Move Generation with Perfect Hash Functions

MOVE GENERATION WITH PERFECT HASH FUNCTIONS

Trevor Fenner Mark Levene'

London, U.K.

ABSTRACT

We present two new perfect hashing schemes that can be used for efficient bitboard move gen-
eration for sliding pieces in chess-like board games without the need to use rotated bitboards.
Moreover, we show that simple variations of these schemes give minimal perfect hashing
schemes. The new method is applicable provided IV, the number of k-bit spaced positions
that may be set to 1, is not more than k£ + 1. In chess, for a Rook’s movement along a file
N = k = 8; for a Bishop’s movement N < 8, and k = 9 for a north-east diagonal and k = 7
for a north-west diagonal. The results of computational experiments comparing the efficiency
of move generation with the standard method show that using the hashing scheme gives an
average improvement of approximately 40%. The schemes we suggest are simple, efficient,
and easy to understand and implement.

1. INTRODUCTION

A bithoard is a fixed-length sequence of bits used to represent a game board. In chess the length of a
bitboard is conveniently 64 (8 x 8) (Slate and Atkin, 1977), in Shogi it is 81 (9 x 9) (Grimbergen, 2007),
and in Gothic chess it is 80 (10 x 8) (Trice, 2004).

56 | 57 | 58 |59 | 60 | 61 | 62 | 63
48 |49 | 50 | 51 | 52 | 53 | 54 | 55
40 | 41 | 42 | 43 | 44 | 45 | 46 | 47
32 133 134 |35 |36|37 |38 |39
24 12526 |27 |28 |29 30|31
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
8 | 9 |10 11 12| 13|14 | 15
1 213|415 6 | 7

Table 1: Chess bitboard notation.

A bitboard is represented as a vector of B bits, where bit 0 is the least significant bit. So, for example, in
chess B = 64 and the bitboard can be presented in array format as shown in Table 1. (A left shift of the
bitboard moves bit 1 to bit-position 0, bit 2 to bit-position 1, etc. We note that if the bitboard is considered
to be the binary representation of the integer (3, a left shift will divide 5 by 2.) Move generation using
bitboards, for board games such as chess, can be implemented conveniently and efficiently by using logical
bitwise operations for combining bitboards and masking the desired portion of the combined bitboard.

1School of Computer Science and Information Systems, Birkbeck College, University of London, London WCIE 7HX, U.K.
Email: {trevor,mark} @dcs.bbk.ac.uk

ICGA Journal March 2008

(Chess has an advantage over, for example, Shogi and Gothic chess as its board size is ideal for efficient
bitwise operations.) Consider the chess position from Reinfeld (1955) shown in Figure 1, with White to
move. This chess position can be represented by several occupancy bitboards, one for each type and colour
of piece, e.g., for the white Bishops just bits 17 and 38 will be set to one. We can then, for example, obtain
a bitboard representing the occupancy of the pieces on the e-file by ORing all the occupancy bitboards and
then ANDing the result with a bitboard representing the e-file, i.e., one with bits 4, 12, 20, 28, 36, 44, 52,
and 60 set; this results in a bitboard with bits 4, 52, and 60 set. We refer to Cracraft (1984) for a detailed
description of the bitboard technique, Heinz (1997) for an implementation of bitboards in computer chess,
and Grimbergen (2007) and Trice (2004) for the use of bitboards in Shogi and Gothic chess, respectively.
Bitboards have also been used to model the search space in combinatorial search problems such as the
maximum clique problem (cf. San Segundo et al., 2006).

To facilitate move generation in computer games
such as chess, it is customary to precompute bit-
boards containing the possible movement of the
various pieces from each of the 64 squares. The
sliding pieces, i.e., Rook, Bishop and Queen, are
more problematic than the other pieces since, in or-
der to determine their possible movement, we need
to know the configuration of pieces on the rank,
file, or diagonal under consideration. So, for ex-
ample, in Figure 1 the Bishop on b3 cannot move
to €2, nor can the Bishop on ¢8 move to g4, while
the Rook on €1 can move to €7 (taking the Knight)
but not to €8. A common solution to this problem
for sliding pieces is to precompute their movement 1
from each square for all 256 possible occupancy
configurations of the pieces along the rank, file, or
diagonal. (Without loss of generality, we may ig-
nore the fact that some diagonals are shorter and
that, given the square of the moving piece, there
are only 128 possible configurations for the other
pieces.) Yet, there is a problem that still remains: given a bitboard representing all the pieces on a single
rank, file or diagonal, how do we map this 64-bit vector to an 8-bit vector that determines which of the 256
occupancy configurations is present on the rank, file, or diagonal? The naive, but probably not the most
efficient, solution is to loop over the positions in the rank, file, or diagonal.

N WA 01O N

Figure 1: Example position illustrating rook and
bishop movements.

Several solutions that avoid the looping have been proposed, the best known being the use of rotated bit-
boards, suggested by Hyatt (1999). A file bitboard corresponding to the rank bitboard in Table 1 essentially
rotates the board by 90 degrees, so that bits are numbered consecutively along the files rather than the
ranks; the two diagonal bitboards correspond to similar rotations by plus or minus 45 degrees. Rotated
bitboards are efficient, but the maintenance of the additional bitboards gives rise to extra complexity and
space requirements. An alternative to rotated bitboards is the method of magic move-bitboard generation
(Kannan, 2007), which is based on ideas presented in Leiserson, Prokop, and Randall (1998) for creating
perfect hash functions (Czech, Havas, and Majewski, 1997) in order to index those bits that are set to 1.
We make use of the following two well-known concepts.

Definition 1: A perfect hash function is a one-to-one mapping from keys to addresses, i.e., different bit
patterns are mapped to different addresses.
Definition 2: A perfect hash function is minimal if it maps the keys to a consecutive sequence of integers.

The hash functions used in magic move-bitboard generation are created by trial and error. Moreover,
separate hash functions have to be generated for each square and piece; this is more complex than our
method and their resulting hash tables may require more memory. A recent proposal (Tannous, 2007) is
to use “direct lookup” to facilitate access to the ranks, files, and diagonals, instead of maintaining rotated

Move Generation with Perfect Hash Functions

bitboards. Incremental maintenance of rotated bitboards is unnecessary under this scheme, which makes
use of built-in associative arrays (provided by the programming language) that are implemented using a
general hashing scheme. The perfect hashing schemes we present here, which efficiently map a 64-bit
vector to an 8-bit one, provide a simpler, as efficient and more elegant solution, and like the above methods
are also applicable to other board games. Moreover, we show that simple variations of these perfect hashing
schemes are minimal.

The rest of the article is organised as follows. In Section 2 we describe two new perfect hashing schemes.
In Section 3 we describe their application to move generation for sliding pieces in computer chess, present
some experimental results, and compare our method to existing ones. In Section 4 we give our concluding
remarks.

2. TWO PERFECT HASH FUNCTIONS

We use the symbol mod to denote the modulus function, i.e., b mod m is the remainder when using
integer division to divide b by m. We employ the standard notation that for integers b, ¢ and m, where
m > 0,

b=c (modm)

means that b and ¢ are congruent modulo m, i.e., (b — c) is integrally divisible by m (Graham, Knuth, and
Patachnik, 1994), or equivalently
b mod m = ¢ mod m.

In this article, we consider a bitboard of which the least significant bit is bit-position 0 (as in Table 1),
and where only NV fixed positions that are k& bits apart may be set to 1. These N positions are called
active positions and the remaining positions, which are always set to 0, are called inactive positions. For
simplicity, we assume that bit 0 is the first active position; so the set of active positions is

Awn = {0, k, 2k, ..., (N —1)k}.

Without loss of generality, we could consider any bit-position to be the first active position by making a left
shift that moves the first active position to bit 0. For example, if the active positions were all on the e-file
rather than on the a-file (as in Table 2), then we could shift the bitboard 4 places to the left. This shift may
be avoided, as explained at the end of this section.

56 | 57 | 58 |59 |60 |61 |62]63
48 | 49 | 50 | 51 | 52 | 53 | 54 | 55
40 | 41 | 42 | 43 | 44 | 45 | 46 | 47
32 33|34 |35 (36|37 38|39
24 | 25|26 |27 |28 |29 | 30| 31
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
8 |9 | 10|11 |12 | 13|14 |15
1 2 1314|567

Table 2: Rook movement on the a-file.

For a chess bitboard we have kK = 8 and N = 8 active positions for a Rook’s movement along a file, as
shown in bold in Table 2. Similarly, we have kK = 7 and N = 8 active positions for a Bishop’s movement
along the main north-west diagonal, as shown in bold in Table 3 after shifting the bitboard 7 places to the

ICGA Journal March 2008

56 | 57 | 58 |59 |60 |61 |62]63
48 |49 | 50 | 51 | 52 | 53 | 54 | 55
40 | 41 | 42 | 43 | 44 | 45 | 46 | 47
32 133134 |35 |36 |37 |38 |39
24 | 25126 |27 | 28|29 | 30 | 31
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
8| 9 |10 |11 |12 | 13|14 | 15
213|456 |7

Table 3: Bishop movement on the shiffed main north-west diagonal.
left. (Note that the shift results in bit 0 being set but not bit 56.) Correspondingly, for a north-east diagonal
k=09.

We construct two simple hashing schemes, one for N < k (Subsection 2.1) and the other for N < k£ + 1
(Subsection 2.2). The first one is of particular interest when N = k or N = k — 1, and the second when
N =k + 1. Subsection 2.3 describes two minimal perfect hash functions.

2.1 Thecase N <k

We observe that
2k = (28)" = (-2)" (mod 2 +2), (1)

since 2F + 2 = 0 implies that 2 = —2.
Now let I C Ay be the set of (active) positions that are set to 1, and let (a,,) be an indicator vector for I,
i.e.,

1 ifnkel
=V 0 iftnkgl

We represent the bitboard corresponding to I by the integer o, where

N—1
a=> 2= "a,2")
3 n=0

So there are 2% possible values of «, since there are 2V possible subsets I.
We now define the hash function h; by
hi(a) = amod (2* +2), (3)

$0 0 < hy(a) < 2F 4 1. Using (1), we then have

N—1 N-1
hila) =a= an2™ = Z an(—2)"=S(a) (mod 2" +2), “4)
n=0 n=0

S(@) =3 an(-2)". 5)

Move Generation with Perfect Hash Functions

Therefore, by (3) and (4),
hi(a) = S(a) mod (2k +2). (6)

We now show that /4 is perfect, i.e., that it is a one-to-one function (Czech et al., 1997). From (5), we have

[N/2]-1 [N/2]—1
S(Oé) = Z 0,2]'22j - Z a2j+122j+1. (7)
7=0 7=0

Now assume that S(a) = S(5), where
N-1
B=> b2
n=0

It then follows from (7) that

[N/21-1 N/2)-1 [N/21-1 N/2)-1
dooa2 4 D b2 = T 027 Y g2Vt
=0 =0 =0 =0

But, since integers have a unique binary representation, it must be the case that a,, = b,, for all n, and thus
the base —2 representation (5) is unique. It therefore follows that the function S is one-to-one.

By putting either az; = 0 and asj41 = 1, or az; = 1 and az;4; = 0, in (7) and summing the geometric
series in each case, we obtain the following bounds on S(«):

- %WW ~1) < S(a) <

1
< (1), ®)

Whether N is even or odd, it is easy to verify that the there are precisely 2V integers in this interval. Thus,
provided N' < k, the mapping S(o) — S(«) mod (2* + 2) will be one-to-one. So, since S is also one-
to-one, it follows from (6) that h; will be one-to-one. Therefore, provided N < k, the range of h; will be
2NV integers in the interval [0, 2* + 1] excluding a single gap (subinterval) of length 2 + 2 — 2V,

2.2 Thecase N <k+1

The development follows along similar lines to that for h;. We observe that
gnk — 9(k+1)(n—1)+k+1-n _ (2k+1)"*1 ok+1-n — (_1)k (_2)k+1—n (mod ok+1 | 1) . ©
since 2811 4 1 = 0 implies that 2+ = —1.
We now define the hash function hy by
ha(a) = a mod (2°1! 4 1), (10)

where « is as in (2), 50 0 < hy(a) < 281,

ICGA Journal March 2008

Using (9), corresponding to (4) we have

N— N-1
J=a= Z W27 = (—1)* Z an (=2)"7" = T(a) (mod o+l 4 1), (11)
n=0 n=0
where the function T is defined by
N-1 N-1
k Z an (k+1 no_ (71)N ok+2-N Z AN _1—m (72)m. (12)
n=0 m=0

(The second summation is obtained by changing the index from n to m = N — 1 — n.) Therefore, by (10)
and (11),
ho(a) = T(a) mod (2" +1).

We now show that ho is a perfect hash function. As shown before, the base —2 representation (12) is
unique, so 7' is one-to-one. If we define

N-1
T*(a) = (-1)" Y an—1-m (-2)",
m=0
then T'(a) = 28¥2-NT*(q), so T* is also one-to-one.
Corresponding to (8) we have

<L

f§(4LN/2J71)§(71)NT*() (42—, (13)

w

Thus, provided N < k + 1, the mapping T* (o) — T*() mod (251 + 1) will be one-to-one. Since
2k +2=N 5 co-prime to 2¥*! + 1 and

hao(a) = (28727NT*(a)) mod (2°1! +1),

it follows that ho will also be one-to-one provided N < k + 1 (see Graham et al., 1994, p. 125). Thus,
provided N < k + 1, the range of hy will be 2V integers in the interval [0, 28 F1].

2.3 Two minimal perfect hash functions

Consider the hash function h;. Since N < k, only 2N of the 2F + 2 hash-table entries will be utilised.
Apart from requiring significantly more memory than necessary when N < k, this may also affect the
computation time if the larger table needs more cache lines. However, at the cost of an extra addition
operation, we can significantly reduce the size of the hash table to exactly 2%V if we replace h; by the hash
function ﬁl defined by

hi(e) = (a + %(4W2J - 1)> mod (2 +2) . (14)

It follows from (4) and (8) that ﬁl is a minimal perfect hash function with range {0,1,...,2Y —1}.

Now consider hy. Since N < k + 1, only 2N of the 281 + 1 hash-table entries will be utilised. Sim-
ilarly, this requires significantly more memory when N < k, and may also affect the computation time.

Move Generation with Perfect Hash Functions

Again, however, we can significantly reduce the size of the hash table to exactly 2V at the cost of extra
computation. Since 2V 1T (a) = 28F17* (), it follows from (11) that

(—)N 12N la = (V12N () = ()N 2T () = (- 1)V T (@) (mod 28T +1).

15)
If we now replace hs by the hash function ﬁg defined by
~ 2
hay(a) = ((1)N12N1a + §(4LN/2J - 1)> mod (2511 + 1),
then, using (13) and (15), we see that hs is a minimal perfect hash function with range {0,1,...,28 —1}.

The additional computational cost above that required to compute h is an addition operation and a shift.
However, the shift can be combined with the shift operatlon usually required to move the first active position
to bit 0, in which case the computational cost of h1 and h2 will be approximately the same.

We now compare the hash functions we have defined in terms of their space and computational costs. When
N =k + 1, we would prefer hs over ﬁg, since the gap is only of length 1 and no extra addition operation
is needed. When N = k, we would prefer i, over El and ﬁg for the same reasons, and over hy since this
requires twice as much space for the hash table. When N < k, we would prefer h; over hg for the same
reason; using h; does not entail the extra addition operation needed for Bl and }\LQ, but at the cost of a much
larger hash table. So if we wish to maintain a minimum size table in this case we would choose ﬁl, as 77,2
sometimes requires an extra shift operation.

We note that we can relax the requirement that the first active position is at bit O if we are using ho, and
also for hy when N < k — 1. This follows from the fact that in these cases the hash functions would still
be perfect (see Graham et al., 1994, p. 125). This would obviate the need to shift the first active position
to bit 0.

3. APPLICATION TO MOVE GENERATION FOR SLIDING PIECES IN COMPUTER CHESS

In this section we consider a 64-bit bitboard representing a chessboard, as shown in Table 1. In this case
N = 8, since this is the length of a rank, a file, and the maximum length of a diagonal. We note that, to
map the bitboard representing the occupancy of the pieces on a rank to an 8-bit occupancy vector, all that is
required is a single left shift that moves the first position on the rank to bit-position 0. The rank occupancy
vector can then be used, together with the position of the square occupied by the Rook, to index a direct
lookup table containing the possible moves of the Rook on the rank taking into account any other pieces
present on the rank. (This table is normally pre-computed and then loaded into memory at startup to be
used during move generation.)

3.1 k=N =8 for the movement of a Rook along a file

This subsection corresponds to computing the possible moves of a Rook on a file taking into account
any other pieces present on the file. For a Rook on a file other than the a-file, it is necessary first to
left-shift the bitboard so that the first active position is at bit 0. For the a-file, the active positions are
Ags = {0, 8,16, 24, 32,40, 48,56}, as shown in Table 2, and the other positions of the bitboard are inactive.
We use the hash function h; defined in (3), so the modulus is 258. It follows from (6) and (8) that there
is a single gap of length 2 at the values 86 and 87. The hash function maps the bitboard representing the
occupancy of the pieces on the a-file to a hash-table address. The hash-table entry at this address is an
8-bit occupancy vector representing the positions of the pieces on the file. This file occupancy vector can
then be used, together with the position of the square occupied by the Rook, to index a direct lookup table
containing the possible moves of the Rook on the file. Clearly, we could combine the hash table with the
direct lookup table by using the hash address rather than the occupancy vector to index the lookup table.
This would result in a further improvement in the efficiency of move generation.

10

ICGA Journal March 2008

3.2 k =N+l =9 for the movement of a Bishop along a north-east diagonal

This subsection corresponds to computing the possible moves of a Bishop along a north-east diagonal
taking into account any other pieces present on the diagonal. For a Bishop on a diagonal other than the
main north-east diagonal, it is necessary first to left-shift the bitboard so that the first active position is at
bit 0. For the main north-east diagonal, the active positions are Ags = {0, 9, 18,27, 36,45, 54, 63}, and the
other positions of the bitboard are inactive. We can use either the hash function h; or the hash function El,
deﬁned in (3) and (14), respectively, so the modulus is 514. (As explained above, the computational cost
of hg will be similar to, but no better than, that of h1) It follows from (8) that for h; there is a single gap
of length 258 from 86 to 343; for h1 there is obviously no gap, since it is minimal. The possible moves of
the Bishop may be found using the method described above for a Rook on a file.

3.3 k =N-1=7 for the movement of a Bishop along a north-west diagonal

This subsection corresponds to computing the possible moves of a Bishop along a north-west diagonal
taking into account any other pieces present on the diagonal. It is necessary first to left-shift the bitboard so
that the first active position is at bit 0. For the main north-west diagonal shifted 7 places to the left so that
the first active position is at bit 0, the active positions are A7g = {0, 7,14, 21,28, 35, 42,49}, as shown in
Table 3, and the other positions of the bitboard are inactive. We use the hash function h5 defined in (10), so
the modulus is 257. It follows from (13) that there is a single unused address at 172. The possible moves
of the Bishop may be found using the method described above.

3.4 Experiments

We now describe some computational experiments to compare the efficiency of move generation in chess
with and without the use of these hashing schemes; when not using the hashing schemes we simply loop
over the positions in the file or diagonal. The positions were taken from Reinfeld’s /001 Brilliants Ways to
Checkmate (1955). We tested the performance of pseudo-legal move generation on all of the 1001 initial
positions, and repeated this 100 times to obtain consistent measurements. The computations were carried
out in Matlab on a Windows XP platform, running on a desktop PC with an Intel Core 2 duo processor
T5600, 1.83 Ghz, and 2 GBs of RAM. (Although a comparable implementation in a programming language
like C would probably be faster than the Matlab implementation, the comparative performance should be
fairly similar. We chose to use Matlab because of its convenience for experimentation.) We used the
Matlab profiler to measure the performance; it produces detailed CPU measurements of all the functions
called, allowing us to pinpoint the relevant lines of code and their respective timings. The results of our
experiments, which are tabulated in Table 4, show an average improvement of about 40% when using the
hash functions. We stress that the improvement is local to the routines that generate rook and bishop moves,
and thus the global improvement to the pseudo-legal move generation will be significantly less.

Operation type Number of calls | Without hash | With hash | Improvement
File (h1) 237,600 7.801 3.775 51.61%
NE diagonal (h1) 193,200 6.048 4.775 21.05%
NE diagonal (ﬁl) 193,200 6.048 5.097 15.72%
NW diagonal (h2) 193,200 5.573 2.757 50.53%

Table 4: Total computation times in seconds and percentage improvement.

We note that the improvement of the operations along the north-east diagonals is less than half that of the
others. This is mainly due to the fact that the computations were performed on a 32-bit processor and 64-bit
division could only be done for signed integers. Since the north-east diagonal includes the sign bit, i.e.,

Move Generation with Perfect Hash Functions

bit 63, this had to be explicitly catered for and involved additional computation. We also see that, when
using the memory-efficient hash function 7@1, the improvement is about 5% less than when using h,, due to
the extra addition operation. As mentioned in Section 3.1, combining the hash table with the direct lookup
table would result in a further improvement.

3.5 Comparison with other methods

A similar improvement in efficiency (like that described in Subsection 3.4) over the standard method “with-
out hash” would also apply to the rotated, magic bitboard, and direct lookup methods. As reported in Hyatt
(2007), the rotated and magic bitboard methods are of comparable performance, and Tannous (2007) claims
just a small improvement of the direct lookup method over rotated bitboards. It is easy to see that, in terms
of the number of computer operations, the efficiency of our method will be similar to that of direct lookup.
Thus we are justified in claiming that the computational efficiency of our method is comparable to the
others.

It is true that there are open source programs, such as GPERF (Schmidt, 2000) and CMPH (Botelho, Pagh,
and Ziviani, 2007), that will generate perfect hash functions for a set of keys. However, with GPERF
minimality is not guaranteed, and the hash functions generated may not even be perfect. Alternatively,
with CMPH the hash functions generated are more complex, much slower, and require linear space in
the number of keys. Thus, the functions generated by these general purpose methods are less suitable for
computer-chess engines due to their stringent efficiency requirements.

Our method improves on the state of the art by providing a general method for efficient bitboard move
generation for sliding pieces (not restricted to chess) that: (i) avoids maintenance of auxiliary bitboards,
as in the rotated bitboard method, (ii) does not depend on built-in system features, such as the associative
arrays in the direct lookup method (and moreover these hash functions are not guaranteed to be perfect, so
collisions may occur), and (iii) does not use a hash function generated by a non-trivial and possibly very
long computation, such as the magic bitboard method, and which may not always be perfect for a given
number of bits in the index (Kannan, 2007).

4. CONCLUDING REMARKS

We have presented two perfect hash functions (and variations of these that are minimal) that can be used to
map the occupancy of pieces on a file or a diagonal from 64-bit bitboards to 8-bit occupancy vectors. The
advantage of using our hash functions over existing methods is their simplicity, comprehensibility, ease
of implementation, economy of memory usage, and the resulting efficiency of move generation, which
is comparable to that of these methods. (Admittedly, our claims of simplicity and comprehensibility are
necessarily somewhat subjective.)

We do not claim that our perfect hashing schemes will necessarily improve the performance of a computer
chess program relative to the use of rotated bitboards (Hyatt, 1999), direct lookup (Tannous, 2007), or
magic bitboards (Kannan, 2007). However, they are much simpler to implement than rotated bitboards as
we do not need to store and maintain any auxiliary bitboards. Nor do they rely on system-provided hashing
schemes as does the direct lookup method. Although not as general as the magic bitboards technique, we
consider our hashing schemes to be simpler and more elegant, and they are often more space efficient;
moreover, generating new hash functions requires no search or pre-computation.

We note that the results in Section 3 also apply to Rooks and Bishops in Shogi and Gothic chess, and to
other games with sliding pieces on rectangular boards, provided the number of files is greater than or equal
to the numbers of ranks. Our hashing schemes may also be applicable to non-rectangular boards with a
regular grid structure, for example, hexagonal or triangular. Another possible domain of application is to
binary feature selection from data sets represented by 0-1 matrices. To cater for the case when N > k + 1,

11

12

ICGA Journal March 2008

we could partition the bitboard into sufficiently small sections and apply one of our hashing schemes to
each section; this would obviously involve additional computation. It is, however, an open problem to
generalise our hashing schemes directly to bitboards that do not satisfy the condition N < k + 1.

5. REFERENCES

Botelho, F., Pagh, R., and Ziviani, N. (2007). Simple and space-efficient minimal perfect hash functions.
Proceeding of the International Workshop on Algorithms and Data Structures (WADS), pp. 139-150, Hal-
ifax, Canada.

Cracraft, S. (1984). Bitmap move generation in Chess. ICCA Journal, Vol. 7, No. 3, pp. 146-153.

Czech, Z. J., Havas, G., and Majewski, B. J. (1997). Perfect hashing. Theoretical Computer Science,
Vol. 182, Nos. 1-2, pp. 1-143.

Graham, R., Knuth, D., and Patachnik, O. (1994). Concrete Mathematics: A Foundation for Computer
Science. Addison-Wesley, Reading, Ma., 2nd edition.

Grimbergen, R. (2007). Using bitboards for move generation in shogi. ICGA Journal, Vol. 30, No. 1, pp.
25-34.

Heinz, E. (1997). How DarkThought plays Chess. ICCA Journal, Vol. 20, No. 3, pp. 166-176.
Hyatt, R. (1999). Rotated bitmaps, a new twist on an old idea. ICCA Journal, Vol. 22, No. 4, pp. 213-222.

Hyatt, R. (2007). BitBoard Tests Magic v Non-Rotated 32 Bits v 64 Bits. www.talkchess. com. Posted
25 August.

Kannan, P. (2007). Magic move-bitboard generation in computer chess. See: www.prism.gatech.
edu/~gtg365v/Buzz/research/magic/Bitboards.pdf. Last accessed July 2007.

Leiserson, C., Prokop, H., and Randall, K. (1998). Using de Bruijn sequences to index a 1 in a computer
word. See: http://supertech.csail.mit.edu/papers/debruijn.pdf. Lastaccessed July
2007.

Reinfeld, F. (1955). 1001 Brilliant Ways to Checkmate. Wilshire Books, Hollywood, CA.

San Segundo, P., Galan, R., Matia, F., Rodriguez-Losada, D., and Jiménez, A. (2006). Efficient Search
Using Bitboard Models. Proceedings of IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2006), pp. 132-138, Washington, D.C.

Schmidt, D. (2000). GPERF: A perfect hash function generator. More C++ Gems (ed. R. Martin), pp.
461-491. Cambridge University Press, Cambridge, U.K.

Slate, D. and Atkin, L. (1977). Chess 4.5: The Northwestern University Chess program. Chess Skill in
Man and Machine (ed. P. Frey), pp. 82—118. Springer Verlag, NY.

Tannous, S. (2007). Avoiding rotated bitboards with direct lookup. ICGA Journal, Vol. 30, No. 2, pp.
85-91.

Trice, E. (2004). 80-square Chess. ICGA Journal, Vol. 27, No. 2, pp. 81-95.

