb  phrase to have the ID 
INSTRUCTION_ROBOT_BEEP.

:StoryBuilder :RLitStory :RLitSentence :RLitPhrase

addSentence
addPhrase

addPhrase

addPhrase

addPhrase

addPhrase

addPhrase

addSentence

:Interpreter

translateStory

newStory

List<Instruction>

Figure 6.4 Sequence diagram showing the process of story authoring and interpretation by 
RoboLiterate

First steps in creative computational thinking with natural language programming and Lego Mindstorms

27



Once the Instruction type is extracted, it is instantiated by  the Interpreter with parameters that 
are defined by  an analysis of the field values of the totality  of phrases in a sentence. Any 
particular phrase field value means something unique depending on the Instruction to which it is 
attached. For example, arg2 in the RLit phrase ‘in a full circle’ refers to the degree of turn for the 
instruction INSTRUCTION_ROBOT_TURN, whilst  arg2 in the phrase ‘something dark’ 
indicates the upper threshold for the light sensor in the instruction INSTRUCTION_ 
ROBOT_WAIT_LIGHT_SENSOR.

Once the Instructions are built, they are saved as a ‘Program’ - a simple list of Instructions that 
in turn contain all the data necessary  for the Robot control classes to use during program 
execution. 

6.4. Robot communication architecture

The design had to allow for the later substitution of new models of Mindstorms robots in place of 
the NXT device. In addition, the design needed to allow for future versions where multiple 
devices can be controlled, or where multiple Android devices could work together. For this 
reason, Android’s Bound Service architecture was chosen, since it allows for multiple 
applications to connect to the same service (Google, 2013b). Using this architecture would also 
allow for the loose coupling required to allow  new robot models be substituted in without 
affecting the other components of the application.

Through iterative development of the prototypes, and analysis of Lego’s LCP documentation, 
the MindDROID app, and other documentation, five different families of robot commands were 
identified:

• direct commands that control movement and sound

• system commands to upload files

• ‘reply’ commands that obtain readings from the motor ports

• reply commands that obtain readings from passive sensors (e.g. switch) and active sensors 
(e.g. sound)

• specialist commands that send and receive information from digital sensors (e.g. the 
ultrasonic sensor)

Although I had no access to EV3 documentation, I assumed that the EV3 would behave 
differently  in each of these cases, possibly  drastically. In this case, it was necessary  to design a 
system that encapsulated these behaviours in separate classes in a Strategy  pattern, as shown 
in Figure 6.5.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

28



Fi
gu

re
 6

.5
  S

ys
te

m
 d

es
ig

n 
fo

r r
ob

ot
 c

on
tro

l c
la

ss
es

C
om

m
an

de
r

N
XT

<<
In
te
rf
ac
e>
> 

C
om

m
an
de
r

<<
in
te
rf
ac
e>
>

So
un
dU
pl
oa
de
r

<<
in
te
rf
ac
e>
>

R
ob
ot
Li
st
en
er

C
om

m
an

de
r

EV
3

So
un

dU
pl

oa
de

r
N

XT
So

un
dU

pl
oa

de
r

EV
3

   
   

 

<<
cr

ea
te

s>
>

R
ob

ot
Li

st
en

er
N

XT
R

ob
ot

Li
st

en
er

EV
3

<<
cr

ea
te

s>
>

<<
in
te
rf
ac
e>
>

R
ob
ot
D
is
ta
nc
eL
is
te
ne
r

R
ob

ot
D

is
ta

nc
e

Li
st

en
er

N
XT

R
ob

ot
D

is
ta

nc
e

Li
st

en
er

EV
3

   
   

 

<<
cr

ea
te

s>
>

First steps in creative computational thinking with natural language programming and Lego Mindstorms

29



7. Chapter 7. Software Implementation

The software was implemented and tested in four stages:

- Phase 1: Implementation of UI Layer and RLit model

- Phase 2: Implementation of robot service layer, based on prototype

- Phase 3: Integration of UI Layer, RLit model and Service layer

- Phase 4: Refinement of UI layer and RLit model based on outcome of user testing 

7.1. UI Design

The following subsections detail each of the major user interface activities.

7.1.1. Launch activity

RoboLiterate’s welcome screen allows users to start a ‘New Story’, and if they  have returned to 
this screen from editing their own story, they  have the option to continue with their current story. 
There are also a list of stories that have been saved to local storage which they  can open, play 
and adapt.

As with the rest of the app, the design is kept minimal and functional, using the default colours 
of Android’s Holo Light template. This is to keep the experience familiar and comfortable and 
avoid adding anything that might detract from the phrases and sentences.

Figure 7.1 Opening screen of 
RoboLiterate

First steps in creative computational thinking with natural language programming and Lego Mindstorms

30



7.1.2. Story builder activity - unpopulated

The aim of the interface design is to allow  for an gentle learning curve which a confident literate 
year 2 child would find easy to pick up on his or her own.

Because of this, the design provides users with a limited number of choices at each step, and 
tries to make these choices very  clear. So, in the opening screen of the Story  building interface 
shown in Figure 7.2, there is what appears to be an empty sheet, and one main button, ‘Add 
sentence’.

 The two buttons on the Action Bar allow users to Save their story and to Play it.

7.1.3.  Sentence builder activity

Once ‘Add sentence’ is pressed, the Sentence builder screen opens, which again aims to be 
very  clear about where to start. All stories begin with the phrase ‘First’, so this is the only  option 
presented, apart from the Back button next to the editing window. This layout is shown in Figure 
7.3.

As the user adds phrases, a new set of phrases appears at the bottom of the screen, as shown 
in Figure 7.4. Once a sentence has been built, users have the option to Accept the sentence or 
delete what they’ve done, phrase by phrase, shown in Figure 7.5

Figure 7.2 Opening appearance of Story Builder 
activity

First steps in creative computational thinking with natural language programming and Lego Mindstorms

31



The user also has the ability  to record their own audio. This option appears in the ActionBar at 
the relevant stage of sentence construction, when the user has already selected the phrases 
‘ANDROID’ and ‘says’ for their sentence.  

Figure 7.4 Sentence builder 
activity, part-way through a 
sentence

Figure 7.5 Sentence builder 
with a sentence completed.

Figure 7.3 Opening 
appearance of Sentence 
builder activity

Figure 7.6 Option to 
RECORD in the Action Bar 

Figure 7.7 Record dialog

First steps in creative computational thinking with natural language programming and Lego Mindstorms

32



Once this feature is discovered, users can record their audio, review it, then name it. Figure 7.7 
shows the record dialog popup that appears when users click RECORD. The name they  give 
their audio then appears within quote marks as an option in the phrase list. The intention here is 
to pool the phrases that everyone records on one device, allowing the different users to utilise 
the sounds that others make for their own ‘stories’/programs.

7.1.4. Story builder activity - populated

Once a sentence has been constructed in the previous screen, the Story Builder reloads with 
the completed sentence as part of the growing ‘story’, with each sentence beginning on a new 
line. Users can re-edit any  sentence by clicking on it. This takes them back to the sentence 
building screen with their chosen sentence in the editing window.

Figure 7.8 and Figure 7.9 show examples of stories that were built in testing. The first programs 
the robot to ‘explore’ the room for 30 seconds, moving it forward until it detects a wall, then 
turning 90 degrees. The second story  is more of a conversation between the Android device 
and the robot.

Once users are happy  with their story, they  can click the Play button in the ActionBar to start the 
program execution sequence, or the Save icon to save their story. As shown in Figure 7.10, 
users are prompted to name their story before saving.

Figure 7.8 Story which gets robot to 
‘explore’ the room

Figure 7.9 Story with a 
conversation between Android and 
robot

First steps in creative computational thinking with natural language programming and Lego Mindstorms

33



 Once a story has been saved once, the story  is auto-saved again when the user presses the 
Play  button, or simply  re-saved if the Save button is pressed again. If the user presses Play and 
hasn’t yet saved their story, they are prompted to do so. 

This functionality  was added to ensure that a record was kept of all stories during testing and no 
data was lost.

7.1.5. Device Connection Activity

After the user presses Play  on the Story  Builder Activity, then a Bluetooth socket is opened and 
the application presents a choice of paired devices to connect to, as shown in Figure 7.11. 
There is also an option to scan for new devices. This closely  follows the flow of Google’s 
Bluetooth guide, as exemplified in their Bluetooth Chat application.

Different icons for NXT and EV3 were developed so that if users have access to both types of 
robot, they can easily distinguish between them.

Once a device is selected, the application attempts to connect . If the device cannot be 
detected, the user is notified that there was a problem connecting and the device selection 
dialog opens again. If connection is successful, the user is asked to configure their robot.

Figure 7.10 Save dialog on 
Story builder screen

First steps in creative computational thinking with natural language programming and Lego Mindstorms

34



7.1.6. Port Configuration Activity

When a connection is made, the user is presented with a dialog that requires them to check 
how they have configured their robot’s ports, shown in Figure 7.12.

The default ports match the ‘Robot Educator’ model of the NXT, which is the basic model that 
ships with the Education Set of the NXT model.

Figure 7.11 Connection dialog

Figure 7.12 Port Configuration 
activity

First steps in creative computational thinking with natural language programming and Lego Mindstorms

35



In testing, this interface was skipped over after users were asked to ignore it, as in the testing 
sessions the robot was prebuilt and checking port configuration was not part of the test. After an 
explanation, all pupils had few problems skipping past this screen, however its presence means 
that in future versions this application can present more flexibility  than others, at least for the 
NXT model.

7.1.7. Story Execution Activity 

Once the ports have been selected, the Story Execution Activity is launched.

Like the Sentence builder and Story  builder activities, this Activity  has a ‘clean’ design with few 
distractions apart from the essential information, as shown in Figure 7.13.  There are two 
windows on the Execution screen, one that shows Sensor readings, when appropriate, and the 
main window which behaves in a similar way  to a Console window in an IDE. Messages appear 
informing users of the status of the program as it runs, including which lines have been 
executed, and when the program has begun and ends. It also displays error messages, for 
instance if the robot has run out of memory.

 The aim here was to provide users with the kind of environment that professional programmers 
would use, so that they  get the end-to-end experience of first writing, then observing execution 
and debugging their programs. 

If the user decided to insert robot-centric audio into their stories, then the application uploads 
these sounds to the robot. In Figure 7.14, the program is showing the upload status of sounds in 
the user’s story.

As soon as all the sounds are uploaded, the program begins and the sentences appear as they 
are executed, emulating traces in a programmer’s debugging console. The user’s sentences 
appear in green, general information appears in blue (for example, ‘Starting program’, 
‘Uploading sound’) and errors in red. Figures 7.15 and 7.16 show  the console at different stages 
of program execution.

Figure 7.13 Program 
Execution Activity on launch

Figure 7.14 Activity showing 
upload information

First steps in creative computational thinking with natural language programming and Lego Mindstorms

36



When an ‘event listener sentence’ is being executed, as shown in Figure 7.17, the ‘Sensor 
reading’ window wakes up  and the live reading from the sensor is shown. When the target is 
reached, the reading turns orange and the program continues (Figure 7.18).

In future iterations, this precision will allow for more exact RLit sentences and measurements, 
for example having sentences such as ‘When ROBOT sees something up to 30 cm away...’ 
However, as the focus of this project was more on storytelling than on scientific measurement, 
this was not implemented. As noted before, the latency  in bluetooth communication was also an 
issue, making the reading slightly behind, so this would also need to be addressed somehow. 

Fig 7.18 illustrates how the console shows looping statements. The user has programmed the 
robot to ‘explore’ the room in three sentences. First, the robot moves forward continuously, and 
turn left when it detects an obstacle close by. This is then repeated 4 times. In the console 
window, the sentences that are repeated are rewritten, as they  would in a programmer’s IDE 
console window. 

Figure 7.15 Activity showing 
trace of first line of program 
execution.

Figure 7.16 Activity after 
several lines have executed.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

37



At the end of program execution, the user is informed and a button appears at the bottom of the 
screen allowing users to re-run the program.

Users can end the program and return at any  point to edit their RLit Sentences by  pressing the 
Pencil icon in the ActionBar.

7.2. UI Layer technical implementation

The UI layer follows the design principles of Google’s Android platform, with all layouts defined 
in XML files in the application’s resources folder.

There are many  benefits to following this architecture. The design layout of screens is 
separated from the Controller layer, meaning that updates can easily  be applied without 
affecting the code. As Android is meant to run on a wide variety  of devices, separating the UI 
files out into a separate layer means that one can have different layouts for different screen 
sizes and Android OS versions. 

Although I was not so concerned with providing layouts for different devices in this project, or 
supporting Android versions other than JellyBean (as directed by my tutor), with this design it 
will be possible in the future.

The same follows for icons and bespoke graphics, or ‘drawables’. Although this application has 
minimal original design elements apart from its logo, these are stored in the resources folder in 
separate folders according to screen resolution (hdpi, mdpi, xhdpi etc.)

Figure 7.18 Console readout 
showing that a target has been 
reached, and the program 
continues.

Figure 7.17 Activity showing trace of 
event listening sentence, and 
sensor reading.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

38



All sound files are stored in the ‘raw’ resource directory, along with the dictionary  text file for the 
RLit language. During development, having the RLit framework saved in one text file facilitated 
rapid iterations of improvements to RLit, including the ability  to update labels and values on the 
fly without affecting the rest of the application.

String values are also all the UI layer, allowing for localisation at a later date, without disturbing 
any of the controller code.

7.3. UI Controller layer

Adhering closely  to the recommended Android architecture for JellyBean (Google, 2013a), the 
controller classes were built making use of Android’s ActionBar class (the menu bar at the top of 
the screen) and Fragment classes. Fragments are classes that can be used in combination to 
create different configurations of design layout depending on the device’s screen size and 
orientation (Google, 2013c).

This project was built using a rooted Samsung Galaxy  S, and later tested on a Nexus 7,  and 
there is currently  only  one set of UI configurations used. The application forces portrait mode, 
and doesn’t change based on screen size. However, by  using Fragments, the application is built 
flexibly enough to allow different UI configurations to be implemented relatively easily.

Figure 7.19 shows a class diagram for the UI controller layer.

The overall architecture is based on four Android Activity  classes which users move between. All 
sessions start with the LaunchActivity, from where the StoryBuilder activity  launches with either 
a new story  or a saved story, loaded via the DatabaseHelper data access object located in the 
storage layer.

Fragments are linked to their parent Activities through interfaces declared inside each fragment. 
These interfaces define the contract which parent activities must implement to communicate 
with their child fragments. This architecture follows the Observer pattern, and ensures that 
Fragments behave as modularised components. This will become especially  useful once the 
application is developed for different screens and devices, and composite UI configurations are 
used.

The ExecuteStory  Activity  communicates with the robot through binding to an Android Service. 
This is described further in Section 7.6

First steps in creative computational thinking with natural language programming and Lego Mindstorms

39



on
D

at
aL

oa
de

d(
in

t) 
: v

oi
d

ru
nS

to
ry

() 
: v

oi
d

ed
itS

en
te

nc
e(

) :
 v

oi
d

sa
ve

N
ew

St
or

y(
) :

 v
oi

d
sa

ve
St

or
y(

) :
 v

oi
d

<<
A
ct
iv
ity
>>

St
or
yB
ui
ld
er
A
ct
iv
ity

<<
Fr
ag
m
en
t>
>

St
or
yB
ui
ld
er

Fr
ag
m
en
t

<<
Fr
ag
m
en
t>
>

Sa
ve
St
or
yD
ia
lo
g

Fr
ag
m
en
t

on
Se

nt
en

ce
Bu

ilt
()

on
So

un
dA

dd
ed

()
on

Te
m

pI
te

m
R

ec
or

de
d(

)

<<
A
ct
iv
ity
>>

Se
nt
en
ce
B
ui
ld
er
A
ct
iv
ity

m
C

ur
re

nt
Ph

ra
se

Li
st

 : 
Li

st
m

Ed
itS

en
te

nc
e 

: R
Li

tS
en

te
nc

e
m

W
he

nC
la

us
eS

en
te

nc
e:

 
R

Li
tS

en
te

nc
e

<<
Fr
ag
m
en
t>
>

Se
nt
en
ce
B
ui
ld
er
Fr
ag
m
en
t

<<
Fr
ag
m
en
t>
>

R
ec
or
dS
ou
nd
D
ia
lo
gF
ra
gm

en
t

<<
Fr
ag
m
en
t>
>

Sa
ve
So
un
dD
ia
lo
gF
ra
gm

en
t

op
en

St
or

yB
ui

ld
er

(b
oo

le
an

) :
 v

oi
d

m
Sa

ve
dS

to
rie

s 
: L

is
t<

St
rin

g[
]>

<<
A
ct
iv
ity
>>

La
un
ch
A
ct
iv
ity

do
Bi

nd
Se

rv
ic

e(
)

co
nn

ec
tT

oR
ob

ot
():

 v
oi

d
co

nfi
gu

re
R

ob
ot

Po
rts

() 
: v

oi
d

pr
ep

ar
eP

ro
gr

am
() 

: v
oi

d
ru

nP
ro

gr
am

() 
: v

oi
d

up
da

te
Se

ns
or

R
ea

di
ng

() 
: v

oi
d

up
lo

ad
So

un
dF

ile
sT

oR
ob

ot
(M

ap
) 

: v
oi

d

m
C

on
ne

ct
io

n 
: 

Se
rv

ic
eC

on
ne

ct
io

n

<<
A
ct
iv
ity
>>

Ex
ec
ut
eS
to
ry
A
ct
iv
ity

<<
A
ct
iv
ity
>>

C
on
fig
ur
eD
ev
ic
eA
ct
iv
ity

<<
A
ct
iv
ity
>>

C
ho
os
eD
ev
ic
eA
ct
iv
ity

<<
In
te
nt
>>

C
on
so
le
Te
xt
Vi
ew

<<
In
te
nt
>>

<<
In
te
nt
>>

1
0…

1

1
0…

1

1
0…

1

1
0…

1

1
0…

1

1

0…
1

1

0…
1

m
C

lie
nt

s 
: L

is
t<

M
es

se
ng

er
>

<<
Se
rv
ic
e>
>

R
ob
ot
C
on
ne
ct
or
Se
rv
ic
e

<<
bi
nd
>>

Fi
gu

re
 7

.1
9 

C
la

ss
 d

ia
gr

am
 fo

r U
I C

on
tro

lle
r l

ay
er

First steps in creative computational thinking with natural language programming and Lego Mindstorms

40



7.4. RLit Model layer

The RLit entity  classes - RLitStory, RLitSentence and RLitPhrase - are contained in the RLit 
package. Also in the RLit package are the utility  classes RLitDictionary, which holds all the 
available RLitPhrases, and RLitDictionaryLoader, which populates the RLitDictionary  using data 
from the resources directories.

Fig 7.20 shows the relationship between these entity and utility classes.

7.4.1. RLitStory Entity class

At any  point, there can only  be one instance of RLitStory, namely  the story  that is currently 
being edited or executed. This is therefore a static instance and accessed through the 
RLitStory.getStory() method. RLitStory is instantiated the first time getStory() is called.

An RLitStory  is a basic class composed of a specialist ArrayList of RLitSentences, and a cursor 
position which keeps track of which sentence is currently  being added or edited. If the user 
chooses to load a saved story, then the sentence list is populated by  the RLitSentences stored 
in the SQLite database, otherwise a fresh sentence list is instantiated. In both cases, the list is 
instantiated as a SentenceArrayList.

An inner class, SentenceArrayList ensures that when any  change is made to the list, this is 
flagged to the parent RLitStory  class. This will allow the UI to know whether an RLitStory  has 
been updated and whether it needs to be saved.

Once a story  has been started, or an old story  is loaded,  the RLitStory  singleton is prepared, 
and LaunchActivity  can then launch the StoryBuilder Activity. This then prompts the application 
to populate the RLitDictionary with phrases.

7.4.2. RLitSentence Entity class

Following the ontological rules of RLit, there are three types of sentence:

DIRECTION SENTENCES – Sentences that are translated into simple instructions. These 
instructions can appear anywhere in a Story e.g. ‘First ROBOT moves forward a little and 
slowly’

EVENT LISTENER SENTENCES – these ‘sentences are translated into instructions that 
monitor readings from the robot sensors, and pause the flow of the Story  until stipulated 
conditions are met (either a target reading is met or a fixed time period elapses). e.g. ‘After that 
ROBOT waits until it hears something loud.’

EVENT RESULT SENTENCES – these sentences occur after EVENT LISTENER sentences.

The sentence type is set when a ‘verb’-like phrase is added through the method 
addPhase(RLitPhrase). See Appendix A for more details on this.

There are two varieties of EVENT LISTENER sentences - those that contain the phrase ‘When’, 
and those that contain the phrase ‘wait’. Each of these varieties has an effect on how they are 
displayed by  the Story Builder and Sentence Builder activities. ‘Wait’ sentences are displayed 
as separate sentences, whereas ‘When’ sentences are always displayed connected with an 
EVENT RESULT sentence, which begin with a comma. 

First steps in creative computational thinking with natural language programming and Lego Mindstorms

41



Fi
gu

re
 7

.2
0 

C
la

ss
 d

ia
gr

am
 s

ho
w

in
g 

re
la

tio
ns

hi
p 

be
tw

ee
n 

R
Li

t E
nt

iti
es

, a
nd

 D
ic

tio
na

ry
 a

nd
 L

oa
de

r u
til

ity
 c

la
ss

es

ge
tL

is
tW

ith
Pi

d(
in

t) 
: 

Li
st

<R
Li

tP
hr

as
e>

ad
dP

hr
as

e(
R

Li
tP

hr
as

e)
 : 

vo
id

re
m

ov
eP

hr
as

e(
in

t, 
la

be
l) 

: 
vo

id

co
nt

en
ts

 : 
M

ap
<i

nt
, 

Li
st

<R
Li

tP
hr

as
e>

R
Li

tD
ic

tio
na

ry

la
be

l :
 S

tri
ng

id
, p

id
 : 

in
t

in
st

ru
ct

io
n 

: i
nt

de
la

y 
: i

nt
ar

g1
, a

rg
2,

 a
rg

3 
: i

nt
ar

g4
 : 

St
rin

g
w

ai
tF

la
g 

: i
nt

so
rtI

nd
ex

 : 
in

t

R
Li

tP
hr

as
e

ad
dP

hr
as

e 
(R

Li
tP

hr
as

e)
 : 

vo
id

de
le

te
La

st
Ph

ra
se

() 
: v

oi
d

in
st

ru
ct

io
nI

D
 : 

in
t

ty
pe

 : 
in

tR
Li

tS
en

te
nc

e

ge
tS

to
ry

()
se

tC
ur

so
rT

oE
nd

()
ge

tS
en

te
nc

eA
tP

os
iti

on
(in

t)

se
nt

en
ce

Li
st

 : 
Ar

ra
yL

is
t<

R
Li

tS
en

te
nc

e>
cu

rs
or

Po
si

tio
n 

: i
nt

cu
rre

nt
Se

nt
en

ce
 : 

R
Li

tS
en

te
nc

e
st

or
yI

D
 : 

lo
ng

st
or

y:
 R

Li
tS

to
ry

R
Li

tS
to

ry

1.
..*

1…
*

1…
*

ru
n(

)

R
Li

tD
ic

tio
na

ry
Lo

ad
er

so
un

d 
fil

e
so

un
d 

fil
e

R
LI

T 
tx

t fi
le

<<
po

pu
la

te
s>

> 
   

   
   

   
 

<<
in

st
an

tia
te

s>
> 

   
   

   
   

 

First steps in creative computational thinking with natural language programming and Lego Mindstorms

42



7.4.3. RLitPhrase Entity class

Each RLit Phrase has the following fields:

Label ! ! !  the human readable label for the phrase.

ID! ! ! The ID group that the phrase belongs to.

PID! ! ! The ID of this phrase’s parent phrase i.e. the phrases that will always 
! ! ! come before this one in a sentence.

InstructionID! ! for ‘verb’ phrases, the ID of the Instruction that maps to this verb.

Delay! ! ! the default waiting time before the sentence in which this phrase occurs 
! ! ! will execute. This is relevant for ‘sequencer’ phrases such as ‘After 3 
! ! ! seconds’.

Arg1, Arg2, Arg3! integer arguments that modify  an Instruction’s parameters, for example 
! ! ! angle of turn, or speed of movement.

Arg4! ! ! String argument that modifies an Instruction’s parameters, for example 
! ! ! filename for a Sound Instruction.

WaitFlag! ! indicates whether the program looper needs to complete executing the 
! ! ! previous sentence before executing the sentence with this phrase. For 
! ! ! example, the Sequencer phrase ‘After that‘ has a wait flag of 1, whilst ‘At 
! ! ! the same time’ has a wait flag of 0.

SortIndex! ! used by  compareTo method to sort phrases in lists. This is used to ensure 
! ! ! that the more common and useful phrases always feature near the top of 
! ! ! the list.

Appendix C contains a table with all the phrases and their argument values featured in RLit. It is 
the RLitDictionaryLoader’s role to populate the RLitDictionary with all these phrases before the 
user can begin assembling sentences.

7.4.4. RLit Dictionary Loader class

The RLitDictionary  is populated on the first launch of the StoryBuilder Activity. The contents of 
the dictionary  are stored in a HashMap and as there is only  one dictionary, the map is static and 
available to all Activity and Fragment classes, in the same way as the RLitStory static instance.

There are two stages to the process of populating the dictionary  with RLit phrases. First, the 
general phrases are assembled from a CSV text file, ‘rlit_dictionary.txt’ in the raw resources 
directory. Each line of the CSV document maps to a single phrase and its fields.

Once the dictionary  loader has completed processing the general phrases, it adds user-specific 
phrases based on the sound files found in the user’s Shared Preferences.

When the loader has finished populating the RLitDictionary, it notifies listeners who have 
registered via a LoadDataListener interface - in this case the StoryBuilder Activity  - that it has 
done so.

The sequence diagram in Figure 7.21 summarises this process.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

43



Fi
gu

re
 7

.2
1 

Se
qu

en
ce

 d
ia

gr
am

 s
ho

w
in

g 
ho

w
 th

e 
R

Li
t D

ic
tio

na
ry

 is
 p

op
ul

at
ed

 w
ith

 R
Li

t p
hr

as
es

 fr
om

 a
n 

ex
te

rn
al

 fi
le

R
Li

tP
hr

as
e

:S
to

ry
Bu

ild
er

Ac
tiv

ity
:D

ic
tio

na
ry

Lo
ad

er
D

ic
tio

na
ry

Lo
ad

er
:

Bu
ffe

re
dR

ea
de

r

re
ad

Li
ne

ru
n(

)

lin
e[

i]=
re

ad
Li

ne
ne

w
Ph

ra
se

(li
ne

[i]
.s

pl
it(

',')
)

ph
ra

se

:R
Li

tD
ic

tio
na

ry

ad
dP

hr
as

e(
ph

ra
se

)

Lo
ca

lS
to

ra
ge

ge
tF

ile
Pa

th

fil
ep

at
h[

i] 
= 

ge
tF

ile
pa

th

ne
w

Ph
ra

se
(S

ha
re

dP
re

f
er

en
ce

.g
et

St
rin

g(
fil

ep
at

h)
)

ad
dP

hr
as

e(
ph

ra
se

)

ph
ra

se

di
ct

on
ar

yL
oa

de
d(

)

[i<
=n

um
be

rO
fL

in
es

]

[i<
fil

es
.le

ng
th

]

lo
op

 (0
, *

)

lo
op

 (0
, *

)

First steps in creative computational thinking with natural language programming and Lego Mindstorms

44



7.5. Interaction of UI Controller layer and RLit model layer

The sequence diagram in Figure 7.22 shows how the UI layer works with the RLit model layer to 
build RLit sentences.

Figure 7.22 Sequence diagram showing the flow of information between UI and RLit model 
layers during sentence construction.

:RLitSentence:SentenceBuilder UI :RLitStory :RLitDictionary

editSentence()

getPhrasesWithPID(int)

:StoryBuilder UI

getCurrentSentence()

List<RLitPhrase> = getPhrasesWithPID(int)

RLitSentence

getlastID()

lastID = getLastID()

addPhrase()

[phrasesWithPID!=null]

onSentenceBuilt()

loop (0, *)

Before SentenceBuilderActivity  is launched, RLitStory’s cursor is set to the position of the 
sentence being built. SentenceBuilder can then get the contents of the current RLitSentence to 
populate the interface. In the case of adding a new sentence, this will be an empty sentence. 

SentenceBuilder Activity  has encoded the ontological rules that govern which phrases can 
follow each other in an RLit Sentence, mainly  based on the RLitPhrase PID field. The arrows 
that connect the phrases in the RLitPhrase map (Appendix B) show the PID relationships 
between RLitPhrases.

A list of phrases is obtained by polling the RLitSentence for the ID of the last phrase in the 
sentence. If the sentence is empty, then the phrase with PID -1 (‘First’) is used. Otherwise, as 
long as special rules relating to RLitSentence type and program flow are not in effect, the 
phrases in the PID group that match the last phrases’s ID are displayed.This process continues 
until all phrases are exhausted (i.e. when the getPhrasesWithPID(x) call to RLitDictionary 
returns null). If the user then accepts the sentence, SentenceBuilder activity  is closed and a 
return call (onSentenceBuilt()) is sent to the StoryBuilder activity.

Once all RLitSentences have been completed. the RLitStory  can be interpreted into an ArrayList 
of Instruction objects that is later sent in a ‘Program’ wrapper class to the Robot Communicator 
Service, ready for execution by the Robot Commander.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

45



7.6. RLit Interpreter and Instruction class package

The RLitInterpreter implementation’s role is to convert the list of sentences contained in a 
RLitStory  into a ‘Program’ - a wrapped list of Instructions that can be executed by  the 
ProgramLooper class.  To do this, the Interpreter iterates through the RLitSentences, and for 
each sentence, analyses its contents (i.e. all the RLitPhrases) to first extract an Instruction ID. 
The Instruction ID defines which Instruction to instantiate. The remaining phrases contain the 
information needed to populate the parameters for that Instruction’s constructor. 

Most of the Instructions are POJOs (Plain Old Java Objects) with fields specific to the 
Instruction they are representing. For example, the Move Instruction has fields related to throttle 
and distance, while the Beep Instruction has fields relating to tone frequency  and duration. All 
Instructions share a set of fields which are defined in the AbstractInstruction class, which they 
all inherit. This is to ensure there is no unnecessary  repetition of code. One specialist 
Instruction, the Repeat Instruction, also implements the ProgramControlInstruction interface, 
since it is uniquely  concerned with program flow. As all method calls are defined in Interfaces, 
the Instructions are loosely  coupled with the implementation classes in the Robot control 
package.

To execute an Instruction, the robot commander class must implement the InstructionExecutor 
interface.  Only  objects of type InstructionExecutor can access an Instruction’s execution 
method. In this way, Instruction classes implement the Visitor pattern to safeguard against 
wrong calls being made, and to enable any number of different implementations can access the 
Instructions, including eventually EV3 implementations.

There remains some work to be done with the AndroidNarrative and AndroidMusic Instructions 
since there is some repetition of code shared between the two classes relating to sound 
playback. In addition, these are the only  Instructions that contain implementation code,  so it 
would probably  be a better design to keep all Instructions as POJOs and move the 
implementation code elsewhere. However, there was not time to complete this for this project.

Figure 7.23 shows a class diagram with the connections between these classes.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

46



Fi
gu

re
 7

.2
3 

C
la

ss
 d

ia
gr

am
 s

ho
w

in
g 

In
te

rp
re

te
r a

nd
 In

st
ru

ct
io

n 
cl

as
se

s.

to
Pr

og
ra

m
(C

on
te

xt
, L

ist
<R

Li
tS

en
te

nc
e>

) :
 P

ro
gr

am
ex

tra
ct

So
un

dF
ile

s(
Li

st
<R

Li
tS

en
te

nc
e>

) :
 M

ap
<S

tri
ng

, I
nt

eg
er

>

R
Li
tIn
te
rp
re
te
r

RL
itI
nt
er
pr
et
er
Im
pl

ex
ec

ut
eI

ns
tru

ct
io

n(
In

st
ru

ct
io

nE
xe

cu
to

r)
ge

tIn
st

ru
ct

io
nI

D(
) :

 in
t

se
tIn

st
ru

ct
io

nI
D(

in
t i

d)
;

ge
tD

el
ay

();
isB

lo
ck

In
st

ru
ct

io
n(

);
wa

itS
om

eT
im

e(
in

t m
illi

s)
;

<<
In
te
rf
ac
e>
>

In
st
ru
ct
io
n

<<
ab
st
ra
ct
>>

A
bs
tr
ac
tIn
st
ru
ct
io
n

Pl
ay

er
 : 

M
ed

ia
Pl

ay
er

An
dr
oi
dN
ar
ra
tiv
e

An
dr
oi
dS
to
p

So
un
d

du
ra

tio
n 

: i
nt

to
ne

 : 
in

t

Be
ep

th
ro

ttl
e 

: i
nt

di
st

an
ce

 : 
in

t

M
ov
e

tim
eP

er
io

d 
: i

nt
re

pe
tit

io
ns

 : 
in

t
nu

m
be

rO
fIn

st
ru

ct
io

ns
 : 

in
t

Re
pe
at

du
ra

tio
n 

: i
nt

file
na

m
e 

: S
tri

ng

So
un
d

de
gr

ee
s 

: i
nt

th
ro

ttl
e 

: i
nt

Tu
rn

up
pe

rT
ar

ge
t :

 in
t

lo
we

rT
ar

ge
t :

 in
t

W
ai
tO
nS
en
so
r

Pl
ay

er
 : 

M
ed

ia
Pl

ay
er

tim
eP

er
io

d 
: i

nt

An
dr
oi
dM
us
ic

m
Pr

og
ra

m
 : 

Li
st

<I
ns

tru
ct

io
n>

Pr
og
ra
m

1…
*

1

ge
tR

ep
et

itio
ns

() 
: i

nt
ge

tT
ot

al
In

st
ru

ct
io

ns
To

Re
pe

at
() 

: i
nt

ge
tT

im
eP

er
io

d(
) :

 in
t

isB
lo

ck
In

st
ru

ct
io

n(
) :

 b
oo

le
an

<<
In
te
rf
ac
e>
>

Pr
og
ra
m
C
on
tr
ol
In
st
ru
ct
io
n

<<
cr
ea
te
s>
>

First steps in creative computational thinking with natural language programming and Lego Mindstorms

47



7.7. Storage layer

Story  data is stored as an SQLite database in the Android device’s local storage. Using SQLite 
allows every RLitStory  to have an unique auto-incremented ID which serves as its primary 
identifier. This is important since several saved stories might possess the same title, or 
sentence list. Other storage mechanisms, like using Shared Preferences, will not allow this kind 
of repeating data. Figure 7.24 shows how the components of the storage layer work together.

The schema for the RoboLiterate database is formalised by the RLitDbStoryContract class. The 
class contains constants that define the names for the tables, columns and URIs, and ensures 
that these names are consistently  used throughout the application. The database for the 
application required just one table and, as recommended by  Android developer documentation 
(Google, 2013e),  the table and column names are defined in an inner class called 
RLitStoryTable.

The DatabaseHelper class was created as a data access object to provide all the methods for 
creating, reading, updating and deleting table entries. To save lists of RLitSentences, they first 
needed to be converted into a format that SQLite recognises, and Google’s GSON library  was 
chosen to do this. GSON is a Java library that converts objects into JSON (JavaScript Object 
Notation) strings, and it was chosen because it does not require annotations and it supports 
Java Generics (Google, 2013d).

7.8. Bluetooth connection implementation

The method of Bluetooth connection to the robot follows Google’s sample code exemplified in 
its open source Bluetooth Chat application. The steps taken are as follows:

In DeviceChooseActivity.java:

• The class obtains a Bluetooth Adapter

LaunchActivity

getStories() : List<String>
getSentencesForStoryID(String) : ArrayList <RLitSentence>
deleteStoryWithID(String) : boolean
saveStory(String, ArrayList<RLitSentence>) : void
updateStory(long,ArrayList<RLitSentence>) : void

DatabaseHelper

RLitStoryDbContract GSON library

SQLite 
Database

Figure 7.24 Components of Storage layer

First steps in creative computational thinking with natural language programming and Lego Mindstorms

48



• The class checks that bluetooth is available on the device, if it is not already. This requires 
sending the intent BluetoothAdapter.ACTION_REQUEST_ENABLE

• The system is queried for paired devices

• If the user presses ‘Scan for robot’, then the system discovers new devices, and registers a 
BroadcastReceiver for the ACTION_FOUND intent to receive information about each new 
device.

• The user selects a device from either the paired or new device list.

The selected device’s name and MAC address are then passed by the UI layer in a message to 
the RobotConnectorService object, to which it is bound. From this point, all communication with 
the robot is managed by the service layer.

• The Service acts as a server for the Lego device and therefore first obtains a 
BluetoothServerSocket by calling listenUsingRfcommWithServiceRecord (UUID) using Lego 
specific UUID, which was obtained from Lego’s MindDROID application. Then the application 
starts listening to the device by calling accept(). 

• Finally, the input and output stream of the Bluetooth connection are obtained, and passed to 
the BTCommunicator class, which provides static methods to read and write data to the robot, 
encapsulated in one place.

7.9. Robot Communication Layer

The architecture for the robot communication layer was finalised during the prototype 
development phase, when most of the work went into researching and testing how to control the 
NXT from Android. 

The overall architecture of this layer is shown in Figure 7.25. 

Figure 7.25 Class diagram showing general relationship between robot control classes

Commander
NXT

ExecuteStoryActivity 
(UI Layer)

RobotConnectorService
(for all devices)

<<Interface>>
Commander

Commander
EV3

Commander
...

<<bind>>

BluetoothCommunicator

First steps in creative computational thinking with natural language programming and Lego Mindstorms

49



The UI layer is responsible for finding the name and MAC address of the robot device. The 
RobotConnector class then connects with the robot. The RobotConnector class also checks for 
the version of the robot, NXT or EV3. Depending on the version, it will then instantiate the 
relevant Commander class. Currently  there is only one Commander implementation, 
CommanderNXT.  All classes communicate with the robot via static methods in the 
BluetoothCommunicator class. A summary  of this relationship is shown in Figure 7.25. A more 
detailed class diagram of the Robot Communication layer is shown in Figure 7.26.

7.9.1. Robot Connector Service class

The RobotConnectorService implementation contains methods that manage the robot 
connection, and through implementing the CommanderListener interface, it also receives 
update messages from the Commander object. These updates are then passes back to the UI 
layer as a Messenger object.

Two options were tested for communicating with the robot - opening a new thread, or running a 
separate Service layer.

Choice 1: Opening a new thread:

The ‘simplest’ method would have been to simply  run all the robot communication code on a 
new thread running parallel to the main UI thread. This strategy is followed by  applications such 
as MindDROID and NXT Remote Control (Fedor, 2011; Lego, 2012). There are a number of 
advantages - it is the simplest approach, in that no Messenger object needs to be created, 
making handling messages between threads easier to implement. It would also ensure that the 
thread stays open for only  as long as needed, ensuring processing load would be kept to a 
minimum. The downside would be that communication could only take place from within the 
same application, and without careful planning, from the same Activity. This would make the 
application less extensible if one wanted to extend it to, for example, controlling the robot from 
another application. It would also require very careful thread management if multiple threads 
were needed (as is the case with this application).

Choice 2: Starting a service / Bound service

Alternatively, all robot communication could take place from a Service running in parallel to the 
UI thread. The advantage here is the Service could always be running no matter what Activity  is 
on screen, until the Service is actively  stopped. The disadvantage is that communication is 
restricted to send messages via a Messenger object and Handlers on either side.

The second approach was chosen, to maintain a clear separation of concerns between the UI 
layer and the robot communication layer and to keep open the possibility  in future versions for 
multiple robot devices to be run from one Android device, or indeed have multiple Android 
devices working with one robot. Having a bound service would allow multiple activities and 
devices to bind and unbind from the service without affecting the Bluetooth connection itself.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

50



ge
tT

ra
ns

la
to

r()
 : 

   
 B

yt
eT

ra
ns

la
to

r
co

nfi
gu

re
Po

rts
() 

: v
oi

d
do

Up
lo

ad
Fi

le
s(

St
rin

g[
] ,

 S
tri

ng
[])

 : 
vo

id
re

gi
st

er
Se

ns
or

(in
t, 

in
t) 

: v
oi

d
ru

nR
ob

ot
Pr

og
ra

m
(P

ro
gr

am
) :

 v
oi

d
st

op
Ro

bo
tP

ro
gr

am
() 

: v
oi

d
se

nd
M

es
sa

ge
To

Ro
bo

t(b
yt

e[
]) 

: b
oo

le
an

re
ce

ive
M

es
sa

ge
Fr

om
Ro

bo
t()

 : 
bo

ol
ea

n

<<
In
te
rf
ac
e>
> 

C
om

m
an
de
r

co
nn

ec
tT

oR
ob

ot
() 

: v
oi

d
in

itR
ob

ot
() 

: v
oi

d
ca

nc
el

Co
nn

ec
tio

nT
oR

ob
ot

() 
: v

oi
d

ch
ec

kR
ob

ot
Co

nn
ec

tio
n(

) :
 b

oo
le

an

<<
In
te
rf
ac
e>
> 

R
ob
ot
C
on
ne
ct
or

se
nd

By
te

M
es

sa
ge

To
Ro

bo
t(b

yt
e[

]) 
: v

oi
d

re
ce

ive
By

te
M

es
sa

ge
Fr

om
Ro

bo
t()

 : 
by

te
[]

ro
bo

tIn
pu

tS
tre

am
 : 

In
pu

tS
tre

am
ro

bo
tO

ut
pi

tS
tre

am
 : 

O
ut

pu
tS

tre
am

B
lu

et
oo

th
C

om
m

un
ic

at
or

ru
n(

)
ex

ec
ut

eM
ai

nR
ou

tin
eF

ro
m

Cu
rre

nt
L

in
e(

)
se

nd
UI

M
es

sa
ge

()

pr
og

ra
m

Ex
ec

ut
io

nH
an

dl
er

 : 
Ha

nd
le

r
m

ai
nL

oo
pR

un
ni

ng
 : 

bo
ol

ea
n

su
br

ou
tin

eR
un

ni
ng

 : 
bo

ol
ea

n
pr

og
ra

m
 : 

Pr
og

ra
m

Pr
og

ra
m

Lo
op

er

co
nn

ec
tT

oR
ob

ot
() 

: v
oi

d
co

nfi
gu

re
Ro

bo
tP

or
ts

() 
: v

oi
d

pr
ep

ar
eP

ro
gr

am
() 

: v
oi

d
ru

nP
ro

gr
am

() 
: v

oi
d

up
da

te
Se

ns
or

Re
ad

in
g(

in
t, 

bo
ol

ea
n)

 : 
vo

id
st

op
Pr

og
ra

m
() 

: v
oi

d
up

lo
ad

So
un

dF
ile

sT
oR

ob
ot

(M
a

p<
St

rin
g,

 In
te

ge
r>

) :
 v

oi
d

co
ns

ol
eV

ie
w 

: 
Co

ns
ol

eT
ex

tV
ie

w
se

rv
ice

 : 
M

es
se

ng
er

Ex
ec

ut
eS

to
ry

A
ct

iv
ity

no
tif

yC
lie

nt
s(

) :
 v

oi
d

m
Co

m
m

an
de

r :
 C

om
m

an
de

r
m

Cl
ie

nt
s 

: A
rra

yL
ist

<M
es

se
ng

er
>

R
ob

ot
C

on
ne

ct
or

Se
rv

ic
e

do
Ro

bo
tM

ov
e(

in
t, 

in
t, 

bo
ol

ea
n)

 : 
vo

id
do

Ro
bo

tR
ot

at
e(

in
t, 

in
t, 

bo
ol

ea
n)

 : 
vo

id
do

Ro
bo

tS
to

pS
ou

nd
s(

) :
 v

oi
d

do
Ro

bo
tS

ou
nd

(in
t, 

in
t, 

bo
ol

ea
n)

 : 
vo

id
do

Ro
bo

tB
ee

p(
in

t, 
in

t, 
bo

ol
ea

n)
 : 

vo
id

do
Re

se
tM

ot
or

s(
) :

 v
oi

d
do

Ro
bo

tS
to

pM
ot

or
s(

) :
 v

oi
d

on
Se

ns
or

Re
po

rt(
in

t, 
in

t, 
in

t) 
: v

oi
d

on
M

ot
or

Re
po

rt(
in

t, 
in

t, 
in

t) 
: v

oi
d

wa
itF

or
Ro

bo
t(i

nt
, i

nt
, i

nt
, i

nt
, i

nt
, i

nt
) :

 v
oi

d

<<
In
te
rf
ac
e>
> 

In
st
ru
ct
io
nE
xe
cu
to
r

C
om

m
an

de
r

N
XT

   
   

 1

<<
bi

nd
>>

up
da

te
Se

ns
or

Re
ad

in
g(

in
t, 

in
t) 

: v
oi

d
on

Po
rts

Co
nfi

gu
re

d(
in

t) 
: v

oi
d

on
Pr

og
ra

m
Li

ne
Ex

ec
ut

ed
(in

t) 
: v

oi
d

on
Pr

og
ra

m
Co

m
pl

et
e(

in
t) 

: v
oi

d
on

Up
lo

ad
Ev

en
t(i

nt
, i

nt
, O

bj
ec

t) 
: v

oi
d

on
Up

lo
ad

Co
m

pl
et

e(
in

t) 
: v

oi
d

<<
In
te
rf
ac
e>
> 

C
om

m
an
de
rL
is
te
ne
r

0.
.1

1

<<
cr

ea
te

s>
>

Fi
gu

re
 7

.2
6 

D
et

ai
le

d 
cl

as
s 

di
ag

ra
m

 s
ho

w
in

g 
ov

er
al

l a
rc

hi
te

ct
ur

e 
of

 ro
bo

t c
on

tro
l c

la
ss

es

First steps in creative computational thinking with natural language programming and Lego Mindstorms

51



7.9.2. Robot Commander classes

The Commander classes control the messages sent to and received from the robot during the 
lifetime of the application. A Strategy  pattern was used to ensure that the architecture would 
work with the new version of Mindstorms, EV3, although the current implementation only  works 
with NXT.

The Commander class implements the InstructionExecutor interface defined in the RlLt 
Instruction package, enabling it to be the ‘Visitor’ class that runs the ‘executeInstruction’ method 
within each Instruction. The timing and sequence of execution of these instructions is controlled 
by  a ProgramLooper class, which the Commander class instantiates. Figure 7,26 details these 
relationships.

The Commander implementation class also instantiates a set of four utility classes specific to 
the device it are controlling:

ByteTranslator classes - these classes translate commands into byte code understood by  the 
robot device. The translator includes methods for both DIRECT and SYSTEM calls , and those 
that require a REPLY and NO REPLY. The ByteTranslator class used in this project is based on 
a similar class used in the Lego’s MindDROID application, however in that application, a very 
small fraction of the methods are used, whereas in RoboLiterate, the capabilities of LCP 
Bluetooth communication are pushed much further. 

Methods were also added that interpret the contents of byte messages returned by the robot, for 
example sensor readings and file upload status. Thus all interpretation of byte code is 
encapsulated within ByteTranslator classes, hidden from the rest of the application, providing a 
better separation of concerns for developing for the EV3 later on.

SoundUploader classes - these classes specialise in the complex task of uploading files to 
robot. Again, the class used in this project is based on the file uploader class developed for the 
MindDROID project, where it is used to upload programs to the NXT. In this project, a similar 
method is used to upload .rso sound files (.rso is the unique extension used by the NXT device).

RobotListener classes - these utility  classes specialise in listening to sensor readings sent by 
the robot device via Bluetooth until a target reading has been met. In these classes, the sensors 
are polled in a separate thread for readings in a while loop, and the loop ends once a target 
reading is met.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

52



Fi
gu

re
 7

.2
7 

C
la

ss
 d

ia
gr

am
 s

ho
w

in
g 

th
e 

St
ra

te
gy

 P
at

te
rn

 fo
r C

om
m

an
de

r a
nd

 re
la

te
d 

cl
as

se
s 

ge
tB

ee
pM

es
sa

ge
(in

t, 
in

t) 
: b

yt
e[

]
ge

tM
ot

or
M

es
sa

ge
(in

t, 
in

t, 
bo

ol
ea

n)
  :

 b
yt

e[
]

ge
tP

la
yS

ou
nd

Fi
le

M
es

sa
ge

(S
tri

ng
, b

oo
le

an
) :

 b
yt

e[
]

ge
tM

ot
or

M
es

sa
ge

(in
t, 

in
t, 

in
t, 

bo
ol

ea
n)

 : 
by

te
[]

ge
tR

es
et

M
es

sa
ge

() 
: b

yt
e[

]
ge

tS
to

pS
ou

nd
M

es
sa

ge
() 

 : 
by

te
[]

ge
tO

ut
pu

tS
ta

te
M

es
sa

ge
(in

t) 
: b

yt
e[

]
ge

tIn
pu

tV
al

ue
M

es
sa

ge
(in

t) 
: b

yt
e[

]
ge

tO
pe

nW
rit

eM
es

sa
ge

(S
tri

ng
, i

nt
) :

 b
yt

e[
]

ge
tD

el
et

eM
es

sa
ge

(S
tri

ng
) :

 b
yt

e[
]

ge
tW

rit
eM

es
sa

ge
(in

t, 
by

te
[],

 in
t) 

: b
yt

e[
]

ge
tC

lo
se

M
es

sa
ge

(in
t) 

: b
yt

e[
]

ge
tS

en
so

rM
od

eM
es

sa
ge

(in
t, 

in
t) 

: b
yt

e[
]

ge
tL

SW
rit

eM
es

sa
ge

(in
t) 

: b
yt

e[
]

ge
tL

SG
et

St
at

us
M

es
sa

ge
(in

t) 
: b

yt
e[

]
ge

tL
SR

ea
dM

es
sa

ge
(in

t) 
: b

yt
e[

]
ge

tF
ile

Ha
nd

le
Fr

om
M

es
sa

ge
(b

yt
e[

]) 
: i

nt
tra

ns
la

te
St

at
us

M
es

sa
ge

(b
yt

e[
], 

in
t) 

: i
nt

ge
tS

en
so

rR
ea

di
ng

Fr
om

M
es

sa
ge

(b
yt

e[
], 

in
t )

 : 
in

t
ge

tD
ist

an
ce

Re
ad

in
gF

ro
m

M
es

sa
ge

(b
yt

e[
]) 

: i
nt

ge
tT

ac
ho

Co
un

tF
ro

m
M

es
sa

ge
(b

yt
e[

]) 
 : 

in
t

va
lid

at
eS

ta
tu

sM
es

sa
ge

(b
yt

e[
], 

in
t) 

: b
yt

e[
]

<<
In
te
rf
ac
e>
> 

B
yt
eT
ra
ns
la
to
r

B
yt

eT
ra

ns
la

to
r

N
XT

C
om

m
an

de
r

N
XT

ge
tT

ra
ns

la
to

r()
 : 

   
 B

yt
eT

ra
ns

la
to

r
co

nfi
gu

re
Po

rts
() 

: v
oi

d
do

Up
lo

ad
Fi

le
s(

St
rin

g[
] ,

 S
tri

ng
[])

 : 
vo

id
re

gi
st

er
Se

ns
or

(in
t, 

in
t) 

: v
oi

d
ru

nR
ob

ot
Pr

og
ra

m
(P

ro
gr

am
) :

 v
oi

d
st

op
Ro

bo
tP

ro
gr

am
() 

: v
oi

d
se

nd
M

es
sa

ge
To

Ro
bo

t(b
yt

e[
]) 

: b
oo

le
an

re
ce

ive
M

es
sa

ge
Fr

om
Ro

bo
t()

 : 
bo

ol
ea

n

<<
In
te
rf
ac
e>
> 

C
om

m
an
de
r

co
m

m
un

ica
to

r :
 R

ob
ot

Co
m

m
un

ica
to

r
tra

ns
la

to
r :

 B
yt

eT
ra

ns
la

to
r

<<
in
te
rf
ac
e>
>

So
un
dU
pl
oa
de
r

   
 v

oi
d 

st
ar

tL
ist

en
in

g(
);

   
 in

t g
et

Sc
al

ed
Re

ad
in

g(
);

<<
in
te
rf
ac
e>
>

R
ob
ot
Li
st
en
er

B
yt

eT
ra

ns
la

to
r

EV
3

C
om

m
an

de
r

EV
3

So
un

dU
pl

oa
de

r
N

XT
So

un
dU

pl
oa

de
r

EV
3

   
   

 

<<
cr

ea
te

s>
>

R
ob

ot
Li

st
en

er
N

XT
R

ob
ot

Li
st

en
er

EV
3

   
   

 1

<<
cr

ea
te

s>
>

First steps in creative computational thinking with natural language programming and Lego Mindstorms

53



7.9.3. Program Looper class

The ProgramLooper class governs the sequence and timing of execution of program 
instructions. It runs in a separate thread and is instantiated by  the relevant Commander 
implementation class.

Once started, the thread will cycle through the list of Instructions within the Program object 
passed to it by  the Commander. Each instruction is first examined to see if it has a delay, and 
then whether it is an instance of a ProgramControlInstruction, in which case it is a looping 
instruction. 

If the former, then the Looper will execute the Instruction on the main program thread. This is 
achieved by  passing the Commander object as a parameter to the Instruction’s 
executeInstruction() method. If it is a looping instruction, then a new ‘subroutine’ is constructed, 
looping the required number of Instructions the required number of times. Then a new 
‘subroutine’ thread is started and the main program loop is paused until the subroutine thread 
sends a message to the Program Looper Handler inner class notifying that it has completed.

If the subroutine is meant to run concurrently  with the next instruction, then the main loop is not 
paused but continues.

Figure 7.28 contains an Activity diagram illustrating this behaviour.

Once the program is complete, the UIController classes are notified, and the user has the option 
to repeat the program loop or return to edit the story again.

That concludes a brief explanation of the implementation. Fuller details are included as 
comments in the code of each class.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

54



Sub-Routine Thread

Get next 
Instruction

A

build new subroutine 
Program

Update UI: 
"Instruction 
executing"

start subroutine in new 
Thread

wait for specified Delay

Get next 
subroutine 
Instruction

wait for specified 
Delay

Update UI: 
"Instruction 
executing"

Execute 
Instruction

Execute 
Instruction

Send 'Subroutine 
Over' message to 

main thread

has Delay

no Delay

Program
ControlInstruction

set 
mainRoutineLooping 

to false
is 

synchronised

is not synchronised

has 
Delay

subroutine not
over

no Delay

more
 Instructions

subroutine over

mainLoopRunning 
= falsemainLoopRunning

 = true

A

no more Instructions

mainRoutineLooping = 
true

Not a Program
ControlInstruction

mainLoopRunning 
= true

Figure 7.28 Activity diagram showing the flow of the ProgramLooper class

First steps in creative computational thinking with natural language programming and Lego Mindstorms

55



8. Chapter 8. Software testing

The software was developed and tested iteratively  throughout its development, starting at the 
prototype stage, and progressing through test case scenarios to integration testing, system 
testing and finally  user evaluation. The following sections describe in more detail each of these 
stages.

The Android Studio IDE was used throughout development, which remains in beta and does not  
yet have integrated support for JUnit testing. To overcome this, the early  stages of the project 
were planned so that functionality  could be added and then tested incrementally, with clear test 
criteria at each step. Each increment included a set of tests, followed by  a refactoring and 
repeat test.

8.1. Prototype iterative test driven development

At the prototyping stage, features were added incrementally  and tested in rapid iterations, as 
described below. In each cycle, the code was first developed and tested. If successful, the code 
was then refactored and encapsulated as a stand alone ‘Instruction’ before being tested again.

8.1.1. Test cycle 1: Make a Beep

The first tests involved successfully connecting to the robot and making it beep.

Test Success criteria

To connect successfully with the robot. bluetooth symbol on robot 
shows a connection

To send a message commanding robot to beep Beep emitted by robot

This was followed by  a refactoring to create a ‘Beep’ instruction, with configurable parameters 
for delay, frequency and duration. This allowed further testing with different parameter settings:

Test Success criteria

Beep.getInstance(delay, frequency, duration) Beep emitted by robot

8.1.2. Test cycle 2: move Robot in a Square

Subsequent tests followed the same pattern as Test cycle 1, but with more complex instructions. 
In test 2, the objective was to move the robot in a square:

Test Success criteria

Send a message commanding robot to move forward a set amount Robot moves set amount

Receive robot messages with ‘tacho’ count from motor port  B until count 
returns to 0

Trace of motor sensor

To send a message commanding robot to turn 90 degrees Robot moves 90 degrees

Then refactoring and repeating test:

First steps in creative computational thinking with natural language programming and Lego Mindstorms

56



Test Success criteria

Move.getInstance(RobotInstruction.NO_DELAY,10,50,true) Robot moves set amount

Turn.getInstance(90,50,true) Robot turns 90 degrees

Move.getInstance(RobotInstruction.NO_DELAY,10,50,true)
Turn.getInstance(90,50,true)
Move.getInstance(RobotInstruction.NO_DELAY,10,50,true)
Turn.getInstance(90,50,true)
Move.getInstance(RobotInstruction.NO_DELAY,10,50,true)
Turn.getInstance(90,50,true)
Move.getInstance(RobotInstruction.NO_DELAY,10,50,true)
Turn.getInstance(90,50,true)

Robot moves in a square

The same process was repeated for all prototype actions up to and including the most complex 
envisioned for the application - ‘Make robot fearful’. As a result, a complete set of Instructions 
and robot control methods were developed, and tested, providing the backbone for the robot 
control layer 

8.2. RLit development and testing

At this stage, the RLit ontology  and model layer were developed. This was initially  done on 
paper with the objective being to provide a language that could accomplish all of the complex 
sequences of instructions developed in the prototype. The chart in Appendix B and table in 
Appendix C shows the result of this stage, with the test being that every  instruction in the 
prototype, including Instruction class and all constructor parameters, could be constructed on 
paper using combinations of RLit phrases.

The RLit ontology was then exported from the format in Appendix C into a text file, and the next 
phase was to create and test an RLitDictionary  and RLitDictionaryLoader class that could 
populate a Map of RLitPhrases with the data set.

Two Android ListActivity  UI classes were then developed that enabled construction of sentences 
from the data set - StoryBuilder and SentenceBuilder. The test cases at this stage were to 
construct sentences that matched every possible combination represented at the paper stage.

8.3. Integration testing

An RLitInterpreter class was then developed that converted the sentences into Instructions. This 
permitted the first integration tests for the RLit model component and robot control component 
developed for the prototype.

The test was that all the instantiation calls used at the Prototype phase could be dynamically 
assembled from the RLitModel and two related Activity  classes, SentenceBuilder and 
StoryBuilder.

For the integration test, each test case in Section 8.1 was repeated, using this Interface, as 
exemplified in this table:

First steps in creative computational thinking with natural language programming and Lego Mindstorms

57



UI input Success criteria

First ROBOT moves forward a little and steadily. Robot moves set amount

Then ROBOT turns right 90 degrees steadily Robot moves 90 degrees

Then ROBOT waits until it sees something close Trace shows distance sensor reading and stops 
when target is reached

After successful integration of the RLit model and robot control classes, a Looper class was 
developed to test a list of Instructions run sequentially, and the tests were rerun, but this time 
not individually but together to test how the threading worked.

8.4. System testing

At this stage, the first round of system testing occurred, based on testing tasks that may  be set 
as programming assignments for Key Stage 2. Three Key  Stage 2 children, Liam, Nitzan and 
Alon assisted in the testing. They were asked to complete the following tasks:

1. Program the robot to draw a square

2. Program the robot to move around the room for 30 seconds without hitting a wall

3. Program a four line conversation between robot and Android

4. Program the robot to change speed in time to the Android’s music

Alon, 10, testing RoboLiterate, experiences success with his program

8.4.1. Problems with Bluetooth connection

Problems were experienced generally with the Bluetooth connection, including the application 
crashing if the robot closed its connection (e.g. if it was turned off), or if one jumped repeatedly 
between the StoryBuilder and ProgramExecutor Activities.

Not all these issues could be solved in the timeframe, since the conditions under which these 
crashes happened were quite unpredictable and will need deeper analysis. As a short term 
solution to solve these problems, the bluetooth connection was opened and closed each time 
the user moved to and from the Executor Activity. In addition, more Bluetooth connection checks 
were inserted throughout the execution code.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

58



Other issues relating to Bluetooth latency and robot performance meant that the robot 
sometimes behaved unpredictably, for example turning and moving at different rates when the 
same instruction was sent from the application. Further work will need to be done to solve these 
issues, however as these issues were not considered critical to the success of the project, they 
were deprioritised for later development.

Two major new problems were identified with the UI Controller and Rlit Model layers. The first 
related to Event Listener sentence combinations using ‘When’, and the other related to the 
operation of looping statements using ‘Repeat’.

8.4.2. Problem with ‘When’ event listener

In the UI Controller layer, compound sentences starting with ‘When’ appear as one sentence, for 
example, 

! ‘When ROBOT sees something close, ROBOT turns left 120 degrees’.

This is to ensure that the sentences flow in exactly  the way they would as regular English 
sentences. In the Rlit Story layer, however, this is stored as two separate RLit sentences:

! When ROBOT sees something close,

and

! , ROBOT turns left 120 degrees.

In the above example, the comma is treated the same way  as the sequencing phrase ‘After 
that’. In tests, this broke when the user deleted or re-edited these sentence. To fix this bug, two 
avenues were considered - either changing the RLit ontology  to accept compound sentence 
types, or adjust the UI Controller layer to make sure all instances of insertion and deletion of 
‘When’ sentences would work. The latter path was chosen since changing the entire ontology  of 
RLit was deemed too risky.

8.4.3. Problem with looping behaviour

Issues arose when the user created a overlapping loop in their program, for example:

! First ROBOT moves forward a little and slowly.

! Repeat the last sentence 2 times.

! Then ROBOT turns right 90 degrees and slowly.

! Repeat the last 2 sentences 2 times.

The result was an infinite loop in the ProgramLooper class code. To solve this problem, two 
approaches were considered - either changing the Looper class to allow  for nested loops, or 
block their usage at the UI level. Because of the lack of time, and lack of experience in creating 
threaded looping structures, it was again decided to localise the changes to the UI Controller 
layer, in the Sentence Builder Activity, because it has fewer dependencies. Now in the final 
application, the user is unable to create overlapping loops, as the UI controller code checks 
where the last Repeat statement occurs and ensures the user does not have the opportunity  to 
overlap subsequent Repeat sentences.

8.4.4. RLit phrase ambiguities

Further issues were discovered with the phraseology  of RLit, in this testing stage and during the 
subsequent user evaluation. The issues that arose were mainly  to do with ambiguities regarding 
sequencing and looping.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

59



It was not clear to users if the sequencing phrases ‘Then’ and ‘After a few seconds’ indicated 
concurrent action or sequential action. For example:

! First ANDROID plays adventurous music for 30 seconds.

! Then ROBOT moves forward continuously and quickly...

One user assumed the second sentence would execute immediately after the first sentence, 
whereas during the actual execution, he was surprised that it only  occurred after 30 seconds. In 
other words, the user did not differentiate between ‘Then’ and ‘At the same time’. In the final 
version, the phrase ‘Then’ has been changed to ‘After that’ to try  to avoid this ambiguity. The 
user approved this change, however further testing is needed to see whether the confusion 
remains with others.

All the testees assumed ‘After a few seconds’ indicated delayed but concurrent action, whereas 
in the ontology it actually  indicated delayed and sequential action. This required just a small 
change in the RLit text file to fix this. 

Another ambiguity  related to looping. For instance, the following story  moves the robot in a 
square:

! First ROBOT moves forward a little and steadily.

! After that ROBOT turns left 90 degrees and steadily.

! Repeat the last 2 sentences 4 times.

However in testing, users wrote as the final sentence the following:

! Repeat the last 2 sentences 3 times. 

In other words, they  assumed that the repetition of the last two sentences would happen after 
they had first been executed once, so they  only  need to ask the robot to repeat 3 more times. 
Again, this ambiguity  arose from using natural language as a programming medium rather than 
using something symbolic, for example brackets. A decision needed to be made as to whether 
to introduce devices such as brackets, but I chose to stick firmly  to NLP, because adding 
brackets would mean adding a conceptual layer that would need learning, and the objective of 
the application was to have basic English literacy  as the only  prerequisite. The solution in this 
case was simple - in deference to how the users understood the Repeat sentence, it was 
changed to the following, with the change shown in bold:

! Repeat the last 2 sentences 3 more times.

Now using this sentence will get the robot to move in a square path. 

8.5. User evaluation

The final application was tested over a two week period at two different international schools in 
Jaffa, Israel. 

Twenty children aged between 7 and 10 were selected by the Principals on the basis of their 
English speaking skills. The children were also identified according to their interest in English 
and art. The majority  of the children were of Arab or Jewish descent, and did not speak English 
as their first language, but had at least basic English literacy skills.

Five 30 minute sessions were conducted, each with 4 students and a teacher observer. The 
teacher observers included the Principal of one school, an IT coordinator and an Art teacher. 
There were two testers present at each session, one who ran the session (myself) and the other 
recording with a camera.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

60



The structure of the sessions were as follows:

(1) The students were shown a short demonstration story  with the robot. The story  was about a 
lonely  robot, who turns around and moves away  when asked by Android to play. Then 
Android offers to play some happy  music to cheer the robot up. When the music starts, the 
robot starts spinning around and beeping.

(2) The children were then told that it was their opportunity  to play  with the robot and Android. 
They  were introduced to the application RoboLiterate, however they were given no 
instructions on how to use it. Instead they  were told they  could ask for help if they  got stuck. 
The children worked in pairs, one pair with an Android Galaxy  S, and one pair with a Google 
Nexus 7 tablet.

(3) The children were observed using the application for 10 minutes. When they were ready to 
test what they had written, they were guided through the steps of connecting to the robot.

(4) They  were then observed as the program executed, and asked questions such as ‘What is 
happening now?’, ‘Is it what you expected?’, ‘Why  is this happening?’, ‘What went wrong?’, 
and ‘How would you change it?’

(5) Each pair was then given another chance to go back to their story, make changes, and run 
the program once again. If time, they did this in a third cycle.

(6) As a plenary, they discussed what they liked and didn't like about the application, and how 
they would like to change it.

In the next section, results of the user evaluation are discussed.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

61

Liam (aged 9) starts his demonstration



9. Chapter 9. Results

The testing went well and most of the pupils were able to write a story  and get the robot and 
Android to perform as they  intended. At the end of the 30 minute sessions, the children were 
generally  very  keen to continue, and although there wasn’t enough time to fully  develop story 
ideas and implement them, several children had begun drafting ideas that they wanted to turn 
into stories.

There was also evidence of learning linked to the objectives in the Key  Stage 1 and 2 
Computing programmes of study. The three teachers who observed the sessions showed a 
great deal of interest in the program and all said after the sessions that they would now be 
interested in investing in Mindstorms for their school. 

Interestingly, the Art teacher was excited about the potential of the application to get children 
interested in literature and language, a reversal of the original objectives of the project. He 
suggested that IT-minded children could write stories based on the books they  are studying in 
language class, for example having the robot and Android act out scenes from a Shakespeare 
story - ‘RoboShakespeare’. 

The IT coordinator was excited about the potential of bringing computing into the classroom and 
away from the IT suite. He was very  keen to invest in NXT equipment after the visit. The 
Principal of Tabeetha school in Jaffa later wrote: “From what I saw the children were having an 
extremely  good time...(they) learned how to solve problems and think logically  to find solutions. 
Also they  had [the] opportunity  to practice making decisions and putting theories into practice. 
We are now seriously thinking of getting an NXT system into our school!”

The following sections present the results relating to the two main phases of the sessions - 
authoring stories and then testing them on the robot.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

62

Children testing their stories, with the school principal looking on.



9.1. Story writing

Most children had little difficulty  using the RoboLiterate interface, and once they  got past writing 
the first sentence, they were very quickly writing long stories.

About half the children asked for confirmation that they  needed to press ‘Start a new  story’ on 
the launch screen, and after that all but one pair quickly  recognised that they needed to press 
‘Add sentence’ next. Surprisingly, nearly  half the children experienced problems with the next 
Sentence Builder screen (Figure 7.3) and needed to be shown the ‘First’ button. Some children 
thought they needed to press on the empty  text window to begin. However, after they were told 
to press ‘First’, and more phrases subsequently  appeared in the lower part of the screen, all 
children quickly  understood what to do next. In a future iteration, an adaptive feedback layer 
could indicate to users that they need to press ‘First’ to start their first sentence

The speed with which children picked up the story-writing interface meant that some pairs 
started building sentences without giving much thought to the story  they  were constructing. 
Emboldened by the easy  interface, they  churned out long essays, stringing phrases together to 
make a long list of attractive sentences, without thinking how they  would work together during 
program execution.  

This was actually beneficial, because for these students, when they ran the program, they  came 
across many problems - endless loops, long pauses, event listeners with no events. It was then 
that the questioning could start, and the children had to think about the effect of the sentences 
they had generated. For these students, when they came to build another story, they did it with 
a lot more thought. In other words, this was their first lesson in coding, debugging and 
refactoring.

On the SentenceBuilder screen, some children missed the Backspace button and didn’t know 
they had to press this to delete phrases. This was especially  problematic when they  were 
returning to this screen to re-edit a sentence they  had previously  built. In a future redesign, the 
Backspace button should be made clearer, possibly  by  changing the icon to something more 
Android-centric, or by re-introducing the label ‘Delete’.

No child independently  found the RECORD button, which had to be pointed out to them. This 
was far from ideal because it hid away  a very  powerful feature, which was very  popular when 
discovered. In future iterations, this feature should be made more salient, possibly  with an 

Using the SentenceBuilder interface

First steps in creative computational thinking with natural language programming and Lego Mindstorms

63



adaptive feedback layer highlighting this button if the user hasn’t used it after a certain number 
of visits.

The same issue was found with all ActionBar icons, with no child recognising the ‘Save’ button 
and more than half the children needing to have the ‘Play’ button pointed out to them. Again, in 
a future iteration, an adaptive feedback layer could show the user the button once he or she has 
constructed a number of sentences and has not yet found how to play a story.

One critical missing feature was the inability  to insert sentences before previously authored 
sentences, and rearrange the order of sentences. One of the older students, Liam, said it was 
very  frustrating having to delete many sentences as a means of inserting a new one in the 
middle of his story. In a future iteration, this would be an important feature to add.

Another important issue was children were initially  unclear about what they could write, as 
phrase choices only  appear as they  typed. This meant, at least in their first two iterations of 
coding and testing in the session, the children were making up their stories as they  went along, 
with little story  planning. It was only  after about two write-and-test cycles that they  started to 
understand the limits of the language and what they  could achieve. Two older children 
suggested that it would be useful to have a list of all the possible words in one place so they 
would know what options were available. Another suggested that recommended words would 
be highlighted to the user to show her a good example of what she can write.

Another interesting suggestion was to include symbols next to the phrases, for example having 
a curved arrow  next to ‘turn left’. Others suggested making the interface much brighter with 
different colours and animations. When questioned as to why they wanted this, the reply  was 
that it would make it look ‘more interesting’, ‘more fun’, ‘I’d use it more’.

9.2. Program execution

While the robot and Android performed the story, all children were eagerly  monitoring the 
Android screen to see how their program was executing. One issue was the length of time it 
took to upload sound files before the programs commenced, however the gradually 
incrementing percentage readout proved important in letting the children know that something 
was indeed happening as they waited for the program to begin. 

Running the robot program

First steps in creative computational thinking with natural language programming and Lego Mindstorms

64



When their programs began, the console proved successful in holding children’s attention and 
provided a good basis for the testers to question the children about what was happening and 
why. It was at this point that many  of the Key Stage 1 and 2 Computing learning objectives 
came into play. 

For example, Mustafa, 9, had written the following:

! First ANDROID plays scary music for 1 minute.

! After that, ROBOT moves forward a little and steadily.

When he ran his program, he was surprised to find that the second line was not executing. 
When he was asked why it was happening, he was not sure at first, but when the tester pointed 
at the words ‘After that’, he understood. When asked how he would change his program, he 
already knew - ‘Change it to ‘At the same time’’.

Another child, Nettie, 10, had written the following as her final two sentence:!

! After a few seconds, ROBOT turns left continuously.

! At the same time ANDROID says ‘goodbye’.

At the end of her program, the robot didn’t stop turning round in circles. When asked why she 
thought this was happening, her first reply  was that the robot had broken, but when told that it 
was something to do with her program, she looked at the console screen and identified the word 
‘continuously’ as the issue.

The younger children had some problems with the English, and one pair, Ines and Steven, 8, 
were concerned that their story  had ‘frozen’. When they went back to edit it, they  asked a tester 
for some help. The problem was that they had inserted an event listener which was never 
resolved:

! After a few seconds, ROBOT waits until it sees something very close.

! After that, ROBOT moves forward a little and quickly.

The tester encouraged them to try  the program again and see what happened. When the 
program stopped at the first sentence, the tester asked them why  nothing was happening. It 
was clear that English was a problem here, so another child, Liam, helped. He spotted that the 

Testing the robot’s distance sensor, one step at a 
time..

First steps in creative computational thinking with natural language programming and Lego Mindstorms

65



robot was waiting. Now understanding the problem, the tester asked Ines how she planned to 
fix it. She knew  what to do and walked carefully towards the robot, and when it sprang into life, 
the group were excited and amused to see the result.

This experience exemplifies an issue with the interface that would need to be addressed in 
future iterations.This was that the users could often not remember what they  had programmed 
to come next, and this was important when the program appeared to ‘hang’, as it is did with Ines 
and Steven. In other cases, when asked whether they thought their program had ended, or 
whether something was supposed to happen next, they  sometimes couldn’t say. In a future 
iteration, it will be important to show the whole program on the screen, possible in grey, and 
highlight the lines as they execute.

9.3. ! General impressions

It was interesting to note that it was the younger group of children (the 8 year olds) who showed 
the most fearlessness and joy  in using the application. Their shouts of delight, also noted by the 
Principal, showed that they were experiencing real excitement at getting their robot to perform.

The older children were more hesitant, maybe because they were more wary of getting things 
wrong, however through their more tentative approach by  the end of the half hour some were 
beginning to think more about the stories they wanted to write, including:

- a story about “Robot has no friends. Then Robot makes friends with Android” (Nadine,8)

- a story about “a robot chasing people”. (Nikol, 10)

- “I want to write an adventure” (Alin, 9)

There was some disappointment that the robot couldn’t do more things, and the younger 
children couldn’t quite understand why it couldn’t do things like jump or do exactly what you tell 
it, however this stimulated an interesting plenary  discussion about what it means to program a 
robot. For example, when we were discussing Nikol’s idea about making the robot chase things, 
we brainstormed about how to do it using RoboLiterate language. That got the children thinking 
about how to use its sensors to detect distance, and Samir (9) quickly  deduced a problem if the 
person its chasing turns to the side. Although we only  had a very  short time, this discussion 
point easily could have been expanded into a whole project, and all based on Nikol’s story idea.

The use of audio added a very  important enriching layer to the experience, meaning that the 
children could personalise their story. It was unfortunate therefore that the NXT’s speaker is so 
quiet, meaning that unless there was complete quiet, no one could hear it. Hopefully  with the 
EV3 the speaker quality has been improved

First steps in creative computational thinking with natural language programming and Lego Mindstorms

66



10. Chapter 10. Analysis

From these initial tests, there are promising signs that this approach could provide a method for 
introducing computational thinking into the classroom in an entertaining and engaging way  for 
children most interested in performance and telling stories. Evidence of learning was found by 
the testers and reinforced by  the teacher observers, that matches many of the stated objectives 
of the new Computing programme of study for Key Stage 1 and 2.

It had already  been found during earlier user testing that the application can be used to teach 
Key Stage 2 objectives, in that they were engaged in “designing, writing and debugging 
programs to accomplish specific goals with physical systems” (KS2 objective). However, the 
critical test was to see if computational thinking could happen in a classroom environment 
where children are not being led ‘recipe-style’ through scripted learning points, but through 
exploration based on their own imaginations and creativity.

Initial results based on this user evaluation show that this application’s approach is a method 
that can be used to facilitate this, serving as a basic introduction to ‘creative computational 
thinking’. There was no explicit goal given to the evaluation groups at the beginning of the 
session; after they  were shown an example program, they were simply  encouraged to help fun 
and explore the application themselves. It was emphasised that there was going to be no ‘right’ 
or ‘wrong’ answer. By  the end of the thirty  minutes, many  children were already  engaged in 
aspects computational thinking and self-setting goals for the next story they wanted to write.  

Some of the observed learning included:

- learning that program execute by following precise and unambiguous instructions

- practice creating and debugging their own programs

- using logical reasoning to predict the behaviour of their programs, and investigating why 
their program was not behaving as expected. 

These are stated objectives of the new Key Stage 1 curriculum.

All the groups were to differing degrees using sequence, selection and repetition in their 
programs, and using logical reasoning to explain how their programs worked, and detecting and 
correcting errors. These are all stated objectives in the Key Stage 2 curriculum.

Moreover, the initial tests provided evidence that the application itself is very  quick to pick up, 
with children writing complex programs speedily, and with appropriate questioning, being led 
into computational thinking within minutes. Most of the children were highly  engaged and 
excited by the activity, as noted by the Principal of Tabeetha school. 

Several issues remain which will need to be solved to improve the user experience and make 
the application more attractive to the ambitious dramatists who wanted to see the robot do 
many more things right from the start. For example, the ‘macro-behaviours’ that were originally 
proposed need to be integrated into the RLit language, so that children can begin creating 
complex behaviours right from the start. In their comments, users wanted the robot to ‘chase’ 
things, ‘dance’ and ‘jump’. A way  of integrating these high-level procedures into the language 
needs to be developed.In general, to help  children to go further, much more work will need to be 
done to make the language powerful enough to allow children to realise their artistic vision. 

First steps in creative computational thinking with natural language programming and Lego Mindstorms

67



11. Chapter 11. Critical comparison

11.1. Engagement

Having conducted the user evaluation, I wanted compare these findings with results from testing 
other applications that teach computational thinking to Key  Stage 1 and 2 children. In particular I 
wanted to focus on engagement in learning, and whether RoboLiterate can stimulate the 
dramatists to learn more than other applications can.

Unfortunately  within the time frame  I couldn’t perform a fair comparative test between these 
applications and RoboLiterate with any  one child, however I had the early data from testing 
tablet applications with Aiden, 9, and so could perform a loose comparison between that and 
results from the user evaluation.

Aiden would probably  classify  himself as a dramatist, as noted before, in that he loves music 
and acting. However, he is also very  quick on the computer and iPad, and was eager to test the 
programming apps I downloaded for him. I chose two of the most visible applications for the 
iPad -  ‘Hopscotch’ and ‘Move the Turtle’, which are both aimed at children aged 9-11 years old. 
Hopscotch is developed by Hopscotch Technologies and is ‘heavily  inspired by  MIT’s Scratch’, 
allowing children to build program routines that control cartoon characters by dragging blocks 
onto the screen (Hopscotch, 2013). Move the Turtle is similarly  aimed at 9-11 year olds, and 
draws its inspiration from the original Logo, getting children to program a turtle to move and 
draw patterns on the screen (Turtle, 2013). Screenshots of these applications are shown in 
Figure 9.1.

Move the Turtle (ages 9+) Hopscotch (ages 9+)

Fig 9.1 Two current iPad applications for teaching programming

Both Hopscotch and Move the Turtle engaged Aiden’s interest for a while, and he returned to 
them ‘a few’ times over the two week period. It appeared that both applications had different 
incentives for him to return, however neither were strong enough for him to want to keep on 
returning to for long compared to, say, Garage Band, which he was constantly  revisiting, making 
and tweaking his musical compositions.

‘Move the Turtle’ has a very strong tutoring system which leads children step by  step from 
programming the turtle to move, to navigating a maze, to drawing fractals. Aiden enjoyed the 
reward system and was proud that he had already finished the first eight mini-levels and had 
reached Level 2. It appeared that achieving a score was the main motivating factor for this 
application, and he wasn’t so interested in the movements of the turtle, because having got to 
Level 2, he didn’t continue. Hopscotch was more interesting for him - after a week, he had 
managed to move three ‘characters’ across the screen, painting wavy  trails behind them, and 

First steps in creative computational thinking with natural language programming and Lego Mindstorms

68



was keen to show me what he had done. In the next week, however, he had not picked up the 
application again.

With ‘Hopscotch’, he was pleased with the results of his artwork achieved through 
programming, but there was a ceiling of interest that was reached quite quickly  before he 
moved on. The issue with ‘Move the Turtle’ was that the rewards were not enough to hold his 
interest. This may  be an issue with many applications on the market, which focus on narrow 
skills-based programming tasks but do not do enough to stimulate the minds of users and 
empower them to use programming for their own purposes. 

It was not possible to test RoboLiterate with Aiden because of geographical separation, but it 
would have been interesting to see if this would have engaged his interest for longer.  The the 
ideas and reactions that were gathered from the children here in Jaffa indicate that an 
application such as RoboLiterate might have much more potential to engage the creative mind 
of Aiden.  RoboLiterate gives much more free reign to be creative, to program movements, 
sounds and dialogues, and to do so in a tangible physical space that gives the feel of a real 
performance. Clearly, more work will have to be done to see whether an approach like 
RoboLiterate can engage creative minds longer than these applications but from the results of 
the short user evaluations, the signs are hopeful.

11.2. Promoting computational thinking 

In additional to testing engagement, the applications were analysed together with RoboLiterate  
to see how  well they  covered the key  concepts and practices that form Brennan and Resnick’s 
framework for computational thinking (Brennan & Resnick, 2012). Table 9.1 summarises the 
concepts covered by each application, and shows quite an even coverage:

Concepts Hopscotch Move the Turtle RoboLiterate

Sequences ✔ ✔ ✔

Loops ✔ ✔ ✔

Events ✔ x ✔

Parallelism ✔ x ✔

Conditionals x ✔ ✔

Operators x ✔ x

Data x ✔ x

Table 9.1 Table showing coverage of computational thinking concepts (Resnick & Brennan 
2012)

It is hard for an application on its own to encourage what Brennan and Resnick (2012) identify 
as computational thinking practices. These practices are: being incremental and iterative, 
testing and debugging, reusing and remixing, and abstracting and modularizing. It is the 
environment that is built around a product, the context within which it is used, that must be at 
least as important in influencing the development of these practices. One of Scratch’s great 
strengths is its online community  that encourages the reusing and remixing of other members’ 
projects.

The products in this study don’t get near Scratch in terms of being able to encourage these 
practices, however Move the Turtle, Hopscotch and RoboLiterate go some way to achieving it. 

First steps in creative computational thinking with natural language programming and Lego Mindstorms

69



Move the Turtle encourages incremental and iterative programming indirectly  through its 
excellent, step-by-step tutoring layer. Hopscotch allows users to share their project via email, so 
they can work on each other’s projects. RoboLiterate does not yet have this functionality, but 
since all RLit stories are saved as JSON files, this would be easy to implement in future 
versions. At present, stories can be saved and shared with others who use the same device.

A great strength of RoboLiterate is how  its design encourages debugging. This was witnessed 
in the user evaluation. It explicitly  shows and updates the status of a running program in its 
console window, similar to a debugging window in an IDE. Many children used this to discuss 
what was happening with their program and why it wasn’t behaving as expected.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

70



12. Chapter 12. Conclusion

The application developed for this project introduces a different way  to approach programming 
and computational thinking for Key  Stage 1 and 2 children. It has the potential to open up 
programming to children and teachers who feel more comfortable with words and stories than 
they do with patterns and symbols. It could provide a means for children to explore theme-
based programming that is cross-curricular and not tied to a specific skills-led agenda. At the 
same time it has been shown in testing to be rigorous enough that in a short 30 minute session, 
many aspects of computational thinking are touched upon, covering several aspects of the new 
Computing curriculum.

In general it has met the objectives of the project:

• Promoting computational thinking: RoboLiterate gives students experience in sequencing, 
looping, events and other concepts, and introduces them to the practice of creating and 
debugging simple programs, and sharing work with others

• Possess a fast learning curve: in testing, all children could master the interface quickly, and 
most of these children had English as a second language. However, more work will need to 
be done to introduce children to the range and depth of what they  can create, and not just 
how.

• Appeal to the dramatists: from the evaluation, there was much excitement and interest, with 
children already  planning what stories they  wanted to tell. More work will need to be done to 
help dramatists tell their stories, however, with further examples for them to work with, and 
richer functionality and behaviours for the robot.

• Be future ready: the aim of the system design was to ensure that the application could be 
adapted easily for the EV3 version of Mindstorms. Only time will tell if this has been the case.

Lots of further work has been identified which will need to be done to improve RoboLiterate so 
that it can be more stable, educational, user-friendly and rewarding for the dramatists. Crucial 
improvements include the following:

• Re-introducing ‘procedures’, in the spirit of the proposal, but designed to fit with the RLit 
interface. This will allow for complex behaviours to be used right from the beginning, and later 
adapted and refined by users

• Develop the language and interface to allow for control over variables and data

• In parallel, fixing the Bluetooth issues so that the connection is more stable and the robot 
movements are better calibrated with the language

• Add adaptive feedback layers, that not only  help users with the interface, like identifying 
ActionBar buttons, but also give guidance on how the explore the full range of actions 
available.

This project has been a huge undertaking considering the time and resources available and I 
feel it has just scratched the surface of all the possibilities in this area. However, as Computing 
becomes a central part of the new curriculum, I feel strongly that as many  different approaches 
needed to be trialled as possible to ensure that this curriculum is a success and that all students 
and teachers will be kept on board.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

71



13. Bibliography

Alimisis, D. (2012). Robotics in Education & Education in Robotics: Shifting Focus from 
Technology to Pedagogy. Paper presented at the Proceedings of the 3rd International 
Conference on Robotics in Education, Charles University in Prague.

Alimisis, D, & Moro, M. (2007). Robotics & constructivism in education: the TERECoP project. 

BBC. (2008). The Hitchhiker Adventure Game. from http://www.bbc.co.uk/radio4/hitchhikers/
game_nolan.shtml

Bers, M. (2008). Engineers and storytellers: Using robotic manipulatives to develop 
technological fluency  in early  childhood. In O. S. B. Spodek (Ed.), Contemporary Perspectives 
on Science and Technology in Early Childhood Education: Information Age Publishing.

Brennan, K, & Resnick, M. (2012). New frameworks for studying and assessing the 
development of computational thinking. Paper presented at the American Educational Research 
Association (AERA) annual conference.

Cellbots. (2011). Cellbots: Using Cellphones as Robotic Control Platforms. from http://
www.cellbots.com/robot-platforms/lego-mindstorms/

Education, Department for. (2013). National curriculum in England: computing programmes of 
study.  Retrieved from https://www.gov.uk/government/publications/national-curriculum-in-
england-computing-programmes-of-study/national-curriculum-in-england-computing-
programmes-of-study.

Eguchi, A; Hughes, N; Stocker, M; Shen, J; Chikuma, N. (2012). RoboCupJunior - A Decade 
Later. In T. R. e. al. (Ed.), RoboCup 2011 (pp. 63-77): LNCS 7416.

Falk, Geoffrey. (2013). Controlling Next Generation Mindstorms Robots using Android Devices. 
(Masters Project Proposal), Birkbeck College and Institute of Education.   

Fedor, J. (2011). NXT Remote Control Android application. from https://play.google.com/store/
apps/details?id=org.jfedor.nxtremotecontrol

Foundation, Logo. (2012). The Logo Programming Language. from http://el.media.mit.edu/logo-
foundation/logo/programming.html

Gobel, S; Jubeh, R; Taesch, S-L; Zundorf, A. (2011). Using the Android Platform to Control 
Robots. Paper presented at the 2nd International Conference on Robotics in Education. 

Google. (2012). Bluetooth Chat. from https://play.google.com/store/apps/details?
id=com.blong.bluetoothchat&hl=en

Google. (2013a). Android Developers' training site. from http://developer.android.com/training/
index.html

Google. (2013b). Bound Services. from http://developer.android.com/guide/components/bound-
services.html

Google. (2013c). Fragments - Android Developers API Guide. f rom ht tp: / /
developer.android.com/guide/components/fragments.html

Google. (2013d). google-gson: a Java library  to convert JSON to Java objects and vice-versa. 
from http://code.google.com/p/google-gson/

Google. (2013e). Saving Data in SQL Databases. 

Google. (2013f). Top Paid in Education. 

First steps in creative computational thinking with natural language programming and Lego Mindstorms

72



Griffin, Terry. (2010). The Art of Lego Mindstorms NXT-G Programming.

Hopscotch. (2013). Hopscotch Technologies. from https://www.gethopscotch.com

IDC. (2013). Top Smartphone Operation Systems, Shipments, and Market Share, 2013 Q3. 
from http://www.businesswire.com/news/home/20130807005280/en/Apple-Cedes-Market-
Share-Smartphone-Operating-System

Inform7. (2013). About Interactive Fiction. from http://inform7.com/if/interactive-fiction/

Klassner, F, & Anderson, S D. (2003). LEGO MindStorms: Not Just for K-12 Anymore. IEEE 
Robotics & Automation Magazine.

Lego. (2006). Lego Mindstorms NXT Bluetooth Developer Kit. from http://mindstorms.lego.com/
en-us/support/files/default.aspx

Lego. (2012). MINDroid application. from https://play.google.com/store/apps/details?
id=com.lego.minddroid

Lego. (2013a, 22 January  2013). Announcing Lego Mindstorms EV3. from http://
mindstorms.lego.com/en-us/News/ReadMore/Default.aspx?id=476243

Lego. (2013b). Comparing EV3 with NXT. from http://www.legoeducation.us/eng/misc/
comparingEV3andNXT.cfm

Lego. (2013c). Lego WeDo range. from http://education.lego.com/en-gb/preschool-and-school/
lower-primary/7plus-education-wedo/

leJOS. (2011). Using leJOS with Android. from http://lejos.sourceforge.net/nxt/nxj/tutorial/
Android/Android.htm

McNerney, Timothy  S. (2004). From turtles to Tangible Programming Bricks: explorations in 
physical language design. Personal and Ubiquitous Computing, 8, 326-337. 

MIT. (2013a). Scratch. from http://scratch.mit.edu

MIT. (2013b). Scratch - Explore up-to-date statistics about the Scratch Online Community. from 
http://stats.scratch.mit.edu/community/

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. NY: Basic Books.

Resnick, M. (2012). Mother's Day, Warrior Cats and Digital Fluency: Stories from the Scratch 
Online Community. Paper presented at the Constructionism 2012, Athens, Greece.

Robinson, Ken. (2013, Friday  17 May). To encourage creativity, Mr Gove, you must first 
understand what it is, Comment piece, The Guardian. Retrieved from http://
www.theguardian.com/commentisfree/2013/may/17/to-encourage-creativity-mr-gove-
understand

RoboCupJunior. (2013). RoboCup Junior website. from http://rcj.robocup.org/dance.html

RobotC. (2012). RobotC. from http://www.robotc.net/teachingmindstorms/

Rusk, N, Resnick, M, Berg, R, & Pezalla-Granlund, M. (2008). New Pathways into Robotics: 
Strategies for Broadening Participation. Journal of Science, Education and Technology(17), 
59-69. 

SysBrain. (2007). Why sEnglish?   , from http://www.system-english.com/?page=why

Terrapin, Software. (2013). Bee-Bot and Bee-Bot Support Materials. from http://
www.terrapinlogo.com/bee-bot.php

First steps in creative computational thinking with natural language programming and Lego Mindstorms

73



Turtle, Move the. (2013). Move the Turtle. from http://movetheturtle.com

Wikipedia. (2013a). Colossal Cave Adventure. from http://en.wikipedia.org/wiki/
Colossal_Cave_Adventure

Wikipedia. (2013b). Natural language programming. from http://en.wikipedia.org/wiki/
Natural_language_programming

First steps in creative computational thinking with natural language programming and Lego Mindstorms

74



14. Appendix A:  RLit Ontological framework

An initial version of the ontology was developed and then tested. After comments, revisions 
were made to make it as ‘natural’ and powerful as possible. The names of the self-standing 
entities in RLit adopt the nomenclature of grammatical language, such as ‘sentence’, ‘verb’, 
‘phrase’, however this does not mean that these entities are synonymous with their linguistic 
namesakes,. Rather they share commonalities, and using these labels helps make sense of 
RLit’s structure. All subsequent uses of these words refer to them within the context of RLit, 
rather than grammatical syntax, unless explicitly stated otherwise.

14.1. RLit Story

The Story  is the ‘document’ that forms the basis for the executable program. The Story  is 
composed of a sequence of ‘sentences’, of which there are 3 types:

DIRECTION SENTENCES – Sentences that issue simple instructions. These instructions can 
appear anywhere in a Story.

EVENT LISTENER SENTENCES – these Sentences monitor readings from the robot sensors, 
and pause the flow of the Story  until stipulated conditions are met (either a target reading is met 
or a time period elapses)

EVENT RESULT SENTENCES – these sentences occur after EVENT LISTENER sentences 
that start with ‘When'

RLitStories all need to begin with a Sentence which contains the ‘Sequencer’ phrase ‘First’. 
Subsequent sentences all begin with a variety of other ‘Sequencer’ phrases, depending on the 
composition of the immediately preceding sentence(s).

An initial decision was to restrict the language to ‘simple’ sentences i.e. no compound 
sentences, for example ‘when…do’ sentences. This is because I wanted to keep the language 
as simple as possible, and make sure each sentence mapped directly  to an instruction, whilst 
still providing a feature set that would make full use of the robot’s sensors. 

For example, in the first iteration, the following Story  instructed the robot to move around a 
room, avoiding walls:

1. First ROBOT moves forward continuously.

2. At the same time ROBOT waits until it sees something close

3. Then ROBOT turns left 120 degrees.

4. Repeat the last three sentences for 1 minute.

From a programmer’s point of view, this makes some kind of sense. Sentence 1 sets out the 
initial state, Sentence 2 is an event condition, and sentence 3 is the result of the condition being 
met. The final sentence surrounds the previous three sentences in a loop. This is indeed how 
the instructions are sent to the robot.

However, when tested it was apparent that this wasn’t how users would ever explain the 
sequence orally. Firstly, it is linguistically  awkward – how can a robot move continuously  and 
wait at the same time? If the word ‘waits’ was substituted with ‘senses’, ‘observes’, it still didn’t 
feel comfortable. This is because the separation of condition  and result into separate sentences 
(2 and 3) is not what we do in natural language - we use if... and when... clauses instead.

For this current Masters project, I initially  felt the demands of developing the ontology  and 
subsequent implementation to include compound sentences would go beyond the practical 
scope of this project. 

First steps in creative computational thinking with natural language programming and Lego Mindstorms

75



In the end, a solution was found - to maintain the underlying RLit ontology of just using simple 
sentences, but change the UI layer so from the user’s perspective, compound sentences are 
now admissible. For example, users can type the following and it will have the same result as 
the story above: 

1. First ROBOT moves forward continuously.

2. When ROBOT sees something close, ROBOT turns left 120 degrees.

3. Repeat the last two sentences for 1 minute.

Final testing provided confirmation that this was well worth the extra work.  Users were 
technically  still able to write stories using either of the methods above. Not one user thought of 
using the first method – everyone naturally used the second approach i.e. using When.

This did have some knock on effects on the ontological structure of RLitStory, in particular with 
the ‘Repeat’ sentence, and extra rules governing ordering of sentences. For this reason the 
ontology  needed to include the three-fold classification of sentences and ensure that within RLit 
Story  entities, EVENT LISTENER sentences that begin with ‘When’ are always followed by 
EVENT RESULT sentences, that begin with a comma.  An example of this comes later.

14.2. RLit Sentences

The ‘sentences’ are the basic building blocks of RLit. A sentence is defined as a structure that 
contains at least one ‘phrase’, and this phrase must be of type ‘verb’ (which has many 
similarities but is not synonymous with the grammatical definition of verb). 

Every  ‘verb’ maps to a specific Instruction, which is identified through the verb’s InstructionID. 
Through its verb phrase. each Sentence is therefore mapped to one Instruction. A sentence can 
never map to more than one Instruction. 

In other words, each Sentence contains one and only  one verb. In addition, every Sentence in 
RLit (so far) has a Noun, expect for sentences that govern program flow, such as the verb 
‘Repeat’.

All other phrase types are optional within an RLit sentence, however if they  occur they  must 
assume the following order:

Sequencer phrase + NOUN phrase + Auxiliary phrase + Verb phrase + Modifier phrase + 
Quantifier modifier.

Only  one phrase of each type can occur in one sentence. For example, a sentence cannot 
contain two modifiers, although it can contain one modifier and one quantifier.

The following are examples of acceptable sentences within RLit:

1. First ROBOT moves back a little and quickly.

2. After 3 seconds ANDROID says ‘What’s up’.

3. When ROBOT sees something very close

4. , ROBOT turns left about 90 degrees and slowly.

5. At the same time ROBOT beeps C for a whole note.

Although all these are admissible RLit Sentences, only  examples 1, 2 and 5 are sentences in an 
everyday  sense. Examples 3 and 4 show how RLit divides compound linguistic structures into 
separate entities/‘sentences’.

First steps in creative computational thinking with natural language programming and Lego Mindstorms

76



In the application, sentences are built via the UI by  sequentially  adding phrases to a growing 
sentence, beginning in all cases with ‘Sequencer’ type phrases, apart from ‘Repeat’ which is 
classified as a verb phrase. The phrase selections that are made available are governed by the 
ID of the immediately  preceding phrase in the sentence (the ‘parent’ phrase). Appendix B show 
the complete ontological map of phrases, with all possible phrase combinations.

14.3. RLit Phrases

RLit Phrases are the subunits of every RLit Sentence.

Each phrase consists of a set of String and integer fields that dictate how they work together in 
a Sentence, and this orchestration is led by the sentence’s Verb phrase. 

All phrases include a human-readable label, which is what appears in the UI, and a sort index, 
which defines where in the list of phrases they appears. This is important for usability  issues, so 
that the most important phrases can promoted higher up on the list than more obscure, or 
challenging phrases. For example, ‘quickly’ appears higher than ‘very quickly’, and ‘moves 
back’ appears higher than ‘says’ (getting the Robot to say things involves a long sound upload 
procedure). 

Aside from this, phrases can utilise up to four variables (three integers and one string), a delay 
variable, and for Verbs only, an InstructionID. Finally, each phrase has an ID, and a parent ID. 
The parent ID defines how phrases can follow each other in RLit sentences. Appendix B shows 
this relationship. Each phrase is boxed with a certain ID, and the arrows show the parent-child 
relationships between the phrases. 

There are six types of phrase that can be included in a sentence:

SEQUENCERS 

Phrases that control the timing of execution of a sentence. These phrases will tell the interpreter 
whether the sentence should be executed immediately after the previous sentence (‘Then’), 
after a delay  (‘After x seconds’), or concurrently (‘At the same time’). A special Sequencer is 
“<<comma>>” which appears as a regular comma in the UI, but which affects program flow in 
the same way as the Sequencer phrase ‘Then’. However, as mentioned before, this Sequencer 
can only appear in sentences that immediately follow a ‘When’ type Event Listener sentence. 

‘When’ is also a Sequencer, and has the same value as ‘At the same time’.

NOUNS 

Phrases that define the object on which the sentence is executed on. At this initial stage, the 
two objects are ROBOT and ANDROID, although there is no reason why this cant be extended 
as the application is developed to control a wider range of devices in the future.

AUXILIARIES 

These phrases are a vestige of the first iteration of the ontology, when event handling was 
addressed using the structure ‘wait until...‘ As this entails having two ‘verb‘ like structures in one 
sentence, this type was needed to differentiate between them. The only member of this type 
therefore is ‘wait (until)’. In future iterations, however, the ontology  could be developed to use 
Auxiliaries in other ways, for example through introducing probabilistic (might, will probably) or 
frequency control (usually, sometimes).

VERBS 

First steps in creative computational thinking with natural language programming and Lego Mindstorms

77



The central phrase in any  sentence, the verb specifies the required action that the Noun will 
execute. Each verb is mapped to an Instruction object that in turns executes the program on the 
specified Noun, modulated by the other phrases in the sentence.

MODIFIERS

Modifiers are phrases that add parameters to the verbs, usually  in terms of adding measures 
such as distance, degree, colour, sound frequency, or in the case of user generated sounds, 
filenames.

QUANTIFIERS 

As the type name suggests, Quantifiers add a time or speed measure, for example ‘slowly’, 
‘quickly’ , ‘for 10 seconds’, ‘continuously’.

In the development of the ontology, both the modifiers and quantifiers went through several 
changes based on the results of iterative testing. It is perfectly  possible for this ontology to allow 
users to finely control the movements of motors and analysis of sensor readings, in the way 
other robot programming languages for Mindstorms allow (for example, RobotC, leJOS). This 
includes providing exacting control over the amount of degrees you want the robot to turn, and 
wheel rotations to cover a certain distance, depending on the configuration of the robot. 
However, this was not implemented for the purposes of this project

First steps in creative computational thinking with natural language programming and Lego Mindstorms

78



15. Appendix B: RLit Phrase Maps

First steps in creative computational thinking with natural language programming and Lego Mindstorms

79



First steps in creative computational thinking with natural language programming and Lego Mindstorms

80



16. Appendix C: Table of RLit Phrases and their values

EnglishLabel ID Parent
ID

Instruc
tionID

Del
ay

Arg
1

Arg
2

Arg
3

Arg4 Wait 
Flag

Sort 
Order

First 1 -1 0 0 0 0 0 0 1
After a few seconds 1 0 0 3 0 0 0 0 5
After 5 seconds 1 0 0 5 0 0 0 0 6
After 10 seconds 1 0 0 10 0 0 0 0 7
At the same time 1 0 0 0 0 0 0 0 2
After that 1 0 0 0 0 0 0 1 1
When 2 0 0 0 0 0 0 0 4
comma 1 2200 0 0 0 0 0 1 1
ROBOT 10 1 0 0 0 0 0 0 1
ANDROID 11 1 0 0 0 0 0 0 2
ROBOT 20 2 0 0 0 0 0 0 1
waits 104 10 0 0 0 0 0 0 6
moves forward 105 10 1 0 1 0 0 0 1
moves back 105 10 1 0 -1 0 0 0 2
turns left 106 10 2 0 0 -1 0 0 3
turns right 106 10 2 0 0 1 0 0 4
until it sees 107 104 3 0 0 0 0 0 1
until it detects 108 104 4 0 0 0 0 0 3
until it hears 109 104 5 0 0 0 0 0 2
beeps 110 10 6 0 0 0 0 0 7
stops moving. 111 10 1 0 0 0 0 0 8
says 112 10 7 0 0 0 0 0 5
says 113 11 8 0 0 0 0 0 1
plays 114 11 9 0 0 0 0 0 2
stops all sounds. 115 11 10 0 0 0 0 0 3
Then repeat 116 0 11 0 0 0 0 1 3
sees something 201 20 3 0 0 0 0 0 1
hears something 202 20 5 0 0 0 0 0 2
scans something 203 20 4 0 0 0 0 0 3
a tiny bit 1105 105 0 0 0 10 0 0 2
a little 1105 105 0 0 0 20 0 0 3
quite a lot 1105 105 0 0 0 45 0 0 4
a lot 1105 105 0 0 0 60 0 0 5
continuously 1105 105 0 0 0 0 0 0 6
30 degrees 1106 106 0 0 30 0 0 0 2
90 degrees 1106 106 0 0 90 0 0 0 4
180 degrees 1106 106 0 0 180 0 0 0 5
360 degrees 1106 106 0 0 360 0 0 0 6
continuously 1106 106 0 0 0 0 0 0 7
something very close. 1107 107 0 0 5 20 0 0 1
something quite close. 1107 107 0 0 21 30 0 0 2
something quite far. 1107 107 0 0 31 100 0 0 3

First steps in creative computational thinking with natural language programming and Lego Mindstorms

81



EnglishLabel ID Parent
ID

Instruc
tionID

Del
ay

Arg
1

Arg
2

Arg
3

Arg4 Wait 
Flag

Sort 
Order

something dark. 1108 108 0 0 0 200 0 0 1
something bright. 1108 108 0 0 800 1000 0 0 2
something quiet. 1109 109 0 0 300 500 0 0 1
something loud. 1109 109 0 0 501 700 0 0 2
something very loud. 1109 109 0 0 701 1000 0 0 3
A 1110 110 0 0 440 0 0 0 1
B FLAT 1110 110 0 0 466 0 0 0 2
B 1110 110 0 0 493 0 0 0 3
C 1110 110 0 0 523 0 0 0 4
C SHARP 1110 110 0 0 554 0 0 0 5
D 1110 110 0 0 587 0 0 0 6
E FLAT 1110 110 0 0 622 0 0 0 7
E 1110 110 0 0 659 0 0 0 8
F 1110 110 0 0 698 0 0 0 9
F SHARP 1110 110 0 0 740 0 0 0 10
G 1110 110 0 0 784 0 0 0 11
A flat 1110 110 0 0 831 0 0 0 12
‘Go away.’. 1112 112 0 0 2 0 0 goaway.rso 0 0
‘I’ll be back.’. 1112 112 0 0 2 0 0 arniewillbeback.rso 0 0
‘I’m so depressed.’. 1112 112 0 0 2 0 0 imsodepressed.rso 0 0
‘Oops!’. 1112 112 0 0 1 0 0 oops.rso 0 0
‘Stop it!’. 1112 112 0 0 1 0 0 stopit.rso 0 0
‘Will you be my friend?’.1112 112 0 0 2 0 0 willyoubemyfriend.rso0 0
‘You’re mine!’. 1112 112 0 0 2 0 0 youremine.rso 0 0
‘Armed.’. 1112 112 0 0 1 0 0 armed.rso 0 0
‘Awesome!’. 1112 112 0 0 1 0 0 awesome.rso 0 0
‘Bang!’. 1112 112 0 0 1 0 0 bang.rso 0 0
‘Burrrp!’. 1112 112 0 0 1 0 0 burp.rso 0 0
‘Collecting!’. 1112 112 0 0 1 0 0 collecting.rso 0 0
‘Come closer.’. 1112 112 0 0 2 0 0 comecloser.rso 0 0
‘Confirmed.’. 1112 112 0 0 1 0 0 confirmed.rso 0 0
‘Danger!’. 1112 112 0 0 1 0 0 danger.rso 0 0
‘Dooh!’. 1112 112 0 0 1 0 0 dooh.rso 0 0
‘Got it.’. 1112 112 0 0 1 0 0 gotit.rso 0 0
‘Gotcha!’. 1112 112 0 0 1 0 0 gotcha.rso 0 0
‘Hello Dave.’. 1112 112 0 0 2 0 0 hellodave.rso 0 0
‘Help!’. 1112 112 0 0 1 0 0 help.rso 0 0
‘Hot!’. 1112 112 0 0 1 0 0 hot.rso 0 0
‘I feel happy.’. 1112 112 0 0 2 0 0 ifeelhappy.rso 0 0
‘I’m hungry!’. 1112 112 0 0 2 0 0 imhungry.rso 0 0
‘Identify.’. 1112 112 0 0 1 0 0 identify.rso 0 0
‘Is it ok?’. 1112 112 0 0 2 0 0 isitok.rso 0 0
‘It is OK.’. 1112 112 0 0 2 0 0 itsok.rso 0 0
‘Lost object.’. 1112 112 0 0 1 0 0 lostobject.rso 0 0
‘Love.’. 1112 112 0 0 1 0 0 love.rso 0 0
‘Me.’. 1112 112 0 0 1 0 0 me.rso 0 0

First steps in creative computational thinking with natural language programming and Lego Mindstorms

82



EnglishLabel ID Parent
ID

Instruc
tionID

Del
ay

Arg
1

Arg
2

Arg
3

Arg4 Wait 
Flag

Sort 
Order

‘Motors Forward.’. 1112 112 0 0 2 0 0 motorsforward.rso 0 0
‘Motors Reverse.’. 1112 112 0 0 2 0 0 motorsreverse.rso 0 0
‘Move away!’. 1112 112 0 0 2 0 0 moveaway.rso 0 0
‘Negative.’. 1112 112 0 0 1 0 0 negative.rso 0 0
‘O Sole Mio!’ 1112 112 0 0 4 0 0 osolemio.rso 0 0
‘Object detected.’. 1112 112 0 0 1 0 0 objectdetected.rso 0 0
‘OK?’. 1112 112 0 0 1 0 0 ok_question.rso 0 0
‘OK!’. 1112 112 0 0 1 0 0 ok_statement.rso 0 0
‘Oomph!’. 1112 112 0 0 1 0 0 oomph.rso 0 0
‘Oops!’. 1112 112 0 0 1 0 0 oops.rso 0 0
‘Perfect.’. 1112 112 0 0 1 0 0 perfect.rso 0 0
‘Phew!’. 1112 112 0 0 1 0 0 phew.rso 0 0
‘Positive.’. 1112 112 0 0 1 0 0 positive.rso 0 0
‘Shoot!’. 1112 112 0 0 1 0 0 shoot.rso 0 0
‘Atchoo!’. 1112 112 0 0 1 0 0 sneeze.rso 0 0
‘Thanks.’. 1112 112 0 0 1 0 0 thanks.rso 0 0
‘That was easy.’. 1112 112 0 0 2 0 0 thatwaseasy.rso 0 0
‘Touch me.’. 1112 112 0 0 1 0 0 touchme.rso 0 0
‘Tracking object.’. 1112 112 0 0 2 0 0 trackingobject.rso 0 0
‘Turning left.’. 1112 112 0 0 2 0 0 turningleft.rso 0 0
‘Turning right.’. 1112 112 0 0 2 0 0 turningright.rso 0 0
‘What’s up?’. 1112 112 0 0 2 0 0 waazuup.rso 0 0
‘Wow!’. 1112 112 0 0 1 0 0 wauw.rso 0 0
‘You.’. 1112 112 0 0 1 0 0 you.rso 0 0
‘Yawn!’. 1112 112 0 0 1 0 0 yawn.rso 0 0
‘Yeehah!’ 1112 112 0 0 2 0 0 yeehah.rso 0 0
‘Once upon a time there lived a lonely little robot.’.1113 113 0 0 2 0 0 onceuponatime.mp3 0 1
sad music 1114 114 0 0 0 0 0 music_sad_sombre.mp30 3
happy music 1114 114 0 0 0 0 0 music_goodbye_love.mp30 1
adventurous music 1114 114 0 0 0 0 0 music_monster_factory.mp30 4
chasing music 1114 114 0 0 0 0 0 music_mr_tiny.mp3 0 5
quirky music 1114 114 0 0 0 0 0 music_night_is_day.mp30 6
scary music 1114 114 0 0 0 0 0 music_arabian_thief.mp30 2
the last sentence 1116 116 0 0 1 0 0 0 1
the last 2 sentences 1116 116 0 0 2 0 0 0 2
the last 3 sentences 1116 116 0 0 3 0 0 0 3
the last 4 sentences 1116 116 0 0 4 0 0 0 4
the last 5 sentences 1116 116 0 0 5 0 0 0 5
the last 6 sentences 1116 116 0 0 6 0 0 0 6
the last 7 sentences 1116 116 0 0 7 0 0 0 7
the last 8 sentences 1116 116 0 0 8 0 0 0 8
the last 9 sentences 1116 116 0 0 9 0 0 0 9
the last 10 sentences 1116 116 0 0 10 0 0 0 10
very close 2200 201 0 0 5 20 0 0 1
quite close 2200 201 0 0 21 30 0 0 2
quite far 2200 201 0 0 31 100 0 0 3

First steps in creative computational thinking with natural language programming and Lego Mindstorms

83



EnglishLabel ID Parent
ID

Instruc
tionID

Del
ay

Arg
1

Arg
2

Arg
3

Arg4 Wait 
Flag

Sort 
Order

quiet 2200 202 0 0 300 500 0 0 1
loud 2200 202 0 0 501 700 0 0 2
very loud 2200 202 0 0 701 1000 0 0 3
dark 2200 203 0 0 0 200 0 0 1
bright 2200 203 0 0 800 1000 0 0 2
and slowly. 11105 1105 0 0 30 0 0 0 1
and steadily. 11105 1105 0 0 60 0 0 0 2
and quickly. 11105 1105 0 0 90 0 0 0 3
and slowly. 11106 1106 0 0 0 25 0 0 1
and steadily. 11106 1106 0 0 0 50 0 0 2
and quickly. 11106 1106 0 0 0 80 0 0 3
for a whole note. 11110 1110 0 0 0 600 0 0 1
for a half note. 11110 1110 0 0 0 300 0 0 2
for a quarter note. 11110 1110 0 0 0 150 0 0 3
for 1 minute. 11114 1114 0 0 0 60 0 0 4
for 30 seconds. 11114 1114 0 0 0 30 0 0 3
for 20 seconds. 11114 1114 0 0 0 20 0 0 2
for 10 seconds. 11114 1114 0 0 0 10 0 0 1
continuously. 11114 1114 0 0 0 0 0 0 5
for 10 seconds. 11116 1116 0 0 0 10 1 0 4
for 20 seconds. 11116 1116 0 0 0 20 1 0 5
for 30 seconds. 11116 1116 0 0 0 30 1 0 6
1 more time. 11116 1116 0 0 0 0 1 0 1
2 more times. 11116 1116 0 0 0 0 2 0 2
3 more times. 11116 1116 0 0 0 0 3 0 2
4 more times. 11116 1116 0 0 0 0 4 0 2
5 more times. 11116 1116 0 0 0 0 5 0 3

First steps in creative computational thinking with natural language programming and Lego Mindstorms

84


