
MSc Computer Science
Department of Computer Science and Information Systems

Birkbeck, University of London

Project

A Recommendation Engine
 Amy Peters

This project is substantially the result of my own work, expressed in my own
words, except where explicitly indicated in the text. I give my permission for it to
be submitted to the JISC Plagiarism Detection Service.

Abstract
I proposed to implement a recommendation system, using collaborative filtering
techniques, for the interactive online community Deep Underground Poetry.
Using data which has been collected from members, I was able to compute a
list of suggested reading which was personalised to each user, and also
provide them with details of members similar to them (either in preferences, or
writing style). The output produced by the recommendation engine has the
capacity to adapt to new information and changes in member data in order to
give users up-to-date, plentiful and accurate recommendations. The overall aim
of the system was to develop the means to promote interaction between
members by increasing the number of views, ratings and comments each
poem received, by guiding users towards poems which they should enjoy. The
system also promotes social networking, by supporting the idea that the
website caters for a member’s own personal tastes, and by connecting them to
other members with similar interests.

September 2011

 ! i

Introduction
1.1 Building an Online Community Page 1

1.2 Why Collaborative Filtering? Page 2

1.3 Aims and Objectives Page 2
1.4 Overview Page 2

Background
2.1 The Netflix Prize page 3
2.2 Collaborative Filtering Techniques page 3

2.2.1 The Neighbourhood Approach (k-NN) page 3

2.2.2 Singular Value Decomposition (SVD) page 4

2.2.3 Blending Approaches page 5

Analysis, Requirements, and Design
3.1 Technical Feasibility page 6
3.2 Functional Requirements page 6

3.3 Non-Functional Requirements page 7

3.4 The Data Set page 7

3.4.1 Onsite Initiatives to Increase Available Data page 10

3.5 The Existing System page 11

3.6 System Architecture page 12
3.5.1 Activity Diagram (for on site user interaction) page 13

3.5.2 Class Diagram (offline tool) page 13

3.5.3 Entity-relationship models of MySQL tables page 14

 ! ii

Development
4.1 Collecting Data page 16

4.2 Utilizing Implicit Data page 17

4.2.1 Comment Analysis page 17

4.2.2 Followers page 19

4.3 Implementing k-NN page 22
4.3.1 User-user Matrix page 23

4.3.2 Item-Item Matrix page 23

4.3.3 Distance Metrics page 25

4.4 Implementing SVD page 29
4.4.1 Tuning the algorithm page 30

4.4.2 A closer look at factors page 34

4.5 Blending: Linear Blend page 34

4.6 Blending: Smart Blend page 35

4.6.1 Adjusting the Metrics page 35

 4.7 Program Design Decisions page 39

4.8 Generating Data from Predictions page 39

4.8.1 Recommended Poems (User-Item) page 39

4.8.2 Similar Poems (Item-Item) page 40

4.9 Website Implementation page 41

4.9.1 Back-end Data Usage page 41

4.9.2 Front-end for User Test Phase page 45

4.9.3 Front-end Final page 46

Conclusion
5.1 Evaluation of Objectives page 47
5.2 Statistical Evaluation page 48
5.3 User Opinion page 49
5.4 Lessons Learned page 51
5.5 Future Development page 52 

 ! iii

Introduction
1.1 Building an Online Community
 In August 2009 I re-launched an online creative writing community called Deep
Underground Poetry (DU Poetry) [1], which I originally started in 1999. For ten years, the
website had been offline and the Internet had changed enormously during this time. However,
through re-establishing DU Poetry over the last few years, it became apparent that one of the
key challenges still remained; finding ways to encourage people to read and comment on
other peoples’ submissions. Giving members the feedback and attention they crave is a key
part of creating a thriving community and retaining an active membership. Discussions related
to this issue frequently crop up on the DU Poetry “suggestions” forum. In addition, a
homepage poll showed that feedback from others was important to more than half of
respondents [2].

There are a number of ways in which online poetry communities have tried to
increase commenting levels. Some websites force their members to make comments, so as
to artificially increase the number of comments made. For example, GS Poetry [3] requires
members to gain credits by making comments before they are allowed to “showcase” a poem.
GotPoetry [4] implements a “karma” system, to stop less active members from rating poems
without leaving a comment. DU Poetry offers incentives, like extra exposure for their poems,
to “top-critiquers” (members who make lots of useful comments). Despite these efforts, the
average number of comments that each poem receives still remains relatively low; currently
less than 1.5 comments per poem on DU Poetry. In addition, the risk of enforcing measures is
that the quality, usefulness and comprehensiveness of the feedback diminishes. Keen to
explore more organic ways to increase the number of comments; I created another DU Poetry
poll asking whether people were more likely to comment on poems they liked, or poems they
disliked [5]. To date, 100% of respondents have answered that they more often comment on
poems that they like. My challenge was to find a way for people to more easily and quickly
discover poems that they might actually want to read and comment on. I also hoped to
address the issue of maintaining exposure for older submissions, which no longer appear on
the first few pages of listings, and can therefore go undiscovered by new members.

Another key way in which I hoped my system could improve DU Poetry was to
discover patterns in order to group similar members together. I compete with numerous other
established creative writing websites, so it’s important that I continue to develop DU Poetry
into a strong community, making use of current trends in social networking.

 Amy Peters – A Recommendation Engine

 ! of !1 58

1.2 Why Collaborative Filtering?
Developments in technology (hardware, software and connection speeds) have made

it possible to collect vast amounts of data from users and with this has come the increased
use of collaborative filtering (CF). Recommendation engines use CF as a method of making
automatic predictions about which items will suit a user (filtering), by collecting information
about the past actions of many users (collaboration). Unlike conventional media like
newspapers and television, where there are a few editors controlling output, the CF model
can have infinitely many editors and improves as the number of participants increases [6]. CF
techniques don’t rely on specific domain knowledge and can be applied to sparse data sets;
thereby avoiding the need for comprehensive data collection (it should not be necessary for a
user to evaluate a vast number of items).

Many successful websites use collaborative filtering techniques to implement some
form of recommendation engine. Amazon’s recommender system suggests products to
customers based on their past purchases and the items they currently have in their shopping
basket. When Greg Linden, the creator of Amazon’s recommendation engine, left in 2002 he
reported that over 20% of sales came from personalized recommendations, the figure is
estimated to be even higher today [7].

I applied similar techniques in order to provide content to DU Poetry users which I
hoped would be of interest to them, in order to enrich their experience and encourage them to
spend time on the website. I wanted to reinforce the idea that the website is for “people like
them”, by recommending poems which appeal to them and helping them find other members

who are similar to them.

1.3 Aims and Objectives

 My key objectives were:

• Tune an algorithm to give quantitatively accurate recommendations.

• Provide members with recommendations which they felt were well suited to their
tastes.

• Look for patterns in users' tastes in relation to characteristics like their age and
location.

• Build an efficient and scalable system which could react instantly to new information.

• Develop the system in response to implicit and explicit feedback from users.

1.5 Overview

Chapter two describes the event which was the catalyst for a large amount of
research and development in the area of collaborative filtering in recent years; the Netflix
Prize. Chapter three analyses the current DU Poetry system and data set, and outlines my
initial analysis and plan for the system. Chapter four details all aspects of development,
testing and tuning. Finally, chapter five discusses my findings and evaluates the work I have
done, along with considering future development.

 Amy Peters – A Recommendation Engine

 ! of !2 58

Background
2.1 The Netflix Prize

The Netflix Prize was a competition to find a collaborative filtering algorithm to
substantially improve the accuracy of predicting how much someone is going to enjoy a
movie, based on their existing movie preferences (1-5 value ratings they have given) [8]. The
competition launched on October 2nd 2006 and the winning team was declared on
September 18th 2009.

Each participating team was required to produce an algorithm to predict grades for a
given set, but they were only informed of the score for half of the data, while the other half
was used by the jury to determine potential prize winners. Submitted predictions were scored
against the true ratings in terms of root mean square error (RMSE) and the goal was to
reduce this error as much as possible. Prizes were based on the improvement achieved over
Netflix's own algorithm, called Cinematch. In order to win the prize of 1 million dollars, a team
had to successfully improve upon Cinematch by more than 10%. The fact that there was such
a substantial prize on offer illustrates how important Netflix deemed their recommendation
engine to be.

The collaborative filtering approach to recommenders has gained much popularity as
a result of the Netflix Prize competition [9]. A substantial number of papers and new
techniques were developed during, and as a direct result of, the competition and the sharing
of ideas which took place.

Unfortunately the data sets used in the Netflix Prize are no longer available, and
plans to run a follow up competition have also been abandoned, owing to data privacy
concerns [10].

2.2 Collaborative Filtering Techniques
I have limited the scope of my project to focus in-depth on two of the most common

methods of producing recommendations by collaborative filtering. They are inherently
different approaches, one falls into the category of being memory-based (the neighbourhood
approach) and the other is model-based. I also look at ways of blending the results of the two
approaches.

2.2.1 The Neighbourhood Approach (k-NN)
Neighbourhood based models (memory-based) are traditionally the most common

approach to CF [11]. They use some form of the k-nearest neighbours algorithm (k-NN) to
compute the relationship between items, or between users. k-NN is a simple machine
learning algorithm where an item is classified by the average of its k nearest neighbours,
where k is a positive integer; for example, if k = 1 then the unknown rating would get the value
given by the most similar user who has rated that item. The best value for k is application
specific and can only be found by experimenting with the data set. It is typical for a weighted
average to be used, with the closest (most similar) neighbours contributing more. To work out
the weighing and which are the closest neighbours, a distance metric is used. The main
challenge for using k-NN in collaborative filtering is the computational cost and time involved
in computing the neighbours.

2.2.2 Singular Value Decomposition (SVD)

 Amy Peters – A Recommendation Engine

 ! of !3 58

The model-based approach using the linear algebra technique of singular value
decomposition (SVD) has recently become popular for collaborative filtering due to its
accuracy and scalability [11, 12]. Rather than directly setting out to make predictions, instead
they use machine learning to characterise the data and uncover the underlying causes
(factors) that work in combination to describe the data set [13].

The idea is to decrease the amount of computation required by reducing the size of
the matrix. Instead of comparing every object (item or user) to every other object, instead you
define each object by a number of factors. For example, when the items are poems, factors
which might emerge may be related to how funny or sad a poem is. Rather than having to
manually define these characteristics, the algorithm finds patterns in the existing data and
discovers the generalisations (also called eigenvectors).

Imagine a data set of 3000 users and 25000 items; this would involve 3000 x 25000 =
75 million computations. However, if each object had just 40 factors, that could be used to
compare it to other objects, then it would only require 40 x (3000 + 25000) = 1.12 million
computations [14]. Given a m x n matrix A with rank r (the number of factors which we want to
define items by), the singular value decomposition SVD(A) is defined as:

SVD(A) = U x S x V T

Matrix S is a diagonal matrix called the singular having only r nonzero entries (r x r),
which means the effective dimensions of the orthogonal matrices U and V are m x r and r x n
respectively. The first r columns of U and V represent the eigenvectors associated with the r
factors of AAT and ATA. For the matrix A it can be said that the columns corresponding to the r
values span the column space in U and the row space in V. The following illustration
represents this on a very small scale:

!

For this example (using an r value of 2) the algorithm has identified the two most
prevalent characteristics by which to describe users and poems (sad and funny). Each poem
is given a value for each characteristic and every user has a value representing how much
they like that characteristic. By multiplying the two matrices together we get a representation
of the original matrix (which is a “marks out of ten” rating made by each user for each poem).
We can see that User 2 has given Poem 1 a high mark and this was factorised into both
being given a high value for the factor 2 characteristic “funny”.

One possible advantage of the low-rank approximation resulting from SVD is that the
resulting data may in fact be better than the original full matrix, as the process may actually
filter out some unwanted “noise” from the data [15]. However, the opposite may also be true,
especially when applying SVD to collaborative filtering, due to the high proportion of missing
data. Addressing only the known values is prone to over-fitting (where there aren’t enough
values to consider, so a random error or “noise” value may be given undue influence over
results [16]). Variations of SVD have been developed to try and address this problem [17].
One notable example is that of incremental SVD, devised by Simon Funk during the “Netflix
Prize” competition [14]. He incorporates a technique for regularising the model in order to
identify abnormal values and avoid over-fitting. His technique was widely used by other
participants in the competition, and I too used the information he provided as a basis for my
own SVD algorithm.

 Amy Peters – A Recommendation Engine

 ! of !4 58

2.2.3 Blending Approaches
Along with optimising each of them individually, I will be looking at different ways to

blend my results. When the Bellkor team won their progress award during the Netflix Prize
competition in 2007, their solution consisted of blending the results of 107 different algorithms
[18]. Although what they achieved is not within the scope of my project, I have taken on board
their findings; which clearly indicate the merits of blending different approaches, instead of
just refining a single technique. I am going to look at linear blending, which involves finding
the best ratio with which to blend the results produced by different algorithms. I also go on to
discover another way of blending the two algorithms, which proved to be faster and more
accurate, which I called “Smart Blend”.

 Amy Peters – A Recommendation Engine

 ! of !5 58

Analysis, Requirements, and Design

3.1 Technical Feasibility

The key to the success of Amazon’s recommendation engine is that the
computationally expensive task of creating the “similar items” table takes place offline. The
online part (looking up similar items for a particular user) scales independently of the size of
the overall data set, so the system remains fast despite the huge amount of data involved
[19]. By producing results in terms of similar items, rather than storing tailor made predictions
for each user, Amazon is able to respond immediately to new information from users, without
having to re-compute recommendations. Similarly, when teams were testing algorithms for the
Netflix Prize, it would typically take several hours to generate each set of predictions; so it’s is
not feasible to perform these tasks online.

One of my challenges was to give the impression that predictions were generated
there and then, whilst actually doing the computationally heavy processing offline. This was
important not least because DU Poetry resides on shared web hosting and therefore has
limited access to the web server’s resources. It also ensures that I can deal with a growing
data set, without impacting upon the online speed observed by visitors of the website. I chose
to write my offline tool in C++ as it gave me more freedom to explore opportunities for
optimisation at low-level.

3.2 Functional Requirements

A key requirement was to test a variety of methods and variables to yield the most
accurate results. This was done using a predictive accuracy metric, which measures how
close the systems predicted ratings are to the true user ratings. My primary test for gauging
the accuracy of results was to find the root mean squared error (RMSE). This was the metric
used for evaluating entries in the Netflix Prize Competition. I also monitored the mean
absolute error (MAE), for which the results were consistently well correlated to the RMSE.
Both of these metrics square the error before summing it, the result of which is more
emphasis on large errors. For example, an error of one point increases the sum by one, but
an error of two points increases the sum by four [20]. This amplification of the error
contribution made by false positives and false negatives was desirable as it helped avoid the
kind of very inaccurate results which could lead to inappropriate recommendations [21]. The
ratings data was divided into two sub-sets; the “training” sub-set was used to make
predictions for the data contained in the “probe” sub-set. The actual ratings values in the
probe sub-set were compared to the predictions and the difference (error) computed in order
to evaluate the accuracy of the algorithm being tested.

Another key topic for analysis was how best to use the data I had available. This included
looking at the merits of using implicit data, to broaden the amount of information being used.
Although implicit data may introduce noise into the data set, it may also be the case that
explicit data is prone to noise, because members use on-site features in different ways. One
of the interesting aspects of implicit data collection was that it allowed members’ behaviour to
be mapped, without relying on them to carry out specific tasks and actions. Using implicit data
also helped alleviate some of the issues surrounding the sparseness of the data, by enabling
me to add to the pool of “known data”. The kind of data available, and how it could be used
most effectively, was what really set my task apart from other recommendation systems.
Although I could look at how similar projects had been approached, to a certain degree my
methods were unique to the DU Poetry data set and the problem I was trying to solve.

 Amy Peters – A Recommendation Engine

 ! of !6 58

Another important requirement was that my offline tool produced results which could
be used to display predictions online. I looked at different ways of generating results; either by
creating user-specific predictions, or data about similarities between members and poems.
The latter method would allow me to make predictions for a new user right from the first
action they take (for example, a “like”), even if they had joined since the offline tool was last
run.

3.3 Non-functional Requirements

I looked at ways to optimise the performance of the offline tool in terms of time taken to
produce results and also memory usage. I output clock times for each stage of program
execution in order to monitor how long different procedures took. This helped me to spot
ineffective design decisions during development, which caused the program to run slower
than expected. It also affected the tuning process; if an unacceptably long computation cost
was incurred for a very small improvement in error, then I choose to use the faster option, as
it allowed me to run the offline tool more often.

I produced a user-friendly front end for members, which fit in with the existing look of the
DU Poetry website. These pages were set into the existing website template. For this reason,
the online programming aspect of this project was written in Perl; the same language as the
rest of the website.

Throughout development I generated lots of statistics by running SQL queries to the on-
site database (often via the command line). I consistently monitored and tuned the
performance of these queries, along with those for collecting existing data and for inserting,
sorting and selecting recommendations from predictions generated by the offline tool.

3.4 The Data Set

Like any website starting out on a new domain name (without a budget for promotion) it has
took DU Poetry time to gain popularity and establish reasonable search engine rankings. The
amount of new members signing up continues to increase month on month, the most recent
figure discussed in my proposal was 279 new members for March of 2011. Since then, during
the months of April to August 2011, there have been over 350 new sign ups each month. The
number of active members; those logging in within the last two months, has also grown by a
third from approximately 1000 to 1350. An overview of key statistics, taken on 14th September
2011, can be viewed below.

Poems 25881

Poems with ratings (like or reading list entry) 11818

Poems with comments 16624

Members (not including sign ups who never logged in) 3801

Members with rating data (likes or reading list entries) 1475

 Amy Peters – A Recommendation Engine

 ! of !7 58

I was always keen to avoid a “marks out of five” style ratings system for poems,
because it didn’t fit well with the creative nature of the content. There is also strong evidence
that five-star ratings systems don’t work. YouTube abandoned its five star ratings system,
switching instead to a simpler "Like / Don't Like" model, because almost all videos were
receiving the maximum (five stars) rating from users [22]. I mentioned in the table above, a
number of the features which I implemented in order to gauge a member’s reaction to a
poem. These include an anonymous “like this?” option and a personal reading list, to which a
member can add their favourite poems. In addition, a member can “follow” another member
poet, this means they receive a message in their updates feed each time that member makes
a new submission. Poem views are also logged, in order to keep track of which members
have viewed which poems. Below is a summary of each of these features, along with usage
statistics (from the website's MySQL database, queried on 14th September 2011):

* I have only included poem views made by members,
anonymous visitors are not included.

** “Likes” which also have an associated reading list entry are not
included; a reading list entry takes precedence over a “like”.

*** Comments made by the poem author are not included.

A variety of data was used in the recommendation engine; a viewed poem (with no
action taken) was counted as a rating of zero, a “like” counted as a one and a reading list
entry counted as a two. Including the data on poem views was also useful for determining
which poems a user had already looked at, so as not to recommend them poems which they
had already read.

Further data was used to “simulate” poem ratings; this was the more subtle explicit
data like the authors a member “follows” (their favourite authors). The statistics show that a

Feature Launch Date Quantity

Reading List Entries 30th 5965

Poem Views* 11th 147016

Followers 11th 5794

Likes** 25th 18015

Comments*** Site Launch 39513

 Amy Peters – A Recommendation Engine

 ! of !8 58

favourable action is more likely on a poem written by a followed author. I investigated the
effects of assuming a “like” on these poems.

Un-liked Liked Reading
List

Followed
Author

24061
(63.5%)

11611
(30.6%)

2217
(5.9%)

Un-followed
Author

55670
(84.6%)

8884
(13.5%)

1219
(1.9%)

 Amy Peters – A Recommendation Engine

 ! of !9 58

The preceding data snapshot was taken for the period after the “like” feature
launched. It shows that over twice as many likes are received on poems by authors the
reader was “following”, so we could conclude that theoretically it would be better to count this
data (assume a “like” when author is being followed). However, an action is still only taken
36.5% of the time, so this ran the risk of introducing noise into the data set, and skewing the
results too heavily in favour of poems by “followed” authors.

I also looked at how I could use comment data to gauge a member’s reaction to a
poem, particularly for the period before the “like” feature was launched, where poem
comments may be the best indication of whether a member liked a poem or not. The statistics
show the behavioural patterns of “likes” and followed authors, in the context of comments
made (for the post “like” feature period). A comment is left 19% of the time when a poem is
viewed by a member, but this occurs much more frequently when a poem is “liked”.

I also explored the relevance of zero rated data; members with only zero value
ratings (viewed poems but never liked them, or added them to their reading list) and poems
with only zeros (viewed, but no actions taken). I set out to assess whether this type of data
provided a useful contribution, since it couldn’t directly lead to poems being recommended;
however, it had the capacity to help link poems and members together, and find patterns
during the training process. The following data illustrates the quantity of zero rated data, i.e.
where views exists (the poem has been viewed at least once, or the member has viewed at
least one poem) but no actions have been taken:

The statistics above supported the case for looking closely at data related to
comments and followers, in order to increase the number of members and poems for which
there was non-zero value data available. If we were only looking at “likes” and reading list
entries, there would be nearly 13000 poems which would not stand a chance of being
recommended, this reduces by up to 90% when taking into account data for “followers” and
comments.

My data set presented many challenges, not least the sparseness of the data. Below
I have compared the DU Poetry training set data (assuming the probe set contains 10,000
entries) with the Netflix training set, which was provided to participants of the Netflix Prize
competition.

Liked
Poem

Un-liked
Poem

Followed
Author

Un-followed
Author

Comment Left
(19% of the time)

13653

69%

6134

31%

10370

52%

9417

48%

No Comment
Left

(81% of the time)

7898

9%

75580

91%

26806

32%

56576

68%

Members with no likes or reading list entries. 1324

Members with no likes, reading list entries, followed
authors or comments made.

520

Poems with no likes or reading list entries. 12961

Poems with no likes, reading list entries, author
followers or comments left.

1321

 Amy Peters – A Recommendation Engine

 ! of !10 58

The statistics above illustrate the problem that collaborative filtering attempts to
overcome; trying to “fill in the gaps” for the overwhelming majority of unknown information. In
each of the cases considered (with different types of data included) the DU Poetry training
sets all had a slightly larger percentage of unknown ratings than that of the Netflix Prize
training set. This made my task particularly challenging.

3.4.1 Onsite Initiatives to Increase Available Data
In order to increase the amount of known ratings, I ran two “poem reading

challenges”. I incentivised members to get involved by using the existing trophy system that is
used to reward winners of member led poetry competitions. For each challenge they
complete, they are awarded a trophy which appears on their profile and increases the trophy
count which appears under their avatar image, across the DU Poetry discussion forums.

The first challenge was called “DU Archives” and generated random poems, via a
link, which were published prior to the “like” feature being launched. The second initiative was
called “Undiscovered” and generated a link to a random poem which had been viewed by less
than 5 other members. My aim with both challenges was to increase the amount of data
relating to potentially overlooked poems, to try and ensure that as many poems as possible
could be included in the recommendations made. One of the main aims of the
recommendation engine was to let members know about poems they may never have
otherwise found out about. New members are less likely to know about poems posted before
they joined, so it was crucially important that there was data available for all poems
throughout the lifetime of DU Poetry, in order to connect them to members who might enjoy
reading them. Both challenges involved reading a designated minimum number of poems (75
and 100 respectively). In order to help ensure that people didn’t abuse the system, by quickly
refreshing the links, I used a timed logging system to discount views made less than 10
seconds apart. The table below shows the extra data generated as a direct result of the poem
reading challenges (queried 14th September 2011):

Known Ratings
in Training Set

Movies /
Poems

Users /
Members

Sparseness

Netflix 100,480,507 17,770 480,189 98.8%

DU Poetry (no zero
only value ratings)

105,601 17,892 1638 99.6%

DU Poetry (all
ratings)

147,194 25,579 2880 99.8%

DU Poetry (all
ratings including
un-viewed poem
follower data)

587,007 26,564 2899 99.2%

Challenge Name Poem Views

(unique poems)

Likes Reading List
Entries

Comments

DU Archives 2318 (1801) 452 25 155

Undiscovered 1959 (1843) 426 22 193

 Amy Peters – A Recommendation Engine

 ! of !11 58

3.5 The Existing System
The following diagram shows relevant database tables and columns from the existing

system, and how they are related to each other.

!
An entity-relationship model using Chen notation, showing relevant tables and

attributes in the existing DU Poetry MySQL database.

 Amy Peters – A Recommendation Engine

 ! of !12 58

3.6 System Architecture
The offline C++ tool takes the known ratings output from the on-site database, training the
data to produce output files ready to upload back into the database. Main features include:

• Set creation module for generating probe and training sub-sets for testing and tuning
algorithms.

• Engine module for training and computing final results.

• Classes for Poem, Member and Rating objects.

On-site Perl scripting consists of:

• Data generation subroutine for collecting ratings data from the on-site SQL database
and collecting poem characteristics data.

• Comment data subroutine for collecting poem comment text content for analysis.

• Upload results subroutine for inserting results from offline tool into the on-site
database.

• Recommendations test page subroutine for generating front-end test page for
members included in the user evaluation.

• Favourite recommendations subroutine to deal with a member’s selection of their
favourite list of recommendations.

• Questionnaire and submit questionnaire subroutines to generate front-end page for
members to complete the questionnaire, and back-end for checking and inserting the
results into the database.

• Recommendations page subroutine to generate the front-end of final
recommendations page.

 Amy Peters – A Recommendation Engine

 ! of !13 58

3.4.1 Activity Diagram (a member viewing a poem)
 The following sequence diagram describes the interactions which take place when a
member views a poem. A member viewing a poem can leave a comment (and simultaneously
a “like” via a checkbox on the comment form). They can also leave a “like” as a separate
action (or undo an existing “like”) or add/remove the poem from their reading list. They can
also opt to “follow” the author poet (which can also be done via the author’s profile).

!

3.4.2 Class Diagram (offline tool)

 Amy Peters – A Recommendation Engine

 ! of !14 58

!

The class diagram model shows the classes in my program, along with the main
public methods in each class. “MakeSets” is called from “RunEngine” each time a ratings set
needs to be used for training; it generates the two sub-sets (training and probe). The engine
computes the predictions for both training and final results.

3.4.3 Entity-relationship Models for Proposed MySQL Tables
The following diagram shows the “ratings” table which was created to store existing

and simulated ratings just prior to outputting to file (using Perl scripting). This file is then used
by the offline tool to train the existing data. The diagram illustrates which existing tables the
ratings information comes from. Although retaining this information is not necessary, as it
largely duplicates existing information and could be obtained using a sub query; it is simpler
and more useful (for performing analysis) to store it in a table temporarily. I have also
included the ratings value attributed to the different kinds of known information. For example,
a poem view (where there is no “like” or reading list entry) counts as a zero value rating.

 Amy Peters – A Recommendation Engine

 ! of !15 58

!

An entity-relationship model using Chen notation,
showing relevant tables used for generating known ratings data.

In contrast with the previous diagram, the following model shows the process at the
other end; dealing with input data generated by the offline tool. The “Recommendations” table
is where member-poem specific recommendations are uploaded and the “SimPoems” table
contains uploaded data relating to the most similar poems. The latter requires using the
existing “likes” and reading list entry tables in order to generate member specific predictions
based upon current user preferences. The “FinalRecommendations” table was used during
testing to contain the different types of predictions used in the member evaluation process.
This table was not needed to produce final (post test phase) recommendations, as they could
be taken directly form the “Recommendations” table, or sub-queried from data in the
“SimPoems” table. The “Poems” table was used to produce a control group of random
predictions for testing.

!

An entity-relationship model using Chen notation,
showing only relevant tables and columns for providing recommendations to members.

 Amy Peters – A Recommendation Engine

 ! of !16 58

 Amy Peters – A Recommendation Engine

 ! of !17 58

Development
4.1 Collecting Data

I used existing data from DU Poetry’s MySQL tables relating to poem views, “likes”
and reading list entries. For testing and tuning the algorithms I divided the data into two sub-
sets, one for training the data and making predictions, and a probe set for comparing actual
ratings to the predictions made (computing the error).

Initially I assumed that data for poems with only zero value ratings (viewed but never
“liked” or added to a reading list) and data for members with only zero ratings (poems read
but never “liked” or added to their reading list) would not be of any use, so I tried to filter these
ratings out. I attempted to perform this filtering using SQL queries but this proved very slow; I
was having to deal with a few thousands poems at a time to avoid exceeding my web host’s
threshold on terminating long running queries. I was able to resolve this performance issue by
investigating the explain plan for the query, and as a result, adding an index to the poem ID in
the “likes” and “favs” (reading list entries) tables. Although the poem ID already comprised
part of a composite key for these tables (together with the member ID), this was not being
used effectively in performing the select query.

I wrote a Perl script to perform the queries and output the results to a text file. The
resulting script retrieved the data very quickly. In light of this I decided that it would be
advantageous to download all ratings data (including items with only zero value ratings) and
write a C++ component (MakeSets) to generate the probe and training sets. This also allowed
me to build in lots of options (for example, the number of sets to generate and whether or not
to allow the different types of zero valued ratings). This component ensured that I could easily
create sets in a variety of ways in order to comprehensively test the implications of including
different types of data.

Although, there may have been isolated/unconnected data in the original data set,
when selecting suitable probe set entries, I ensured that I was giving the algorithms a fair
chance to make predictions. There was little point including items in the probe set which had
no corresponding data in the training set. Producing a good probe set was especially
important in gauging the true error, because the testing RMSE was expected to be worse
than that of the final results. This was owing to the reduced amount of data; a proportion of
the available data was in the probe set, and therefore unavailable for training. I incorporated a
variable for setting a minimum number of training set entries required for a poem to be
considered for inclusion in the probe set. Furthermore, I added a variable to set a maximum
number of entries per poem allowed in the probe set, primarily to give variety and help ensure
a good distribution of data about each poem across the two sub-sets.

Another consideration when making the sub-sets was to try and give as true a
representation as possible of the ratio of ratings witnessed in the full set. I made it so the sets
would be generated in such a way as to match the distribution of values across the two sub-
sets. This was important because a different make up of values in a training set makes an
impact upon the final RMSE achieved and I wanted to be able to compare the error produced
by the algorithm, with that produced using an average rating as a prediction. I also
incorporated the means to use existing probe sets and generate corresponding training sets
(the contents of the input file, with the specified probe set entries omitted). This meant I could
test different training sets against the same probe set, as long as all items (members and
poems) in the probe sets were also present in training. This gave me a variety of options so
that I could more effectively test and tune the algorithms, and the impact of the inclusion of
different types of training data.  

 Amy Peters – A Recommendation Engine

 ! of !18 58

In order to further improve the diversity of the training and probe data, I wrote a
procedure to reverse the ratings file in order to start selecting potential probe set entries from
the highest poem id (most recently submitted poems) first. Every alternate probe set is
generated using the reversed ratings file. For the purposes of tuning the algorithms I typically
generated only two sets, in order to give variety but also mindful of the extra time needed to
run multiple tests.

4.2 Utilizing Implicit Data
One of the key challenges I faced, was to overcome the limits of a sparse and

potentially noisy data set, by finding the best possible way to use the available data to
achieve my aims; to provide accurate and diverse recommendations for each member. In
order to produce sufficient data for training, I used implicit data relating to which poems each
member had viewed. However, this introduced a large number of zero value ratings into the
data. These can be considered as a negative reaction to a poem because there is no other
way to gauge this kind of reaction (there is no “dislike” option). It is expected that if a member
likes a poem, they will take an appropriate action to record this (register a “like” or add the
poem to their reading list). However, there may be a number of other reasons why a member
did not take a positive action, for example a technical problem, or they simply forgot to make
use of the feature. I wanted to look at ways of using other data in order to make a best guess
as to whether the visitor did indeed like the poem, despite not taking an action. All of these
“simulated” ratings were flagged in the downloaded data file to ensure that they did not qualify
for inclusion in probe set, and were therefore effectively being tested to see if they could
improve the training process.

A major difficultly with assessing the effects of including different types of data is that
the RMSE is not always comparable, as the make up of the probe and/or training sets could
be different in each case. If the same probe set is used to evaluate training sets with different
ratios of ratings, then the probe set requests may favour one more than the other. Yet if the
probe sets are different, it could also be deemed not to be a fair comparison. To help
distinguish the true effect of data changes, I have computed the average RMSE for each test;
the error witnessed when using the average rating seen in the training set as a prediction for
each probe set entry. The improvement in RMSE over this set specific average may be
considered a useful indicator in accessing whether or not to include certain types of implicit
data in the final training process. Another consideration when evaluating the results was the
quantity of poems and members included in the computations. The more items I could include
the better, as I wanted to be able to make predictions for as many members as possible, and
include as many poems as possible in these predictions.

4.2.1 Comment Analysis

The first area I looked at was poem comments, which is a large resource of over
38,000 comments made by more than 2000 members (not including comments on an
author’s own poems). Intending to make use of the existing MySQL full text search index on
both poem comments and comment titles (used for the website’s search facility), I considered
how to go about choosing suitable words to indicate a positive reaction to a poem. Rather
than just guess at which words to use, I wanted to carry out some analysis on the text content
of comments. For this analysis, I downloaded the content of all comments (and titles), not
including those made prior to the “like” feature being launched. I created two sets, one for
comments where the author “liked” the poem and the other for comments where they had not.
I used text analysis software to count the prevalence of words in the two sets [23]. Many of
the most frequently occurring words appeared to be positive, which supported my earlier

 Amy Peters – A Recommendation Engine

 ! of !19 58

findings that people comment more frequently on poems they enjoy. In further support of this,
there were 2.25 times more “liked” comments than “un-liked” comments (14320 to 6358). I
multiplied the “un-liked” comment results to give comparable word counts. Words with the
highest percentage difference across the two sets (more than 50%), where the count was
higher in the “liked” set, were as follows:

Green rows indicate selected words and red rows are words which I deemed
unsuitable because they failed the manual test. The manual test consisted of looking at a
random sample of 25 comments in the “un-liked” set containing the given keyword, and
deciding if the comment was positive, neutral or negative. This allowed me to get an
indication of the context in which the words were being used and therefore confirm if they
were suitable for generating simulated “likes”. I was able to convert over 7000 zero value
ratings to a one, by matching the keywords above for comments made prior to the “like”
feature being launched. I extended this to test for all matching comments, irrespective of the
date published, this generated a further 2000 conversions from a zero to a one rating.

Word
Freq  

(liked)
 %  

Difference
Freq  

(un-liked)
Manual Analysis

(25 un-liked samples)

positive neutral negative

1 excellent 340 372.22 72 19 5 1

2 list 260 231.63 78.4 6 6 13

3 review 277 188.54 96 8 15 2

4 beautifully 210 176.32 76 21 4 0

5 loved 558 164.45 211 21 4 0

6 amazing 719 157.71 279 21 2 2

7 enjoyed 604 137.80 254 22 2 1

8 beautiful 1131 136.12 479 23 2 0

9 wonderful 428 130.11 186 20 4 1

10 love 3198 96.32 1629 18 7 0

11 brilliant 184 91.67 96 20 5 0

12 perfect 265 90.65 139 18 4 3

13 awesome 374 87.00 200 20 4 1

14 great 1920 71.74 1118 19 5 1

Smart Blend
RMSE

Average RMSE
(Smart Blend
Improvement)

Average Rating
Prediction Made

Including Comment
Simulated Ratings
(all dates)

0.4932 0.5254 (6.1%) 0.244

0.4942 0.5195 (4.9%) 0.271

Including Comment
Simulated Ratings
(pre-like feature)

0.4975 0.5251 (5.3%) 0.235

0.4877 0.5129 (4.9%) 0.262

 Amy Peters – A Recommendation Engine

 ! of !20 58

 Due to the difficulties in making direct comparisons between data sets with different
distributions of ratings values, I tested the error using two different kinds of sub-sets. Both
used identical tuning settings across the three examples. The top row of each example also
used identical probe sets across the three tests (the ratings which are in some cases
simulated were not included in these probe sets). The bottom row uses probe sets unique to
the data, which exactly match the distribution of rating values present in there respective
training sets (a probe set contained the same percentage of each value present in its
corresponding training set).

I have also included the RMSE achieved when using the average of all the ratings in
the training set as a prediction for each of the probe set entries, along with the percentage
improvement over this value, which was achieved through training. You can also see that the
average value of the recommendations made increases, as you would expect, when more
high values are present in the training set. From the results I witnessed, I was satisfied to go
ahead and use comment simulated ratings, for all dates, in my tuning and final training
process.

4.2.2 Followers

I wanted to investigate the possibilities for using data about which authors a member
had decided to “follow”. Following an author indicates that they like their poems because it
provides an update every time the followed author publishes a new poem. It also places a
link, serving as an endorsement to the followed author, on the member’s profile. It’s worth
noting that there were 190 members who had chosen to follow at least one other member, but
had never “liked” a poem. This amounted to a potential of 23005 poems (1011 viewed) for
which a rating could be simulated, and therefore recommendations made to that member,
despite the fact that they had never taken an explicit action on any poems.

The pie charts below show the breakdown of zero, one and two ratings observed
within each set. In all examples, zero only rated data has been included (poems and
members with only zero ratings). The first contains no simulated ratings for followed authors.
The second includes them only when a comment has been left and the poem was viewed
prior to the launch of the “like” feature. The third includes them regardless of whether a
comment was left. The fourth and fifth pie charts consider all follower data regardless of view
date. A major advantage of including simulated follower data is that the percentage of one
value ratings increases, helping to address the large percentage of zero ratings found in the
data set.

Not Including
Comment
Simulated Ratings

0.5017 0.5270 (4.9%) 0.180

0.4650 0.4869 (4.5%) 0.183

 Amy Peters – A Recommendation Engine

 ! of !21 58

!

The final (bottom right) pie chart shows the effect of including all follower data,
regardless of whether the poem had been viewed by that member or not. This vastly
increased the total number of observed ratings, increasing from 153013 (in the other
examples) to 566864, with the majority of these coming from simulated ratings. This
increased data set was populated overwhelmingly with one value ratings. The ratings data
also required an extra field to show if the poem had been read, as any poem not read by a
member, is a candidate for a recommendation. Furthermore, including all this extra “follower”
related data had the potential to skew the final recommendations in favour of poems written
by authors already being followed by a member. This was undesirable, as it could limit the
diversity of recommendations, and frequently suggest poems which the member should
already know about (via their updates page). The following table shows the results of testing
each data set.

 Amy Peters – A Recommendation Engine

 ! of !22 58

All tests were run with the same settings and matching ratios of ratings across the
probe and training sub-sets. Zero only value ratings were included and a total of 24888
poems and 2813 were witnessed (slightly more poems were present in the final set, which
included un-viewed poem data and included 25673 poems).

Although the lowest RMSE was achieved by including all follower data, including un-
viewed poems, this test also achieved the lowest improvement on the average RMSE, in fact
performing worse. The make up of this set, which was almost entirely populated by ratings of
the same value, lends itself to a low RMSE. However, this doesn’t necessarily mean that
including this data is beneficial, as the wealth of simulated data causes the explicit data to be
diluted by less useful implicit data [24]. This may explain why the improvement witnessed is
negative.

The largest improvement on the average RMSE was achieved when all “follower”
data for only viewed poems was used, yet this provided the worst overall RMSE. I felt at this
stage that the results of my analysis with “follower” data had been inconclusive and I
furthered my investigations later by testing two different approaches in the final on-site user
testing.

Smartblend
RMSE

Average RMSE +
Improvement of
Smartblend

No followers Information Included 0.4658 0.4871

0.0213 (4.37%)

Followed authors poems get 1 value rating
(pre-like feature and with comment only)

0.4736 0.5020

0.0284 (5.66%)

Followed authors poems get 1 value rating
(pre-like feature only)

0.5067 0.5311

0.0244 (4.59%)

Followed authors poems get 1 value rating
(any date and with comment only)

0.4821 0.5106

0.0285 (5.58%)

Followed authors poems get 1 value rating
(any date)

0.5242 0.5710

0.0468 (8.20%)

Followed authors poems get 1 value rating
(all, even un-viewed poems)

0.4059 0.3996

-0.0063 (-1.58%)

 Amy Peters – A Recommendation Engine

 ! of !23 58

4.3 Implementing k-NN
I implemented the k-NN algorithm by comparing the similarity between items, either

members or poems, using a variety of distance metrics. Using the generated similarity scores,
together with known ratings, I produced a weighted prediction for each line in the probe set.
Along with the capability to compute a predicted rating based upon a weighted score
(similarity) for every poem, I also wanted to have the option of setting a number for k (the
number of nearest neighbours to consider). This offered no benefit in terms of memory usage
or performance, as the program still needed to work out all the similarities (which is the
computationally heavy aspect of k-NN), and then include an extra step to sort the top k most
similar results. It required an optional modification to how the similarity vector was created:

1. if (numNeighbours > 0) // zero means consider all neighbours

2. {

3. partial_sort(eKnnTopKSim.begin(),

4. eKnnTopKSim.begin() + numNeighbours, eKnnTopKSim.end(), compareSim);

5. eKnnTopKSim.erase (eKnnTopKSim.begin() + numNeighbours,

6. eKnnTopKSim.end());

7. }

The compareSim function on line 4 simply returns a boolean value to indicate if the
first value is greater than the second. I used this code variation to test a number of values for
k but was unable to yield an improvement over considering all neighbours. All tested values of
k performed worse, although at 200 neighbours the difference in RMSE was negligible.
However, there was no benefit of reduced computation time, so considering all neighbours
was the best option.

Number of weighted
k nearest
neighbours

RMSE

(item based k-NN)

% of zero value
predictions using
Euclidean distance

Time in seconds
to complete

All 0.5145 12.2% 409

25 0.5323 16.9% 426

50 0.5256 13.3% 422

100 0.5227 12.4% 412

200 0.5189 12.2% 415

 Amy Peters – A Recommendation Engine

 ! of !24 58

4.3.1 User-user Matrix
Due to the small number of users compared with items (poems), this was the faster

approach to k-NN, taking only a few minutes to generate a full matrix of user-user similarities.
However, this method produced a very high RMSE as there weren’t enough similarities
between members. Many of the probe set predictions were whole numbers, indicating that
either the user had no shared ratings with members who rated the requested poem (yields a
zero), or all members with commonly rated poems gave the requested poem the same rating
(100% similarity). This is characteristic of a sparse data set and in particular the DU Poetry
data set, where there are many more poems than there are members. I wanted to be able to
provide useful predictions for lots of members, including those who had only given a few
ratings; therefore the usefulness of this user-user approach was limited.

4.3.2 Item-Item Matrix

I then looked at tackling k-NN using an item-item (poem-poem) approach; looking at
the other poem ratings given by members who rated that poem, to find the similarity between
poems. This opened up a larger number of available similarity scores. The problem with this
method was the computation time, rather than a member-member matrix of around 3000 x
3000 (9 million comparisons), it required dealing with approximately 25000 x 25000 (625
million comparisons). In reality, when constructing a full similarity matrix, these comparisons
only needed to be computed half as many times; I didn’t re-compute a comparison of poem x
and poem y when working out row y (having already worked out row x). However, there was
still an enormous difference in computation time between user-user based k-NN and item-
item based k-NN.

Maintaining a full item-item similarity matrix in memory was not possible once the
number of poems reached a certain level. An “abnormal program termination” error was given
by the Borland compiler, which I discovered related to this memory issue. Once reaching
approximately 20,000 poems, there was not enough space available to address the entire
vector (on my 32-bit machine). I solved this problem by only keeping a single vector in
memory, holding similarities for one poem, compared to all other poems, but only those which
had ratings in common with that poem. I created the vectors at the time a prediction was
being made.

RMSE Time (seconds to complete one probe set of 10000 entries)

0.6381 216

RMSE Time (seconds to complete one probe set of 10000 entries)

0.5145 5317

 Amy Peters – A Recommendation Engine

 ! of !25 58

Along with information about item similarities, a matrix (2D vector) of all known
ratings also needed to be stored within the recommendation engine. This has the potential to
use a large amount of memory space, although less than the item-item similarity matrix, as
the known ratings matrix takes the form user-item (and there are far less users than items). I
wanted to look at other options for providing a more scalable solution by avoiding the need to
store information about all the unknown ratings, which comprise the majority of the matrix. It’s
also worth mentioning that I opted to use the “short” data type instead of “int”, in order to half
the number of bytes required to store each rating.

I tested various alternative approaches; firstly I tried using a “map” from the standard
C++ library, in which to store all known ratings, using a “pair” to create a key from both the
poem id and member id related to the rating. However, this method proved to be extremely
slow (over 100 times slower than the 2D vector). I was able to speed it up slightly by
implementing a very simple hashing method instead of using “pair” to hash the key [25]. My
custom key took the form:

myKey = poemid * max_memberid + memberid

However, I was able to improve performance more significantly by using a separate
map within each Poem object, for ratings relating to that poem. This meant lookups were
being performed within a smaller map each time, and I could use a single value (member id)
as a key. This method was still over 47 times slower than the 2D vector matrix.

Next I investigated hash based storage methods, as I knew they offered good random
access speeds via indexing. I used the “unordered map” feature from the Boost library [26]
because it was significantly faster than the version in the Visual C++ standard namespace. It
also offered a benefit over the standard version in that it had built in support for using “pair” as
a key (in the same way the “map” object does). As before, I also tested this using my own
hashing method (detailed above) and using a separate map for each poem. The “unordered
map” was significantly faster than the map, but still over nine times slower than the 2D vector.

The final method I attempted involved having a vector of pointers within each Poem
object, pointing to the applicable Rating objects. These were stored in order of ascending
member id so they could be looped through until the member id value was found or passed.
My results for each of the approaches outlined, and the time taken to make 15 predictions
using item based k-NN and Pearson correlation are as follows:

Due to the fact that none of these methods provided a viable option, with even the
fastest being nearly 6 times slower than the original 2D vector matrix, I concluded that a

Method Time (seconds)

Full 2D vector matrix 28

Map, all ratings (using “pair” as key) 2841

Map, all ratings (using custom method to hash the key values) 2025

Map, per poem 1324

Boost unordered map, all ratings (using “pair” as key) 261

Boost unordered map, per poem 188

Unordered map, all ratings (using custom method to hash the key
values)

162

Vector of pointers to ratings objects, per poem 248

 Amy Peters – A Recommendation Engine

 ! of !26 58

hardware solution may be my best option. With my current data set, the full matrix can be
maintained in memory, however as the number of members and poems grows it may become
necessary to upgrade to a 64-bit machine and operating system in order to address the full
vector in memory [27].

4.3.3 Distance Metrics
A metric is a function which defines a distance (or similarity) between items. I chose a

selection of the most commonly used metrics in k-NN in order to tune my algorithms. On a
sparse data set, working out distance can be problematic because there may not be many
ratings in common between items. For example, two poems with one rating in common, which
is the same value for both, may be deemed as perfect similarity. However, a poem which
shares many ratings that match (and one or two that don’t) may be given a lower value,
despite potentially being a much more solid match than the first, which may have been
skewed by a single inaccurate noise rating. Unfortunately this cannot be remedied easily, as
giving more weight to relationships with lots of ratings in common would have the undesirable
effect of recommending popular items more often, at the expense of relatively undiscovered
(less often rated) items.

Euclidean Distance

This is the straight line distance between two points, and is given by the Pythagorean
formula. Below is the equation for Euclidean distance, along with my function, which gives a
result between 0 (no common ratings found, no similarity) and 1 (perfectly similar) for each
item. I have written it in such a way as to avoid any potential divide by zero errors.

1.0 /(1.0 + sqrt(sumSquares))

The value sumSquares is the sum of the squares of the distance between each rating
that the items have in common. This is achieved by looping through each item (member for
item k-NN or poem for user k-NN) and adding to sumSquares each time a common rating is
found. Considering the line below, for item based k-NN; id1 and id2 would be two different
poems, and i is the current member in the loop.

sumSquares += pow(eKnnMatrix[i][id1] - eKnnMatrix[i][id2], 2);

Manhattan Distance
This is the distance between two points in a grid based on a horizontal or vertical

path along grid lines, in contrast to the diagonal or "as the crow flies" path of Euclidean
distance. Similarly, it gives a result between 0 (no similarity) and 1 (perfectly similar) for each
item.

1.0 /(1.0 + distance)

 Amy Peters – A Recommendation Engine

 ! of !27 58

The value distance is the sum of the distance between each rating that the items
have in common. I use the fabs function to return the absolute float value of the distance, this
removes the sign on negative values, making all distances positive (the direction of the
distance doesn’t matter and it avoids an incorrect sum). As with Euclidean distance, a zero
value is returned if the items have no ratings in common.

distance += fabs(eKnnMatrix[i][id1] - eKnnMatrix[i][id2]);

Average Based Similarity
I included a simple averaging function, which returns the similarity computed from the

average distance across all shared ratings.

1. / (1.0 + (sumDistance / ratingsInCommon))

Where the following code is executed each time a common rating is found:

sumDistance += fabs(eKnnMatrix[i][id1] - eKnnMatrix[i][id2]);

ratingsInCommon++;

This average based similarity function yielded almost identical similarity scores to Euclidean
distance.

 Amy Peters – A Recommendation Engine

 ! of !28 58

Cosine Similarity
Cosine similarity is an evaluation of the similarity between two vectors by measuring

the cosine of the angle between them, to determine whether they are pointing in roughly the
same direction. The resulting similarity ranges from −1 meaning exact opposites and 1
meaning perfect similarity, with 0 indicating independence (no correlation).

!

The magnitude is the sum of the squares of each poem’s values (lines 3 and 4) and the dot
product is the sum of multiplying each of the common values (line 5).

1. val1 = eKnnMatrix[i][id1] + 0.1;

2. val2 = eKnnMatrix[i][id2] + 0.1;

3. id1sumsq += (val1 * val1);

4. id2sumsq += (val2 * val2);

5. sum += (val1 * val2);

I added a small value to the known rating values, as the function wasn’t accounting
for zero value ratings properly, and was subsequently returning exactly zero (no correlation)
scores more often than expected. This also remedied the possibility for divide by zero errors
in the final result:

result = sum / (sqrt(id1sumsq * id2sumsq));

 Cosine similarity performs badly where there are few ratings in common, as it looks
for patterns. This issue is discussed further in the following section on Pearson correlation.

Pearson Correlation Coefficient
The Pearson product-moment correlation coefficient is a measure of the correlation

(linear dependence) between two variables. As with cosine similarity it returns a value
between +1 and −1 inclusive.

!

Due to the nature of a correlation measurement, the Pearson coefficient performs
badly in cases where there were only a few items in common, because it relies on finding a
correlation between the ratings given. It tends to yield a zero (no correlation) very frequently
in cases with a low number of ratings in common. The more useful “other” results, which lead

 Amy Peters – A Recommendation Engine

 ! of !29 58

to a good variance in similarity scores, are not witnessed in volume until the number of
shared ratings increases sufficiently enough for the algorithm to observe correlations between
items.

!

The graph shows similarity score results for 1000 of each case (number of ratings in
common) using item based k-NN (members who have rated both poems).

RMSE results for each metric, using identical item k-NN
settings and sets in each case.

The results show that the Euclidean distance and average function perform well. As
mentioned, the correlation methods (cosine and Pearson) performed badly. 

Metric RMSE

Euclidean 0.5151

Manhattan 0.5209

Average 0.5142

Cosine 0.5638

Pearson 0.5679

 Amy Peters – A Recommendation Engine

 ! of !30 58

4.4 Implementing SVD

I based my SVD implementation on highly regarded suggestions made by Simon
Funk during the Netflix Prize [14]; his ideas were widely used and adapted by other teams in
the competition. The program starts by working through each of the defined number of
factors, until such a time as a chosen minimum number of iterations have been reached. The
program may go beyond the minimum number of iterations if a defined amount of
improvement in RMSE is still being achieved (compared with the previous iteration). Each
iteration loops through all of the known ratings, first working out a prediction based on existing
values. During training, the prediction is made up of the sum of three parts. The first is the
Rating object’s cache; the final prediction made at the end of training the previous factor,
which takes into account the results of all factors trained so far.

double sum = (cache >= 0) ? cache : ePoems[poemid].wAvgRating;

If there is no cached value (we are working on the first factor) then a weighted
average of the poem’s known ratings is used instead. The weighting makes use of the
regularisation parameter “svdReg” (discussed later) and the average of all observed ratings,
in order to reduce the potential impact of noise values, within ratings received by that poem.

ePoems[i].wAvgRating =

(averageRating * svdReg + ePoems[i].sumRating) /

(svdReg + ePoems[i].numRating);

The second part of the prediction adds in the influence of the rating we are working
on; the product of the most current factor values for the poem and the member involved. The
third part of the prediction adds in the factor initialisation values for any factors which we
haven’t trained yet, as the predicted rating needs to take into account all factors. The RMSE
between the known rating and the predicted rating is then computed and the existing and new
information is cross trained, using the method suggested by Simon Funk [14].

eMemberFactors[f][memberid] += (float)(lRateMod * (err * pf - svdReg * mf));

ePoemFactors[f][poemid] += (float)(lRateMod * (err * mf - svdReg * pf));

 “lRateMod” is the learning rate, with an addition I made to give an option for varying it
during training, “err” is the RMSE mentioned above and “svdReg” is the regularisation
parameter at the core of Simon Funk’s modified method of SVD. The learning rate and
regularisation parameter are discussed in more detail later. At the end of training each factor,
the current predicted value (taking into account all training so far) is computed for each known
rating and stored in their respective “cache” variable (within the Rating object).

 Amy Peters – A Recommendation Engine

 ! of !31 58

4.4.1 Tuning the Algorithm

As a starting point for tuning my algorithm I looked at the number of factors (features)
to generate. There was a steady decrease in RMSE up until an optimum number of 71
factors, after which the RMSE started to increase again. It took an average of 2.665 seconds
of extra processing time per factor, per training set (of approximately 132,000 ratings). I ran
tests with several different training set variations (different data simulations, for example) and
found a similar pattern, with the optimum number of factors always emerging as either 71 or
72.

!

Next I looked at the minimum number of iterations required to train each factor. This
determines when to stop the training process; if it is set too high, it could cause over-fitting
and if set too low it may mean we never reach the optimal solution [28]. The results produced
a similar curve, and RMSE was lowest at 280 iterations. When more data was included (for
example un-viewed poem “follower” data) this increased slightly to 295 iterations. It took just
over two seconds extra for each additional iteration (per training set).

!

 Amy Peters – A Recommendation Engine

 ! of !32 58

To supplement the “minimum iterations” setting, I also included a “minimum
improvement” variable. This allows the program to go beyond the minimum number of defined
iterations, on condition that the error achieved is significantly lower (by the defined “minimum
improvement” value) than the previous error. This had the advantage of ensuring that the
process of training the current factor was not ended prematurely, if significant improvements
were still being made. The graph below shows how the minimum improvement variable
affects RMSE, using pure SVD over one training set example. Any value above 0.005 yields
an equivalent RMSE because there are no occasions where the RMSE of the iteration
improves upon the previous iteration sufficiently.

Graph showing how the “minimum improvement” variable affects RMSE

!

Next I considered the factor initialisation value, which is the starting value attributed
to each poem and member for each of the defined number of factors. Along with testing a
range of different factor initialisation values, I wanted to see the effect on RMSE of varying the
initialisation value for each factor, along with any changes in the variety of poems ranking
highly for each factor. I added a small random “salt” value (+/- the specified initialisation
value) to give the variation.

 Amy Peters – A Recommendation Engine

 ! of !33 58

!

Aside from a marginally improved RMSE using a fixed initialisation rate at 0.02, there
was little to choose between the two approaches (fixed and variable initialisation values). The
effect of the initialisation value on the algorithm overall can be deemed as very small. It levels
out completely above 0.08; I also tried much higher values (for example 25) and achieved the
same resulting RMSE. This makes sense in the context of SVD; as long as the values
attributed to each item for each factor work in relation to each other then the actual values
themselves are inconsequential. I analysed the top ten fifty poems for each of the 71 factors
generated in each test, using an initialisation value of 0.05 (where the RMSE was the same
for fixed and variable). Of the 3550 poems which resulted, although the order and values
were different, the same 238 different poems appeared for both the varied and fixed
initialisation values.

The learning rate parameter represents the step size that the gradient descendent
(first-order optimisation) algorithm takes to find the local minimum. Simon Funk suggested a
learning rate of 0.001, however for my data set the optimum learning rate throughout the
tuning process always emerged as 0.0008. The choice of learning rate had no impact on
execution times.

 Amy Peters – A Recommendation Engine

 ! of !34 58

!

I noted that a number of approaches used for the Netflix Prize and beyond had
favoured lowering the learning rate value gradually during the training process [29]. I added
an option to vary the learning rate each time a new factor was trained. I tried decreasing it
(multiplying by 0.95) and for comparison I also ran a test which increased it (multiplying by
1.05). Both of these variations performed worse than keeping the learning rate constant.

Finally, I considered the “regularization parameter” which is crucial in Simon Funk’s
modified approach to SVD. It is used to minimize over-fitting when dealing with a sparse data
set; it stops noise values from having too much influence over the training process. It
represents the extent to which the program pulls back on the error with respect to the
previously computed value, to stop any one value having undue influence over the training
process. The number chosen had no effect on computation time and an optimum value of
0.05 emerged.

Learning Rate SVD RMSE

0.0008 (constant) 0.5483

0.0008 (decreasing) 0.5536

0.0008 (increasing) 0.5548

 Amy Peters – A Recommendation Engine

 ! of !35 58

!

4.4.2 Analysing the factors
One criticism of SVD (compared with k-NN) is that it’s not explainable, in that you

can’t provide a meaningful explanation as to how you arrived at the predications made [11,
13]. I wanted to investigate the factors further to see if I could observe any patterns. In order
to analyse the factors, I performed a sort on the results, to get the poems which had the
highest values for each factor (the number of poems to consider is configurable), and then
combined this with selected data relating to the poem. This included; authors age, experience
level, the length of the poem, the number of poems the author has published and the poem’s
category. However, I was not able to find any correlations in the results; if a value dominated
in the “top poems” output, it also dominated when considering the membership as a whole.
This could be attributed in part to a lack of diversity among members; for example, of the
1607 members who have completed the “country” field in their profile, 1036 of them reside in
the U.S.A.

4.5 Blending: Linear Blend

Keen to see if I could improve upon my single approach RMSE values, the first
method I tried for blending was to perform a linear blend on the results of the two methods.
Initially I set a 50/50 blend (0.5 * result) for each of the two results sets. This was adjusted for
each of the sets in turn, starting from 0 to 1 in steps of 0.1 to find the optimum point (where
RMSE was lowest). Once I had found the optimum level for the first set I used this (rather
than the 0.5 starting value) to tune the contribution from the second set. This method
incorporated the flexibility for the two values not to equal one, which meant it could correct a
situation where the results were coming out too high or low overall. The blending process was
fast on my 10,000 entry probe sets, which allowed me to shorten the step increment to 0.01
and further improve my results.

RMSE

 Amy Peters – A Recommendation Engine

 ! of !36 58

4.6 Blending: Smart Blend

 I was keen to consider other ways of blending the algorithms, in order to try to further
improve upon my results. I decided to use the factor data generated by SVD to compute the
distance scores between poems (or members, if using a user based approach). Then, as with
regular k-NN, these similarities would be used to produce the weighting by which to multiply
known ratings.

This also meant that a similarity score could be produced for every poem, even if they
had very few ratings (or even no ratings) in common. This helped to produce “similar poems”
data for my final results, by linking poems together more easily regardless of the amount of
shared information. I implemented this method for both user and item based approaches, but
as with previous results, the item based approach was more successful. I called this method
Smart Blend.

4.6.1 Adjusting the Metrics

 The metric functions used for k-NN needed to be adapted to create versions suitable
for the Smart Blend approach. The values attributed to each item for each factor were
different kinds of values to that of the known ratings. Ratings values fall between 0 and 2, but
factor values range from [stats here]. Where I previously added one to the Euclidean distance
division in the k-NN metric, to avoid potential divide by zero issues, I adjusted this value to be
0.1 so as not to impact on the variation between similarity scores when using Smart Blend.
Using the 1.0 value was diluting the differences too much. However, for Manhattan distance
the 1.0 addition worked just as well for the Smart Blend version as the k-NN version. In order
to achieve appropriate variances I outputted sample similarity scores and adjusted each of
the Smart Blend metrics where possible to achieve good variance within the expected
similarity score ranges; either 0 to 1, or -1 to 1 (for the correlation functions). The following
table shows a comparison of similarity scores for the same example pair of poems in each
case. It shows results for each metric, for item k-NN and for item based Smart Blend.

Pure SVD
RMSE

0.5478

Pure k-NN
RMSE

0.5245

Linear Blend

0.7 / 0.4

0.5236

Linear Blend

0.67 / 0.38

0.5188

Metric
Case 1

2 shared
ratings

Case 2
4 shared
ratings

Case 3
6 shared
ratings

Case 4
8 shared
ratings

Case 5
10 shared

ratings

Euclidean k-NN 0.67 0.8 0.46 0.89 0.59

Manhattan k-NN 0.5 0.5 0.125 0.5 0.125

 Amy Peters – A Recommendation Engine

 ! of !37 58

I have also included a scatter chart to show the variance in similarity scores achieved
with each Smart Blend metric for a single poem (compared to all other poems). I chose a
poem which had seven ratings, which was the average number per poem found in the data
set. The selected poem also had a good mixture of known ratings, which reflect the makeup
of the set overall (four zero ratings, two one ratings and one two rating).

!

Cosine k-NN 0.77 0.63 0.20 0.91 0.20

Average k-NN 0.67 0.8 0.46 0.89 0.59

Pearson k-NN 0 0 -0.5 0.88 -0.5

Euclidean SB 0.74 0.15 0.27 0.33 0.34

Manhattan SB 0.81 0.19 0.34 0.38 0.42

Cosine SB 0.99 0.59 0.88 0.99 0.96

Average SB 0.74 0.14 0.27 0.30 0.34

Pearson SB 0.87 0.28 0.53 0.97 0.84

 Amy Peters – A Recommendation Engine

 ! of !38 58

!

!

 Amy Peters – A Recommendation Engine

 ! of !39 58

!

!

Metric RMSE

Euclidean 0.4933

Manhattan 0.5032

Cosine 0.4946

Average 0.5044

Pearson 0.4989

 Amy Peters – A Recommendation Engine

 ! of !40 58

 Amy Peters – A Recommendation Engine

 ! of !41 58

4.7 Program Design Decisions

Originally I used arrays, rather than vectors, throughout my program as I was aware
that there may be a small performance advantage [30]. However, this added the burden of
having to re-query the database each time I changed the input files (in order to find out the
number of poems and members). Bearing in mind that I plan to run the offline tool regularly, it
was not ideal to have to log into the database, gather these details, each time I wanted to
generate new results. In light of this, I changed my arrays to vectors so that I could resize
them dynamically. This also proved beneficial as I started to add options for running my
program using different approaches. I could have all the different types of vectors which may
be needed and initialise them to size zero. The program then only needed to expand the ones
being populated for the approach being used. For example, the k-NN similarity vector is not
needed if testing a pure SVD approach.

I attempted to avoid code bloat by having the metrics in a separate file and using
templates to make a single function for each metric that was suitable for multiple different
approaches (pure k-NN and Smart Blend). However, because these distance functions are
being used repeatedly, the extra computational cost of making them universal slowed things
down significantly. In the end it proved better to make the functions specific to the methods
being used in order to ensure the minimum computational cost was incurred each time a
similarity score was generated.

4.8 Generating Data from Predictions
Throughout the tuning process I tested my algorithms by creating predictions for

member/poem combinations requested in the probe set. This method would be the most
obvious way of generating final results; producing a prediction for each member, for each
poem they haven’t read (and didn’t write). However, this would mean that any new data, or
indeed new members, would have to wait until the offline tool was run again in order to
receive predictions reflecting the new information. To work around this issue, I also wanted to
consider the method used by Amazon; producing data about similar items and using that to
generate predictions. This would mean that predictions given could seemingly change and
respond immediately to new information from members. Each time a member takes an action
to indicate a positive response to a poem; similar poems can be retrieved from the database
and recommended if suitable. New poems however would have to wait until the result set was
recomputed in order to be included. However, recently posted poems appear at the top of the
DU Poetry listings and are therefore likely to receive lots of attention when first posted, so I
didn’t feel that not including them immediately in recommendations was a problem. I will now
discuss how I implemented both approaches in my offline tool.

4.8.1 Recommended Poems (user-Item predictions)
This appeared to be a straight forward way to produce recommendations. However,

the main challenge was to filter the results to ensure that the amount of output data didn’t get
too large, whilst producing enough suitable recommendations for each member. Initially I set
a minimum value for which the prediction had to achieve in order to be considered for the
result set. With this set at 1.01 (just over the “like” value), the resulting files were 36.3mb with
2.16 million entries (no “follower” simulated ratings) and 52mb with 3 million entries (“follower”
simulated ratings for all viewed poems). Along with producing large output files, the results
only contained recommendations for 166 and 197 members respectively. I realised that this
was due to predicted ratings being closely correlated with the average rating that a member
had given to all poems they had rated. This average includes zeros when they have viewed a
poem but not taken an action. I adjusted my method of generating predictions, so that a top n

 Amy Peters – A Recommendation Engine

 ! of !42 58

number of highest value predictions for each member could be defined. The problem with this
method was that for item based algorithms it had to store all predictions until the end of the
process, in order to avoid having to re-compute the poem similarity vector multiple times (the
program loops through each poem, then every member in relation to that poem). The
program ultimately ran out of addressable memory before completion. I solved this issue by
only saving predictions which were at least 10% better than the average rating given by that
user (with an exception case for users with an average very close to the maximum rating).
Anything less than this level of improvement is a bad candidate for a recommendation
anyway, as it isn’t significantly higher than their average poem rating. I then sorted the stored
results for each member in order to output the top n results. With n set at 100, this
significantly reduced the size of the output files to 3.3mb with 170,000 entries and 3.7mb with
190,000 entries, yet provided recommendations for 1892 and 1893 distinct members
respectively.

4.8.2 Similar Poems (item-item similarity)
 Outputting results for similar poems was somewhat easier to implement (for item
based methods) as it could be done straight after creating the similarity vector for each poem.
This meant there was no need to store the poem similarities for longer than normally
expected. I set a high similarity score of 0.97 to cut down the amount of data being
generated. This produced a 26.6mb file with 1.37 million entries, which included data for
11,404 poems. I was able to reduce the size of the data file, and lower the minimum required
similarity score, by modifying my existing code. I used the method for creating a similarity
vector when a number is specified for k (rather than considering all k-NN) as it performs a sort
on the similarity vector to find the most similar neighbours. I included a variable for defining a
maximum number of similar items to output for each poem. This restricted the size of the final
output file, but also ensured that data for all poems were included (where other poems
existed which met the minimum similarity score). Setting the minimum similarity score at 0.75
and a maximum number of 100 similar poems per poem, I generated an output file of 19.7mb
with 981,000 entries. This included data for 16,000 different poems (nearly 5000 more than
the previous output, and closer to the total of 25,000 poems in the data set). If a user based
algorithm is chosen instead, the similarities between members are output at the time of
generating the similarity vectors.

 In order to output similarities for the opposite approach (for example, member
similarities, when using an item based approach) I added an extra phase to the result
generating procedure. I opted to make use of existing code by re-making the initial vectors in
line with the opposite approach, since this only a few seconds to complete, and then looping
through creating a similarity vector for each item, and outputting the most similar items, as
outlined above.

 Amy Peters – A Recommendation Engine

 ! of !43 58

4.9 Website Implementation

The on-site part of the development process involved Perl scripting to fit in with the
existing website. I wrote subroutines to generate pages and communicate with the database,
to log on-site test phase data and upload/download data from the database to interact with
the offline tool.

4.9.1 Dealing with the Results Data
 The recommendations data is uploaded to the existing DU Poetry MySQL database.

As the results of my research on the inclusion of simulated “follower” data were inconclusive, I
generated two different sets of member specific recommendations for testing. One with no
“follower” simulated data (which achieved a low RMSE in testing) and one with simulated
“follower” data for poems viewed on any date (which achieved the highest improvement over
its average RMSE). I used Perl to insert the output from the offline tool into the
recommendations database table, and a separate table into which the results for similar
poems were inserted. In order to generate predictions from the similar poems data, I queried
each member’s reading list entries and found the best matching poems to those on their list.

*Distinct members are those who have at least 6 suitable recommendations for testing (non
duplicates).

It was encouraging to see that a wide range of poems were being recommended
(nearly all of the 25841 in the data set). This satisfied my goal to include as many poems as
possible in the recommendations given.

I reduced the sets down to a top 50 of each per member in order to perform some
analysis on the level of duplication experienced amongst the highest ranked predictions of
each type. I included a “duplicate” column in the final results table in order to track the level of
duplication and at what point it occurred. Duplicate entries were not suitable for testing as I
wanted to generate three unique lists, to properly test the differences between the three types
of prediction data.

Total Entries (up to 50 per member from each table) 239956

Distinct Members Overall 2042

Distinct Members* (not including “follower” simulated ratings) 1892

Distinct Members* (including “follower” simulated ratings) 1893

Distinct Members* (from similar poems) 1205

Distinct Poems Overall 24251

Distinct Poems (not including “follower” simulated ratings) 15851

Distinct Poems (including “follower” simulated ratings) 17634

Distinct Poems (from similar poems) 16361

Total Duplicates (out of 239956 total entries) 12698 (5.29%)

Duplicates Between Poem Recommendations
(“follower” sim and no “follower” sim)

9094

Duplicates incurred using similar poems (from
member’s reading list entries)

2465

 Amy Peters – A Recommendation Engine

 ! of !44 58

The level of duplication witnessed across the sets was around 5%, which shows that
the results produced by each method are very different from one another.

For testing I chose to use six poems per list, for each of the three lists (and a fourth
“control” list of randomly generated poems). Each member who took part in testing would be
required to view 24 poems, and then select their favourite of the four lists. In total there were
1055 members for which a test set had been achieved (six entries suitable for each of the
lists). There were a further 915 members for whom there were entries, but not enough to fill
each type of list. I then analysed the prevalence of recommended poems for which the
member was following the author poet.

Although my concerns over the overall number of “followed” poet recommendations
being high were unfounded, there was still an issue with regard to some specific members’
recommendations.

Duplicates incurred using similar poems (from
member’s “likes”)

4092

Overwritten duplicates (duplicates appearing
more than one)

2953

Poems by

followed authors

Poems by

un-followed authors

List 1 (not including “follower” simulated
ratings)

1092 (1.1%) 94863 (98.9%)

List 2 (including “follower” simulated ratings) 2671 (3.1%) 84002 (96.9%)

List 3 (from similar poems) 505 (0.9%) 56823 (99.1%)

 Amy Peters – A Recommendation Engine

 ! of !45 58

As expected, the results that were trained with “follower” simulated ratings included,
contained a higher prevalence of followed authors’ poems. Due to the numbers being low
overall, and wanting to test the full implications of different data set ups, I decided not to filter
these ratings out of the user evaluation process. My only reservation was that for several
members, their entire recommendations for list 2 comprised of poems by author’s they were
following.

Next I wanted to look at the diversity of recommendations being made. I queried the
database to find out how many members received three or more recommendations by the
same author.

I couldn’t find a definitive reason for why members were receiving this lack of variety
in their recommendations, however they generally related to members with no “likes”, or
“likes” for poems mostly by the same authors. Of the 31 cases; 12 had no “likes”, 5 liked
poems by less than five different authors, 10 liked poems by less than ten different authors
and 4 liked poems by more than ten different authors.

Finally, I deleted any recommendations for members who had less than the six
required for testing each list. Since MySQL does not currently support deleting from a table
using select from the same table in a sub-query, I created a temporary (connection based)
table for storing member id’s for members which did not meet the criteria.

Number of members with > 3
recommendations for followed authors’
poems

List 1 (not including “follower” simulated
ratings)

1 (0.1%)

List 2 (including “follower” simulated ratings) 22 (1.2%)

List 3 (from similar poems) 1 (0.1%)

Number of members with n
recommendations by the same author

n = 4 n = 5 n = 6

List 1 (not including “follower” simulated
ratings)

2 2 1

List 2 (including “follower” simulated ratings) 23 1 0

List 3 (from similar poems) 1 1 0

 Amy Peters – A Recommendation Engine

 ! of !46 58

CREATE TEMPORARY TABLE fordeletion

SELECT distinct r.memberid FROM final_rec r

 WHERE (select count(*) from final_rec WHERE r.memberid =

memberid and followers = 1 and type = 0) < 6

OR (select count(*) from final_rec WHERE r.memberid = memberid

and followers = 0 and type = 0) < 6

OR (select count(*) from final_rec WHERE r.memberid = memberid

and type > 0) < 6;

I then deleted everything from the recommendations table containing member id’s in
the “fordeletion” temporary table. Finally I added recommendations for each potential
participant to form a “control” list, by generating random un-viewed poems, which were not
already present in one of the three existing lists. Of the final data across the four lists there
were a total of 29286 recommendations which included 14823 different poems. The poem
recommended most often appears in 16 different members’ test data. I think that overall this
represented a good amount of variety in the poems being recommended.

 Amy Peters – A Recommendation Engine

 ! of !47 58

4.8.2 Front-end for User Test Phase

I scripted a test page, accessible by all members who had enough data for testing.
This provided links to their recommended poems, along with links for selecting their favourite
list. After which they are invited to complete a multiple choice questionnaire (discussed in the
conclusion section). I kept the design clean and in keeping with the rest of the DU Poetry
website. In order to randomise the order in which the lists were shown to members, to curb
the opportunity for members to discuss their choices and influence each other, I displayed the
four lists in four different possible orders, based on member id.

!
Screen shot showing the recommendation engine test page for members

 Amy Peters – A Recommendation Engine

 ! of !48 58

4.8.3 Front-end Final

The final recommendations page was generated from user-specific predictions using
all “follower” simulated data for viewed poems, as this performed best in the member
evaluation process (discussed later). If there are not enough unread recommendations to
show, then further recommendations can be generated from the “similar poems” table, using
a member’s current “likes” and reading list entries. This also means that recommendations
can be made right from the very first “like” or reading list entry that a member makes. Along
with poem recommendations, I also show a list of up to six similar members. This list is
generated initially from the similar members table, and if there are not enough entries to
show, it then attempts to find members with a similar writing style or level. This is done by
searching the poems written by the viewer, and finding similar poems (using the “similar
poems” table) and showing the authors of these poems. Poets the viewer is already following
are not displayed.

!

Screenshot showing the final member recommendations page. 

 Amy Peters – A Recommendation Engine

 ! of !49 58

Conclusion
5.1 Evaluation of Objectives

Throughout development I tuned and tested the algorithms I produced against the
quantitative measure of RMSE, always seeking to lower the amount of error achieved. This
gave me a benchmark by which to improve the accuracy of the system. However, the real
measure of the success of my project can only come from the user’s own experiences of how
suitable the recommendations were. Despite the level of technical and mathematical detail
involved in the task, the end result is very much about the social benefit that collaborative
filtering can provide to the DU Poetry community. The overall objective of my task was to
provide a tool which could be used to take DU Poetry forward in the future by helping the
website to grow. I believe collaborative filtering can do this by strengthening the community,
keeping the site interesting for members and helping like minded people find each other more
easily.

 The data set itself provided massive challenges due to the sparseness of the data
and the noise incurred due to differences in the ways members’ use implicit and explicit
means to show their reactions to the poems they read. Despite this, I was able to combine
two very different approaches in order to achieve a good level of improvement over using the
average rating as a prediction; which could be likened to providing random recommendations.
This ensured that in quantitative terms, the predictions made should certainly be an
improvement over a random means of selection.

 Originally I set out to try and find trends in member characteristics like age and
location. This proved challenging for a number of reasons including; the lack of diversity
among members and the fact that not all members supply this optional profile information.
However, having incorporated into my program the means of carrying out this kind of
analysis, I can continue to monitor this in the future as the data set grows and changes.

 I considered different approaches for generating output, mindful of the desire to be
able to produce recommendations that could adapt instantly to new members and new
information. I tried the approach used by Amazon to produce data related to similarities,
rather than user-specific predictions. I tested the two different approaches alongside each
other during the member evaluation process, to see if there was any penalty in using this
approach, with respect to the quality of predictions made. By using similarity information,
instead of producing finite predictions, it will be less important to run the offline tool regularly
in order to keep supplying new predictions.

 I put a lot of focus on how best to use the existing data, as I felt this was a really key
part of achieving the best possible results. It proved difficult to assess the benefits of including
different types of data, as the statistical analysis of RMSE couldn’t give the full picture; as I
wasn’t comparing like with like. However, I was able to be reasonably confident in the merits
of including simulated comment based data. The results of including “follower” data were less
conclusive. In light of this, I chose two different approaches (no “follower” simulated data and
“follower” simulated data for all viewed poems) and included them both in the member
evaluation process. Despite achieving a very low RMSE when including simulated data for
un-viewed poems, I discounted this method because it put an overwhelming emphasis on
simulated data, which diluted the explicit actions taken by members to a level which I felt was
unreasonable.

5.2 Statistical Evaluation

 Amy Peters – A Recommendation Engine

 ! of !50 58

I incentivised members to take part in the user evaluation process, with the promise
of a trophy for those who completed it. In order to receive the award they had to read all 24 of
their recommendations, and complete a questionnaire. I ran queries to check how members
reacted to poems recommended to them, in terms of which actions they took on the selected
poems. In total 135 members took part, 81 of which completed the challenge. I was surprised
to find that commenting levels were very low (compared with typical behaviour) across each
of the four lists, and believe this may be due to the nature of the challenge; participants eager
to complete it (and acquire the trophy) rather than spend time leaving comments. All three
lists produced from recommendations performed significantly better than the random control
group in terms of “likes” and reading list entries. Both list two and three also equalled or
exceeded the percentage occurring on average for these actions. Bearing in mind that
member’s may typically spend time reading poems by authors they already know about and
like, the control group may be a better indication of a truly average reaction to a random
poem.

Poem Views Comments
(percentage
of views)

Likes
(percentage
of views)

Reading List
Entries
(percentage
of views)

Recommendation Test
Phase

2408 82 (3.3%) 450 (18.1%) 51 (2.0%)

List 1 (user specific
recommendations not
including “follower”
simulated ratings)

588 21 (3.6%) 99 (16.8%) 6 (1.0%)

List 2 (user specific
recommendations
including “follower”
simulated ratings)

596 22 (3.7%) 139 (23.3%) 22 (3.7%)

List 3 (from similar
poems data inc.
“follower” simulated
ratings)

615 19 (3.1%) 135 (22.0%) 21 (3.4%)

List 4 (random control
group)

609 20 (3.3%) 77 (12.6%) 2 (0.3%)

Average Levels for
comparison (post “like”
feature launch)

112153 23.3% 20.4% 3.4%

 Amy Peters – A Recommendation Engine

 ! of !51 58

5.3 User Opinion
I included a questionnaire in the user evaluation process in order to further gauge

users’ reactions to recommendations, and also pose some questions which would help me
decide how to develop the feature further in the future. The following screen shot shows the
questionnaire supplied to participating members.

!

 Amy Peters – A Recommendation Engine

 ! of !52 58

Before completing the questionnaire members were required to select their favourite
of the four lists. The resulting choices and member’s opinions of their selected list were as
follows:

!

!
The statistics for which list was chosen mirror the results I got in the previous section,

with lists two and three (those including “follower” simulated data) doing best. The user-
specific recommendations in list two out performed those generated from the “similar poems”
table. Overall 84% of respondents perceived their favourite list to have provided
recommendations which were better than random. However, a small number of respondents
chose the random list as their favourite, this could be a reflection of poor recommendations in
these cases, or simply that the random selections provided happened to be exceptionally
suitable.

 I also asked users if they were interested in being shown members who were similar
to them. The results are shown in the following pie charts.

 Amy Peters – A Recommendation Engine

 ! of !53 58

!

The results for both questions were closely related, and the majority of respondents
were interested in seeing members similar to them. In light of this, I included a selection of
similar members alongside the poem recommendations on the final recommendation engine
webpage. First it searches the “similar members” table which gives results for members with
similar tastes. If it doesn’t find enough matches then it goes on to look for members with a
similar writing style, using the “similar poems” table together with details of poems written by
the member.

5.4 Lessons Learned
Although, it proved frustrating to carry out the majority of testing and development on

a five year old 32-bit laptop, I feel that helped me think carefully about the code I was writing
and ultimately adopt efficient programming habits. When my machine ran out of memory, it
forced me to re-evaluate my code, and consider different approaches, sometimes forfeiting a
small amount of extra execution time, in order to ensure the solution was scalable and met
the needs of the data set. It also helped me develop a good understanding of the capabilities
of different types of hardware and the importance of having a machine capable of the task at
hand. While optimising a program where possible is important, a hardware solution could
potentially be far more efficient than what is possible through coding techniques alone [31]. To
generate a full result set on my machine takes approximately 4.5 hours, when I tested this on
a slightly newer 64-bit machine this reduced to less than 3 hours. I would expect that with an
up-to-date and more powerful computer this would reduce further still.

Version control proved very important in this project, as I was testing different ways of
doing tasks, I ended up with a lot of different versions of my code. Often I was running tests
over-night with different settings and code, so it was important to keep track of which versions
were being used, in order to produce comparative results and not lose track of updates.
Some of the methods I used to generate statistics are now obsolete; for example to test
access times of different storage methods, or tuning variables which in the end didn’t yield the
anticipated RMSE improvement. However, where possible, I tried to leave in support for
different approaches in cases where it didn’t impact upon the execution time of the optimum
algorithms, this was in case I want to re-test them in the future as the data set grows and
changes.

I also learned the importance of not losing sight of individuals when embarking on a

 Amy Peters – A Recommendation Engine

 ! of !54 58

large scale collaborative process. DU Poetry is still a relatively small website, with a core of
active members who are very loyal and involved. The user testing process saw a popular and
active member, who appeared to have plentiful data regarding their “likes”, excluded from the
evaluation because they did not have enough suitable entries for testing. In a community
based on people interacting with one another, members can easily feel disenfranchised if they
have been left out of the process, and feel they are being treated differently. Striking the
balance between generating enough data to provide recommendations for as many members
as possible, while still keeping the file sizes and the amount of rows in the database at an
acceptable level, is something which I continue to actively monitor.

This project was ambitious for me with regards to the complexity of the mathematical
components, having not studied maths since GCSE, and having not taken the information
retrieval module option. However, the challenges involved proved very rewarding and I now
have a new found understanding of mathematical notation and can make sense of some of
the complex research papers published by teams during the Netflix Prize, which originally
baffled me.

Along my technical competency improving, this process also allowed me to analyse
the DU Poetry dataset in depth, and as a result, gain a much better understanding of how
members use the website. Going forward I feel that I have much improved knowledge with
which to make informed decisions about the direction of the development of the website and
the DU Poetry community.

5.5 Future Development
 My recommendation engine is a new feature for DU Poetry, and it may take some
time to fully access how members respond to it, how often they use it and how much of an
asset it ultimately becomes. Although I currently contain the feature on its own page, I intend
to trial providing recommendation in other parts of the site; for example, similar poems
displayed on a poem’s page, or similar members displayed to users alongside their updates
feed.

Within the user evaluation questionnaire, I posed a couple of questions regarding a
“dislike” option for poems. I wanted to see if this is something members would use, should it
be introduced and whether the number of “dislikes” a poem has received should be made
public or not.

!

Around a third of respondents said they would use a “dislike” option if it were
available. Since the launch of the “like” feature, the amount of useful data collected continues

 Amy Peters – A Recommendation Engine

 ! of !55 58

to grow, eventually I plan to try and move away from using (or place less emphasis on) zero
value data relating to poem views, as it has a capacity for noise due to the different ways
members use the website (for example, some make use of the like feature more than others).
Adding a “dislike” option may be a good choice for increasing the amount of useful data
collected. I added in the question about whether the number of dislikes should be shown.
Even though the majority of authors wanted to know, in reality I would have to think very
carefully before making this information public. Members may also be more reluctant to use
the “dislike” option (even if it were to be anonymous as planned) if they knew it may impact
negatively on the author. It could also be open to abuse.

 Overall I feel I have achieved the aims set out in my proposal, and there has been a
lot of interest and positive feedback from members since the recommendations page
launched. I intend to continue to use collaborative filtering techniques in the future in order to
further personalise user experiences, and develop DU Poetry into a truly social community.

 Amy Peters – A Recommendation Engine

 ! of !56 58

References

[1] Deep Underground Poetry, http://deepundergroundpoetry.com

[2] Deep Underground Poetry, Deep Underground Poetry Poll: Does it matter to you
whether people read and leave feedback on your poetry? http://
deepundergroundpoetry.com/polls/10/

[3] GS Poetry, http://www.gspoetry.com

[4] GotPoetry, http://www.gotpoetry.com

[5] Deep Underground Poetry, Deep Underground Poetry Poll: Which do you most often
comment on?, http://deepundergroundpoetry.com/polls/12

[6] Read Write Web, Collaborative Filtering: Lifeblood of the Social Web, http://
www.readwriteweb.com/archives/collaborative_filtering_social_web.php

[7] Geeking with Greg, 35% of sales from recommendations, http://glinden.blogspot.com/
2006/12/35-of-sales-from-recommendations.html, 2006

[8] Netflix Prize: Home, www.netflixprize.com

[9] Yehuda Koren and Robert Bell, Advances in Collaborative Filtering

[10] Wikipedia, Netflix Prize, http://en.wikipedia.org/wiki/Netflix_Prize

[11] Yehuda Koren, Factor in the Neighbors: Scalable and Accurate Collaborative
Filtering, Yahoo! Research, 2009

[12] Badrul Sarwar, George Karypis, Joseph Konstan, John Riedl, Incremental Singular
Value Decomposition Algorithms for Highly Scalable Recommender Systems,
University of Minnesota, 2002

[13] Toby Segaran, Programming Collective Intelligence: Building Smart Web 2.0
Applications, O'Reilly, 2007.

[14] Simon Funk, Netflix Update: Try This At Home, http://sifter.org/˜simon/journal/
20061211.html, 2006.

[15] M. W. Berry, S. T. Dumais, G. W O’Brian, Using Linear Algebra for Intelligent
Information Retrieval, SIAM Review, 1994

[16] Wikipedia, Overfitting, http://en.wikipedia.org/wiki/Overfitting

[17] Arkadiusz Paterek, Improving regularized singular value decomposition for
collaborative filtering, Warsaw University, 2007

[18] Robert Bell, Yehuda Koren, Chris Volinsky, The BellKor solution to the Netflix Prize,
AT&T Labs – Research, 2007

[19] G. Linden, B. Smith, J. York, Amazon.com recommendations: Item-to-item
collaborative filtering, IEEE Internet Computing, 2003.

[20] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, And John T. Riedl,
Evaluating Collaborative Filtering Recommender Systems, University of Minnesota
and Oregon State University

[21] Netflix Prize FAQ, http://www.netflixprize.com/faq

[22] The Official YouTube Blog, Five Stars Dominate Ratings, http://youtube-
global.blogspot.com/2009/09/five-stars-dominate-ratings.html, 2009

 Amy Peters – A Recommendation Engine

 ! of !57 58

[23] Hermetic Word Frequency Counter, http://www.hermetic.ch/wfc/wfc.htm

[24] Xavier Amatriain, Josep M. Pujol, and Nuria Oliver, I like it... I like it not: Evaluating
User Ratings Noise in Recommender Systems, Telefonica Research, 2009

[25] Stack Overflow, Hash function for a pair of long long?, http://stackoverflow.com/
questions/738054/hash-function-for-a-pair-of-long-long

[26] Boost C++ Library, http://www.boost.org

[27] Microsoft Support, Comparison of 32-bit and 64-bit memory architecture for 64-bit
editions of Windows XP and Windows Server 2003, http://support.microsoft.com/kb/
294418

[28] Implicit Alternating Least Squares SVD, http://web4.cs.ucl.ac.uk/staff/T.Jambor/blog/

[29] Blending Netflix predictions, http://elf-project.sourceforge.net/netflixBlending.html

[30] Pseudo Associative, Performance of STL vector vs plain C arrays, , http://
assoc.tumblr.com/post/411601680/performance-of-stl-vector-vs-plain-c-arrays

[31] Performance Programming, http://sol-biotech.com/code/
PerformanceProgramming.html, Keith Oxenrider, 2004

 Amy Peters – A Recommendation Engine

 ! of !58 58

http://stackoverflow.com/questions/738054/hash-function-for-a-pair-of-long-long
http://web4.cs.ucl.ac.uk/staff/t.jambor/blog/2011/06/20/implicit-alternating-least-squares-svd/

