Retrieving Information from the Web

Database and Information Retrieval (IR) Systems both manage data!
- The data of an IR system is a *collection of documents* (or *pages*)

User tasks:
- **Browsing** - examining documents
- **Retrieval** - searching for documents

<table>
<thead>
<tr>
<th>Category</th>
<th>SQL</th>
<th>Search Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matching</td>
<td>exact answer</td>
<td>ranked answer</td>
</tr>
<tr>
<td>Language</td>
<td>sophisticated</td>
<td>simple</td>
</tr>
<tr>
<td>Algorithm</td>
<td>deterministic</td>
<td>probabilistic</td>
</tr>
<tr>
<td>Database</td>
<td>structured</td>
<td>semistructured</td>
</tr>
<tr>
<td>Query</td>
<td>complete</td>
<td>incomplete</td>
</tr>
<tr>
<td>Error</td>
<td>sensitive</td>
<td>insensitive</td>
</tr>
</tbody>
</table>
The Web is a Hypertext System
• *Content* - collection of pages
• *Structure* - links (directed graph)
Additional user task:
◇ *Navigation* - traversing links and following a *trail* of associated links
Quote from Bush 1945 “As We May Think” (download from my web links):
“the process of tying two items together is an important thing .. when numerous items have been thus joined together to form a trail they can be reviewed in turn”
Nelson’s vision of a *universal hypertext database* - *Xanadu* (1960’s)
The Basic Information Retrieval Algorithm

1. Remove stopwords such as: of, the, a . . .
2. Apply stemming to terms (or words), i.e. remove prefixes and suffixes
 E.g. connected, connecting, connection and connections ⇒ connect
3. Weight the terms in the query and in pages
4. Rank the pages according to similarity with the query
Term Weighting

N - total no. of pages in the system

n_j - no. pages in which term j appears

term frequency

$tf_{ij} = \text{frequency of term } j \text{ in page } i$

inverse document frequency

$idf_j = -\log \frac{n_j}{N} = \log \frac{N}{n_j}$

(self-information of term j)

normalised term weight

$w_{ij} = \frac{tf_{ij} \times idf_j}{\max_k tf_{ik}}$

Query Weighting

$w_{qj} = \left(0.5 + \frac{0.5 \times tf_{qj}}{\max_k tf_{qk}}\right) \times idf_j$
Similarity

m - no. of terms considered

Represent page i as a vector

$$i = \langle w_{i1}, w_{i2}, \ldots, w_{im} \rangle$$

Represent query q as a vector

$$q = \langle w_{q1}, w_{q2}, \ldots, w_{qm} \rangle$$

$$sim(i, q) = \sum_{k=1}^{m} w_{ik} \times w_{qk}$$

(dot product of i and q)

(Other similarity measures exist)
Measures of Information Retrieval

R_F - no. relevant pages returned

R_N - no. relevant pages not returned

I_F - no. of irrelevant pages returned

I_N - no. of irrelevant pages not returned

recall = $\frac{R_F}{R_F + R_N}$

• Proportion of relevant pages returned.

precision = $\frac{R_F}{R_F + I_F}$

• Proportion of returned pages which are relevant.

• Precision versus Recall curve
Searching the Web
♣ over 2 billion pages (2000) growing at 1 million pages per-day.
♣ Each page has on average 7 out-links.
♣ Over 600 GB of text changes every month.
♣ Largest crawlers cover 30-40% of the indexable web during several months.
♣ 10 percent redundancy in mirrored sites.
♠ Most users type in short queries on average less than 3 terms.
♠ Most users only look at the top ten results.
♠ Most users do not modify their original query.
Using Link Structure in Search

$L_{ij} = 1$ if there is a link from i to j and 0 otherwise.

Structured Weighting

$s_{w\ q_j} = w_{q_j} + \sum_{k \neq j} \alpha L_{kj} \times w_{q_k}$

- α is between 0 and 1 (0.2 seems to be optimal)
- the sum is over all pages that have a link to page j
HITS - Hypertext Induced Topic Search
Given a query such as “XML” distinguish between:
• authorities - pages which focus on the topic of XML such as various publications on the XML standard.
• hubs - pages that contain many useful links to relevant pages
• A densely linked focused subgraph of hubs and authorities is called a community.
• Over 100,000 emerging web communities have been discovered from a web crawl (a process called trawling).
The HITS Algorithm
1. Collect the top t pages (say $t = 200$) based on similarity, called the root set.
2. Extend the root set into a base set as follows, for all pages p in the root set:
 2.1. add to the root set all pages that p points to, and
 2.2. add to the root set up-to d pages that point to p (say $d = 50$).
3. Delete all links between the same web site in the base set resulting in a focused subgraph.
4. Assign to each page p a non-negative hub weight y_p and a non-negative authority weight x_p.
5. Iteratively reinforce hubs and authorities as follows, until convergence:

$$x_p := \sum q \text{ where } q \rightarrow p y_q$$
$$y_p := \sum q \text{ where } p \rightarrow q x_q$$
PageRank - Google
Model of a “random surfer”:
1. The surfer given a web page at random.
2. The surfer follows “forward” links without going “back”.
3. When the surfer gets bored a random page is chosen as the next page.
- The PageRank of a page is the probability that a random surfer visit a page
 P - a page which has incoming links from pages P_1, P_2, \ldots, P_n
r - a positive number between 0 and 1
$O(P_i)$ - the number of links going out of page P_i
$PR(P) = r + (1 - r) \sum_{i=1}^{n} \frac{PR(P_i)}{O(P_i)}$
Metasearch

Problem: Search engines have limited coverage and overlap (Nature 1999)

♣ Relative coverage of major search engines about 20%.
♣ The overall coverage is small, less than 16% are indexed by all engines, not taking into account the deep web.

Solution: Select and merge results from several data sources
- Not easy to do well due to heterogeneity of local search engines
The Navigation Problem in Hypertext
The steps in searching for information:

1) **Query** - user provides the context

2) **Information Retrieval** - ranked list of pages returned

3) **Navigation** - user *repeats*:

 (a) choose a page to *browse*

 (b) follow a *link*

4) **Query Modification** - user *returns* to (1)
Problem: “getting lost in hyperspace” - navigation (link following) leads to disorientation in terms of the goals and relevance of the currently browsed page to the query.

Solution: Trails are first-class citizens
• We develop algorithms which maximise the expected trail relevance.