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Abstract

Random minimaxing, introduced by Beal and Smith [3], is the process of using a
random static evaluation function for scoring the leaf nodes of a full width game tree and
then computing the best move using the standard minimax procedure. The experiments
carried out by Beal and Smith, using random minimaxing in Chess, showed that the
strength of play increases as the depth of the lookahead is increased. We investigate
random minimaxing from a combinatorial point of view in an attempt to gain a better
understanding of the utility of the minimax procedure and a theoretical justification for
the results of Beal and Smith’s experiments. The concept of domination is central to our
theory. Intuitively, one move by white dominates another move when choosing the former
move would give less choice for black when it is black’s turn to move, and subsequently
more choice for white when it is white’s turn to move. We view domination as a measure
of mobility and show that when one move dominates another then its probability of being
chosen is higher.

We then investigate when the probability of a “good” move relative to the probability
of a “bad” move” increases with the depth of search. We show that there exist situations
when increased depth of search is “beneficial” but that this is not always the case. Under
the assumption that each move is either “good” or “bad”, we are able to state sufficient
conditions to ensure that increasing the depth of search increases the strength of play
of random minimaxing. If the semantics of the game under consideration match these
assumptions then it is fair to say that random minimaxing appears to follow a reasonably
“intelligent” strategy. In practice domination does not always occur, so it remains an
open problem to find a more general measure of mobility in the absence of domination.

Key words. game trees, minimax, random evaluation function, mobility, search depth,
domination

1 Introduction

The minimax procedure is a fundamental search algorithm for deciding the next move to
play in two-player zero-sum perfect information games between white and black [24, 11, 16];
Chess, Checkers, Othello and Go are examples of such games. In order to utilise the minimax



procedure, a full-width d-ply game tree (with 6 > 1) is constructed, where nodes represent
game positions and arcs represent legal moves from one position to another; we assume that
the root node represents the current position and it is white’s turn to move next, i.e., a white
position. The minimax procedure is equipped with a static evaluation function [6], which
computes a score for each leaf node of the constructed d-ply game tree.

In order to evaluate the returned minimax score of the tree, the scores of the leaf nodes
are backed up to the root in such a way that white maximises over the scores of its children
and black minimises over the scores of its children. As we have described it, the minimax
strategy is a heuristic, since a §-ply game tree usually only contains a small fragment of the
whole game, and thus the score returned by the minimax procedure is only an estimate of the
true game-theoretic score of the root position. The underlying assumption of the minimax
procedure is that both white and black optimise their choice of move.

Obviously, if the score of a position returned by the static evaluation function is not a
good estimate of the strength of the position then the minimax procedure will not, in general,
choose good moves. On the other hand, if the static evaluation function returns the true score
of a position then only the first ply of the game tree need be examined. In practice the static
evaluation function is a heuristic, and thus there ought to be a correlation between the quality
of the evaluation function and the quality of the score returned by the minimax procedure.
Evidence supporting this conjecture was exhibited in [4], where the minimax procedure was
compared with an alternative search procedure called the product rule. It was shown that
the minimax procedure tended to perform better than the product rule when the probability
of the static evaluation function returning an erroneous score was small and worse than the
product rule otherwise.

In order to measure the utility of the minimax procedure, we use a random static evalua-
tion function that returns a natural number uniformly distributed between 1 and « inclusive
[7]. This variation of the minimax procedure, called random minimazing, was introduced in
[3]. In this way we can decouple the effectiveness of the minimax procedure from the accuracy
of the static evaluation function. The experiments carried out by Beal and Smith [3], using
random minimaxing in Chess, produced the interesting result that the strength of play in-
creases as the depth of the lookahead is increased. Herein we investigate random minimaxing
from a combinatorial point of view in an attempt to gain a better understanding of the utility
of the minimax procedure and a theoretical justification for the results of Beal and Smith’s
experiments.

A preliminary analysis of random minimaxing was carried out in [15]. Therein we showed
that when 0 = 1 the probabilities of choosing each of the moves are the same, but when
6 > 1 then, in general, these probabilities are different; i.e., when § > 1 random minimaxing
does not correspond to sampling from a uniform distribution. In [15] it was shown that, for
2-ply game trees, moves which reach nodes representing positions which have fewer children
are more likely to be chosen. As a corollary of this result, we showed that in Chess (and
other combinatorial games that satisfy the following assumption) random minimaxing with
respect to 2-ply game trees is “stronger” than random minimaxing with respect to 1-ply
game trees, under the assumption that the more a move made by white restricts black’s
choice of moves (i.e., black’s mobility) the better that move is. We also suggested that, when
6 > 2, the above assumption should be extended so that, in addition, the less a move restricts
white’s subsequent choice of moves the better that move is; we call this extended assumption
the mobility assumption. We observe that the mobility assumption is reasonable for many



combinatorial games besides Chess such as, for example, Othello — for which restricting
the opponent’s choice of moves and giving oneself more choice is a well-known middle game
strategy [14].

In this paper we further investigate random minimaxing for any depth of lookahead & > 1.
We make the simplifying assumption that, when considering a move, each of the subgame
trees rooted at nodes representing the result of choosing a move are approximated by level-
regular subgame trees. A subgame tree is level-regular if all nodes at the same level have the
same number of children. (For example, in practice Go is approximately level-regular.)

The concept of domination plays a central role in the theory of random minimaxing. If
n is the node representing the position of the game after a possible move is made by white,
then prob(n) is defined to be the probability that random minimaxing on a d-ply game tree
will choose this move. Suppose we are given two nodes n; and ny representing the positions
resulting from a choice of two possible moves. Informally, we say that n; dominates ns if,
by white moving to ni, in all subsequent moves black will have no more moves to choose
from than if white had originally moved to no; similarly, in all subsequent moves white will
have at least as many moves to choose from as he would have had if he had originally moved
to my. We show that if n; dominates ny then prob(ny) > prob(nz). That is, domination
is a sufficient condition for the probability of one node to be greater than that of another;
furthermore, prob(ny) > prob(ng) if domination is strict (see Section 6). We call this result
the domination theorem.

Thus, if the mobility assumption holds for the game under consideration, the domina-
tion theorem explains why random minimaxing is likely to choose “good” moves. Unfor-
tunately, domination alone is not sufficient for deeper search to be “beneficial” (i.e., to
increase the strength of play). Firstly, although domination is a sufficient condition for
prob(ny) > prob(nsz) to hold, it is not a necessary condition: finding necessary and sufficient
conditions remains an open problem. Furthermore, although n; may dominate nsy in a §-ply
game tree, n; may not dominate ng after increasing the depth of search to a ¢’-ply game
tree, for some &' > 0. We sidestep this problem by assuming that the set of moves can
be partitioned into “good” moves, which lead to advantageous game positions, and “bad”
moves, which lead to game positions which are not advantageous. If, for the game under
consideration, random minimaxing can discriminate between “good” and “bad” moves, then
it is reasonable to make the assumption that, for large enough J, the probability of a “good”
move is above average and the probability of a “bad” move is below average. Thus the first
part of the strong mobility assumption states that every move is either “good” or “bad”.

Secondly, even if n; is a “good” move and no is a “bad” move, it may be the case that
with a deeper search the probability of ni; may actually decrease relative to that of ns.
In this case, due to the horizon effect [10], it may appear that increased lookahead is not
“beneficial”. However, further increasing the depth of lookahead would reveal that prob(n;)
subsequently increases relative to prob(nsz). Accordingly, the initial decrease in the ratio of
the probabilities may have been due to a limited horizon, i.e., the ratio of the probabilities
may not be changing monotonically as § increases. We circumvent this problem by adding a
second part to the strong mobility assumption. This states that, at deeper levels of the game
tree, white’s subsequent number of choices for “good” moves relative to white’s subsequent
number of choices for “bad” moves is above some threshold value and, correspondingly, black’s
subsequent number of choices for “bad” moves relative to black’s subsequent number of choices
for “good” moves is above some other threshold value. (Recall that we have assumed that



the move is chosen by white, so whether a move is “good” or “bad” is from white’s point of
view.) It is then possible to show that the probability of n; relative to that of ng will increase
with the depth of search, provided that the depth of lookahead is increased by at least two
ply and that « is large enough.

In this case, when the strong mobility assumption holds for the game under consideration,
increased lookahead is “beneficial”, so random minimaxing is an effective strategy. We observe
that increased lookahead seems to be beneficial in practice for many combinatorial games,
such as Chess, Checkers, Othello and Go (see [22]). Although, for most combinatorial games,
these assumptions will not be satisfied for all subgame trees, for many games they seem to
be a reasonable approximation. (Recall that in our model we have assumed that evaluation
functions are random, whereas in practice they are very sophisticated.) The domination
theorem identifies a structural property of minimaxing; but, in order to take advantage of
this for some particular game, we have to make appropriate semantic assumptions such as
those above.

In Section 2, we review related work on the benefits of minimaxing. In Section 3, we
introduce the minimax procedure and random minimaxing. In Section 4, we give the enu-
meration equations which are needed in order to obtain the results in the remaining sections.
In Section 5, we define the probability that a given move be chosen as a result of random
minimaxing, and we investigate how the probabilities of the positions resulting from choosing
different moves are related. In Section 6, we define the concept of domination and prove the
domination theorem, the main result of the paper. In Section 7, we investigate the effect of
increased lookahead and present sufficient conditions for the probability of “good” moves to
increase relative to the probability of “bad” moves. From these we obtain sufficient conditions
for deeper search to be “beneficial”. In Section 8, we conclude by discussing the practical
relevance of our results. Finally, in the Appendix, we derive some monotonicity properties of
certain functions related to the propagation function which is induced by random minimaxing;
these results are used in Section 6.

2 Related work

Nau [18] investigated the probability of the last player winning when leaf nodes take one of
the two values, win or loss. In his game tree model Nau assumes that the branching factor of
a d-ply game tree is uniform, say b, and that leaf node values are independent and identically
distributed. In [18] it is shown that, under this model, if wy, is the unique solution in [0, 1] of
the equation

1-z)l =z

and the probability of a leaf node being a win is greater than wy, then the probability of the
last player having a forced win tends to one as J tends to infinity. Since w; decreases strictly
monotonically with b (wy < 0.382), in most cases the last player appears to be winning.

Our goal is to evaluate the probability of a move, which is defined as the proportion of
times this move is on the principal variation when backing up is done according to the minimax
rule. Therefore, assuming the evaluation function is random and the players are using the
minimax rule, the probability of a move is the expected proportion of times this move will
be chosen in actual play. We call such a scenario random minimazing. Thus in our model a
uniform branching factor is uninteresting since in this case it is evident that all moves have



the same probability. In this sense our model generalises Nau’s model to game trees where
the branching factors of different moves may be different. This corresponds more closely to
the situation in real games. Ultimately we would like to determine when a move of higher
probability corresponds to a “better” move. This would provide a theoretical justification
for the results of Beal and Smith’s experiments [3], which show that a player using random
minimaxing is stronger than a player choosing random moves uniformly from the available
selection of moves. Our results indicate that, under the mobility assumption stated in the
introduction, random minimaxing corresponds to increasing the first player’s mobility whilst
restricting the second player’s mobility.

In [19, 21] (cf. [1]), it was shown that the behaviour of the minimax procedure is almost
always “pathological” for the uniform game tree model when the errors made by the evaluation
function are independent, identically distributed and above a certain low threshold. The
term pathological means that, as the depth of lookahead increases, the probability that a
move chosen by the minimax procedure is correct tends to the probability that a randomly
chosen move is correct. We conjecture that one of the reasons for the observed pathology
is the assumption that the game trees are uniform (for a discussion on some of the causes
of pathology for uniform game trees see the analyses in [21, 19, 12]). The results in [17]
support this conjecture; it was shown there that, under similar assumptions to those made in
[19, 21], nonuniform game trees are not pathological when the number of children of a node
is geometrically distributed.

Schriifer [23] uses a model similar to that of Nau, i.e., game trees have a uniform branching
factor b. However, out of the b possible moves, the number of winning moves m, instead of
being constant, is taken to be a random variable M. In addition, the errors attached to the
heuristic values returned by the evaluation function are modelled by two different probabilities:
the probability of assigning a leaf value a win when it is a loss and the probability of assigning
a leaf value a loss when it is a win. (In Nau [19] these two types of error have the same
distribution.) Schriifer is interested in determining when the errors decrease with increased
depth of search; in this case the game tree is called deepening-positive. The main result in
[23] is that the game tree is deepening-positive if the probability that M = 1 is less than 1/b.
That is, the errors will decrease with deeper search if the probability of having only a single
“good” candidate move is small enough.

The focus of our interest is different from that of Schriifer. As stated above, the uni-
form branching factor model is uninteresting in our case when considering the probability of
choosing between different moves. Moreover, we consider a range of possible values between
1 and « rather than just two values. We are not investigating the reliability of the minimax
evaluation as does Schriifer, but rather how the choice of move made is determined by the
non-uniform structure of the game tree.

Baum and Smith [2] claim an improvement to the minimax algorithm by backing up
probability distributions rather than single heuristic values (see also [20]). The backing up of
these distributions is done via the product rule and the final choice of move is the one with
the highest expected value. Baum and Smith concentrate on the algorithmics necessary to
make their approach workable and do not investigate how properties of the game tree affect
the choice of move. They also provide experimental evidence that their algorithm is often
competitive with standard minimax implementations. In this sense their work is orthogonal
to ours, since we are interested in understanding why minimax works and do not address the



algorithmic issues.

Our work is closely related to the work of Hartmann [9], who attempted to understand
the notion of mobility in Chess and its correlation with the probability of winning. (Hart-
mann’s approach builds on the seminal work of Slater [25] and de Groot [5].) Hartmann’s
comprehensive analysis essentially showed a strong correlation between a player’s number of
degrees of freedom, i.e., choices per move, and the proportion of games they had won. Our
results are compatible with Hartmann’s since we show that minimax favours moves which
lead to a consistent advantage in terms of the degrees of freedom a player has in subsequent
moves. Hartmann’s conclusions, as well as those of his predecessors, were based on summaries
of individual moves and did not directly test how strong the correlation is between winning
and maintaining a high mobility for several consecutive moves. We can only conjecture that
this correlation is strong; the domination theorem essentially implies that this is a sufficient
condition for maintaining an advantage.

3 Random minimaxing

We assume that the reader is familiar with the basic minimax procedure [11]. However, we
recall some of the definitions given in [15] which will be relevant to this paper. A game tree
T is a special kind of tree, whose nodes represent game positions and arcs represent legal
moves from one position to another; the root node represents the current position. In general,
we will not distinguish between the nodes and the positions they represent nor between the
arcs and the moves they represent. Furthermore, when no confusion arises, we will refer to
the position arrived at as a result of making a move as the move itself. We are assuming a
two-player zero-sum perfect information game between the first player, called white, and the
second player, called black, where the game has three possible outcomes: win for white (i.e.,
loss for black), loss for white (i.e., win for black), or draw (see [8] for a precise definition of a
game).

The level of a node n in T is defined recursively as follows: if n is the root node of T then
its level is zero, otherwise the level of n is one plus the level of its parent node. Nodes of T
which are at even levels are called maz-nodes and nodes of T which are at odd levels are called
min-nodes. At a max-node it is white’s turn to move and at a min-node it is black’s turn to
move. We assume that T is a d-ply game tree, with § > 1, where the number of ply in T is one
less than the number of levels of T. Non-leaf nodes of a game tree are called internal nodes.
A game tree satisfying the condition that each internal node has an arc for each possible legal
move from the position represented by that node is called a full-width game tree. We will
assume that all game trees are full-width game trees.

Give a game tree T and a node n in T, we define the following:
1. par(n) is the parent node of n.

2. ch(n) is the set of child nodes of n; if n is a leaf node then ch(n) = (). We denote the
cardinality of this set, i.e., |ch(n)], by x(n).

3. sib(n) = ch(par(n)) — {n}, i.e., the set of sibling nodes of n.

4. root(T) is the single root node of T.



5. leaves(T) is the set of leaf nodes of T.

6. moves(T) = ch(root(T)), i.e., the set of nodes representing the possible positions arrived
at after white makes a single move.

7. T[n] is the subgame tree of T rooted at a node n in T; if n = root(T), then T[n]
= T. The number of leaf nodes of T[n], i.e., |leaves(T[n])|, is denoted by #T[n]; for
convenience, #T[par(n)] will be denoted by N(n); thus, if n € moves(T), N(n) = #T.

We let minimax(T, §, score, ) denote a procedure which returns the leaf node of the
principal variation [11] chosen by minimaxing, where T is the J-ply game tree whose root
represents the current position, scoreis a static evaluation function, and « is a natural number
representing the maximum possible score. The principal variation is the path from the root to
the leaf node returned by minimax(T, ¢, score, a). We assume that the scoring of leaf nodes
is computed by the function score, which returns a natural number between 1 and « inclusive.
For the purpose of scoring we assume that all leaf nodes are distinct, although in practice two
distinct leaf nodes may represent the same position (for example, through a transposition of
moves [16]).

In general, it is possible that there is more than one principal variation, in which case the
minimax procedure returns the set of leaf nodes of all the principal variations. This does not
cause us any problems, since we will only be interested in knowing whether a particular leaf
node, say ng, is returned by the minimax procedure or not.

The score assigned to an internal node n of T during the evaluation of minimax(T,
0, score, «) is called the backed up score of n and is denoted by sc(n); so when n is a leaf
node sc(n) = score(n). The backed up score of a subgame tree T[n] is sc(n), the score of its
root n.

For random minimaxing we assume the availability of a probabilistic function random(c)
that returns a natural number uniformly distributed between 1 and « inclusive; random(«)
corresponds to rolling an unbiased a-sided dice. We will use the function random(«) as a
static evaluation function for scoring the leaf nodes of a game tree.

For given 0, score and «, the procedure minimax(T, §, score,«) defines a strategy for
playing a particular combinatorial game. We call such a strategy the game playing automaton
defined by minimax (T, 4, score, o). We will denote the (stochastic) game playing automaton
defined by minimax(T, 6, random, o) by A®Y (or simply A° when a is understood from
context), where T is determined by the current position and ¢, and where « is fixed. We will
refer to the evaluation of minimax(T, 0, random, «) by A% as random minimazing.

We are interested in investigating the probability that A% wins against A%, i.e., that A%
is a stronger player than A%, where §; > o, under the assumption that it is decided randomly
which player will start. We denote this probability by win(d1,d2), where here we discount
drawn games. Obviously, win(d,0) = 1/2, so we will assume from now on that 6; > Js.

We will also assume that leaf nodes which represent terminal positions, i.e., positions
which are won, lost or drawn for the player to move, are also evaluated randomly. We make
the following modification to a §-ply game tree T which has a leaf node representing a terminal
position at a level dg < §. We extend T by adding nodes representing dummy positions and
arcs representing dummy mowves in such a way that all the leaf nodes are at level §; T is
extended in such a way that every internal node representing a terminal or dummy position



has exactly one child. We call such an extension a canonical §-level extension of T and assume
from now on that all J-ply game trees are canonically d-level extended.

The motivation for evaluating terminal nodes randomly is to avoid giving an unfair ad-
vantage to A% simply because a terminal position has been reached and the outcome of the
game may be recognized. Our approach to evaluating terminal positions is different from
that taken in [3]; there, terminal positions are recognized and evaluated as a win, loss or draw
according to the rules of the game. In order not to give an unfair advantage to A%, they
augment A% with the additional capability of recognizing terminal positions up to level d;.

We recall from the introduction that a subgame tree is level-reqular if all nodes at the
same level have the same number of children. At any stage, when considering the possible
moves to be chosen from moves(T), we make the simplifying assumption that for all nodes
n € moves(T) the subgame trees T[n] are level-regular. This level-reqularity assumption
makes the ensuing analysis more tractable. It is more general than assuming that game trees
are uniform (i.e., that the number of children of each node is constant) [11], and also more
realistic since it distinguishes between the number of choices for the two players. It is our
view that level-regularity is a reasonable approximation for game trees: level-regular trees can
be viewed as the result of averaging out the number of children per node for internal nodes
on a given level.

4 Enumeration equations

We now give equations for enumerations which are needed in order to obtain the results in the
remaining sections. We assume from now on that n # root(T) is a node in §-ply game tree
T; we often write n to indicate that n is a max-node or n to indicate that n is a min-node.
For a given node n which is not a leaf of T, we assume that n’ € ch(n), and we also let
m = x(n) or ¢ = x(n), as appropriate. We also assume that ¢ is a natural number between 1
and « inclusive; ¢ denotes a possible score of any of the leaf nodes returned by the minimax
procedure.

We let EQ(n,i) be the total number of possible subgame trees T[n] such that sc(n) = i,
i.e., the number of assignments of scores to the leaf nodes of T[n] such that sc(n) = i. We
shall also use counting functions LE(n,1), LT (n,i), GE(n,i) and GT(n,i) with the obvious
meanings.

We define LE(n,i) and LT (n,) as follows:

LE(n,i) = ZlEQ(naj),
LT(n,i) = JL_E(n,Z —1).
Thus,
EQ(n,i) = LE(n,i) — LE(n,i — 1) = LT(n,i + 1) — LT(n, ). (1)
The next lemma follows from (1) and the fact that LE(n,0) = 0.

Lemma 4.1 EQ(n,i) = LE(n,i) = LT(n,i+ 1) if and only ifi =1. O



We further define GE(n,i) and GT'(n,t) as follows:

«

GE(n,i) = }:EQwuﬁ,

GT(n,i) = GE(n,i+1).
Thus,
EQ(n,i) = GE(n,i) — GE(n,i+ 1) = GT(n,i — 1) — GT(n, ). (2)
The next lemma follows from (2) and the fact that GT'(n,a) = 0.
Lemma 4.2 EQ(n,i) = GE(n,i) = GT(n,i—1)ifandonly if i = . O

From the semantics of min and max, we obtain the following equations when 7 is a non-leaf
node.

LE(h,i) = LE(®,i)™, (3)

GT(R,i) = GT(#,i). (4)

The following equations are derived from equations (3) and (4) on using equations (1) and
(2), respectively.

EQ(n,i) = LE(,i)™ —LE(®,i—1)™,
EQ(n,i) = GT(A',i—1)7—GT (7, 1)%.
When n is a leaf node EQ(n,i) =1 and thus
LE(n,i) = 1,
GT(h,i) = a—i.

The next lemma is immediate since a#1" is the total number of possible subgame trees
rooted at n.

Lemma 4.3 For all nodes n in T and all 7z, 0 < i < a,
o = LE(n,i) + GT(n, 1),
in particular,
ol = LE(n, o) = GT(n,0). O
The next two lemmas now follow from Lemma 4.3 on using equations (3) and (4), respec-

tively.
Lemma 4.4 If n is a non-leaf min-node then, for all 7, 0 <1 < ¢,

LE(n,i) = GT(#/,0)? — GT(?',i)4. O
Lemma 4.5 If n is a non-leaf max-node then, for all 7, 0 < i <

GT(n,i) = LE(7',a)™ — LE(R',i)™. O

In a similar fashion to the correspondence between Lemmas 4.4 and 4.5, we observe that
any formula given for min-nodes has a corresponding dual in terms of max-nodes.



5 The probability of a node under random minimaxing

We formalise the definition of prob(n) given in the introduction and extend it to apply to
all nodes n in T. We view prob(n) as the proportion of assignments of scores to the leaf
nodes of T[par(n)] such that n is on a principal variation of T[par(n)]. Using this definition
of prob(n), we obtain a sufficient condition for prob(ni) to be greater than prob(ny) for
two nodes ni,ny € moves(T). We also obtain an expression which allows us to recursively
determine whether prob(ni) > prob(nz).

Let #[n](i) denote the number of distinct assignments of scores to the leaf nodes of
Tlpar(n)] such that sc(par(n)) = sc(n) = i, i.e., such that n is on a principal variation of
T[par(n)] and sc(n) =i. Now let

Recalling that N(n) denotes #T[par(n)], so & is the total number of assignments of
scores to the leaf nodes of T[par(n)], we define prob(n) the probability of a node n in T as
follows:

prob(a) = 32 #0) _ #00

; oV aN
=1

where for simplicity we write N for N(n).

Essentially, prob(n) is the conditional probability that n is on a principal variation of
T given that par(n) is on a principal variation. We note that the sum of prob(n*) for all
n* € ch(par(n)) is greater than or equal to one. However, it is important to observe that
this sum may be strictly greater than one, since the events that two n*’s are on (distinct)
principal variations are not mutually exclusive [7]. For example, if by chance all the leaf nodes
are assigned the same score, then minimax(T, §, random, a) returns all of the leaf nodes.

We say that « is large when « is large in comparison to N2. Now, assuming that « is
large, it follows that the probability of two leaf nodes being assigned the same value is small.
The probability that an assignment of scores to the leaf nodes of T[par(n)| assigns different
values to distinct leaf nodes is given by

al

aN(a— N)I

This probability gets closer to 1 as « increases — this follows on using Stirling’s approxi-
mation [13] when, after some manipulation, we obtain

! N\ ~otN=3 2
@« ~ e N (1 — ) ’ ~ 6712\7704. (5)
aN(a— N)! a

We observe that, when « is large, the exponent of e in (5) is close to zero and thus the
probability that all leaf nodes are assigned different values is close to one. Therefore, if « is
large, the sum of prob(n*) for all n* € ch(par(n)) is close to one.

The following lemma gives a constructive way of computing #[n](¢) when n is a min-node.
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Lemma 5.1 Foralli,1 <17 < a,

#0)(i) = EQ(n,i) [[ LE®i). O

n*Esib(n)

The next lemma is immediate from Lemma 5.1 if, when comparing the probabilities of
two nodes ny, ngy € moves(T), we divide #[n;|(i), for j =1 and 2, by

Il LE®i).

a*emoves(T)

Lemma 5.2 If iy, na € moves(T) and

EQ( 1,i) EQ(ﬁQ,i)
LB(u,i) = LB(ni) )

3

for all i € {1,2,...,a}, then prob(ni) > prob(nz). This inequality is strict if inequality (6) is
strict for some 7. O

The converse of Lemma 5.2 is shown to be false by the following counterexample. Let
T be a 3-ply game tree having two moves a and b, with x(a) = 2, x(b) = 1, x(a’) = 3 for
a’ € ch(a), and x(b’) = 2 for b’ € ch(b). For a = 3, it can be verified that prob(a) < prob(b),
but (6) does not hold for i = 2 (see Example 2 in Section 6).

We note that the definition of prob(n) and Lemmas 5.1 and 5.2 do not depend on the
level-regularity assumption.

For the rest of this section, let ng be a node in moves(T), let n be a node in T[ng] and
let k& be the level of n in T. (We recall that if n is a min-node then k is odd and if n is a
max-node then k is even.) Since by assumption T[ng] is level regular, x(n) depends only on
k, for a given ng. Thus we are able to write Ey(i) for EQ(n,i), Li(i) for LE(n,i) and G(7)
for GT'(n,i). When n is not a leaf node we assume that n’ € ch(n), and let my = x(n) or
ar = x(n).

The next lemma follows from Lemmas 4.4 and 4.5.

Lemma 5.3 The following equations hold for all 1,0 <1 < a,
(i) for odd k <0 — 1, Lg(i) = Lgso(c)™+1% — (Ljyo(a)™+1 — Ly io(7)™k+1)k,

(ii) for even k < § — 1, Gk<Z) = Gk+2(0)q’“+1mk — (Gk+2(0)%+1 — Gk+2<i)qk+1)mk. |

Suppose that k is odd. Let m and g be abbreviations for my1 and g, respectively, and

let 1% (n) = LL’“(i) : we abbreviate I (7) to [, whenever 7 is evident from context. Then ¢ is

k(c) k k u
strictly increasing in ¢ for 0 < i < a, since Ly(i) is strictly increasing. Using Lemma 5.3 (i),
we obtain the following recurrence for [} :
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(Lgy2(a)™ = Liyo(i)™)?

Liyo(a)ma
q

= 1 (1= iga)™)" ™)

l, = 1-

Suppose now that k is even. Now let m and ¢ be abbreviations for my and g1, respec-

tively, and let gi(n) = g:(%)), we abbreviate gi(7) to gi whenever 7 is evident from context.

Then g,i is strictly decreasing in i for 0 < i < «, since Gg(7) is strictly decreasing. Using
Lemma 5.3 (ii), we obtain a corresponding recurrence for g;:

g = 1= (1= (ghe2)")" (8)

We can combine [¢ and g} into a single function f} (which is an abbreviation of fi(n))

defined as follows: '
fi _J I, ifkisodd
k= g if k is even

Similarly, using Lemmas 4.4 and 4.5, we can combine (7) and (8) yielding

i1 _ (fi Atk ) q ifkisodd
Ji=1= i) where t; = { my, if k is even

For leaf nodes, the extreme case for f,i is given by

i é if 0 is odd
Is = { % if § is even (10)
If we now define
Fi(z) =1— 2", (11)

for 0 < z <1, then f{ = fk(f,i+1). We call Fy, the propagation function and observe that Fy,
is strictly decreasing in z.

Now, let
Fo(z) = Fi(Fal- - (Fp—2(Fp-1(2))) -+ +)), (12)
where 1 < ¢ < 4. In the special case ¢ = 1, we let F7(2) = 2. We call F the iterated
propagation function. It follows that
1=/=Ff5) forallg, 1<¢<o. (13)
We see from (12) and (13) that the functions F; propagate the values f} up the game tree

T from the leaf nodes to their ancestor node in moves(T).

We observe that 77 changes parity after each iteration: after each application of F; to the
corresponding intermediate result Fj 1 (- - - (Fp—1(2)) - - -), the current result F;j(Fjp1(- - - (Fp-1(2)) -+ ),
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will be strictly increasing or decreasing in z according to whether the intermediate result is
strictly decreasing or increasing, respectively. Thus, if ¢ is even F $ is strictly decreasing, but
if ¢ is odd F7 is strictly increasing.

EQ(7,3)
LE(,q)

Let n € moves(T). Then, by using (1) and (13), we can rewrite the expression
appearing in Lemma 5.2 as follows:

Li(1) _ Li(i=1)

EQ(n,i) _ Ei(i)) _ i)~ i@
LE(n,1) Li(7) Lll((a))
i—1 F* i—1
_ 1—l1¢ _ 1_%&% (14)
iy Fy(f3)

for any level ¢, 1 < ¢ < 4.

6 Domination

The concept of domination plays an important role in the theory of random minimaxing.
Let ni,ns € moves(T) and let r; and r9 denote nodes at the same level in T[n1] and T[ns],
respectively. Then ny dominates ny, written ny = no, if, for all such r; and ra, x(r1) < x(r2)
when r; and ry are min-nodes and x(r1) > x(r2) when r; and ry are max-nodes. Moreover,
ny strictly dominates ng, written ny > na, if n1 = ng and x(r1) # x(r2) for some r; and rs.
Finally, ny dominates ny solely at level ¢, written ny >4 no, if n1 > ny and x(r1) # x(r2) for
all 71 and ry at level ¢, but x(r]) = x(r3) for all nodes r} in T[n;] and r5 in T[ne] at any
other level.

The main result of this section utilises the monotonicity results proved in the Appendix
to show that if ny dominates ny then prob(ny) > prob(nsg); if domination is strict then this
inequality is strict. Thus domination is a sufficient condition for the probability of one move
to be greater than or equal to that of another.

Lemma 6.1 For any nodes n; and ny in moves(T), if ny =4 no for some ¢, 1 < ¢ < 6, then
prob(ny) > prob(ng).

Proof. By Lemma 5.2 it is sufficient to show that
EQ(ﬁlaZ) > EQ(’FZ%Z)

LE(T_Ll,’i) LE(ﬁQ,Z) ’
for 1 < i < a. Let 71 and r2 be nodes at level ¢ in T[n1] and T[nz], respectively. Now n; and
ny are moves and are thus at level 1. So, by (14), the above inequality is equivalent to

Fy(f5 () Fy(f5 ()

EAEE) T R (15)

In effect, we are considering the backed up values of f;b(rj) and f;_l(rj), for j =1 and 2,

to be the values of the corresponding leaf nodes of a ¢-ply game tree.
Now ¢ < 9, so let x denote fé)jrll (r;) and y denote féﬂ(r}), where 7 € ch(r;). (Note that
these values are the same for j =1 and j = 2, since n; dominates ng solely at level ¢.)
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Assume that ¢ is odd; then r; and r9 are min-nodes, so r} and r5 are max-nodes. It then
follows that 0 <y <z <1, since gy, Is strictly decreasing in 7. On using equations (9) and
(11), we obtain

F3(75) = 1(75) = Fo(g441(75)) = 1 = (ggya (7)1 =1 — y%os, (16)
where gg; = x(7;), for j = 1 and 2. Similarly,
Fo () = U7 (75) = Folgsrh (7)) = 1= (g3 (75)) 19 = 1 — . (17)

Therefore, ' A
£571(F) _ Fol95:4 (7)) _ Lo
fo(m5)  Folggy (7)) 1 —ydes

Now 0 < g41 < gg2 since ny >4 na. So, on using part (ii) of Corollary A.7, we see that

1 — xde1 1 — x9¢2
S (18)
1 — yq¢1 1 — yq¢2
or equivalently
£t () 571 (72)
—_— < . (19)

f4(71) fi(72)

Letting 1 = 1 — 2%, 20 = 1 —2%2, y; = 1 — y%! and yo = 1 — y%2, it follows that
x9 < yo and y; < yo. Also, inequality (18) now becomes

0oz (20)
n Y2
We now utilise Corollary A.4 to obtain, for any m,q > 1,
L-(1-af)? 1 (1-ap)
1—(1—yf) 1—(1—yg)e
By invoking a two step propagation of F, we have
.7:¢_2(.7:¢_1(xj)) _ 1—(1- x?‘b—l)%—?
Fo-a(Fs-1(y))) 1—(1—y; o)tz
and thus
Fo—o(Fp— Fo—o(Fo_
o-2(Fo-1(21))  _ Fo-a(Fo-1(22)) (21)

Fo—2(Fp-1(y1)) Fo—2(Fp-1(y2))

Moreover, by equation (12) we have

Fy(Fo(ri)) = Fu(Fal - (FomaFoma (F(r))) ),
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and similarly for F( f;_l(rj)). We now repeatedly invoke a two step propagation of F and
use Corollary A.4, as in the derivation of (21) from (20). Remembering that ¢ is odd, this
therefore yields
Fi(Fa(- - (Foa(Foor (£ (1)) ) P (Fo—2(Fp1(f5(r2)))---))
Fi(Fa( - (Foa(Fo1(f5(r1)))) ) Fi(Fa( - (Foa(Fo-1(f5(r2)))) )

and thus we deduce that

(22)

F3(f4(r1)) Fi(for2)
yielding (15) as required.

Now assume that ¢ is even; so 71 and ro are now max-nodes, and thus 7} and r} are
min-nodes. It then follows that 0 < z < y < 1, since léﬁ 41 is strictly increasing in 7.

Corresponding to (16) and (17) we now obtain
F(75) = 9o(75) = Folgya (7)) = 1 = (lgyr (7)) = 1 — y™or,
where mg; = x(7;), for j = 1 and 2. Similarly,

F7H05) = 0574 05) = i () = 1= (G )" =1 am,

We note that mg; > mga > 0, since ny >4 na. So, on using Corollary A.5, we see that
1— (1 —gmer)de—1 1—(1—ame2)le-1
L= (I—ymenyiot = T (1—yreyiet’

or equivalently

Foa(f5 (1)) For(f5 7 (72))
Fo1(ff (1)) Fo1(fi(72))

corresponding to (19). The proof is now concluded as before by repeatedly invoking a two
step propagation of F and using Corollary A.4. Remembering that ¢ is now even, this yields
(22) as previously. O

Theorem 6.2 (Domination theorem) For any nodes n; and na in moves(T), if ny > ng
then prob(ny) > prob(na).

Proof. Let d be the number of levels in T such that at each of these levels the nodes in T[n;]
have a different number of children from the corresponding nodes in T[ng]. We obtain the
result by induction on d.

(Basis): If d = 1, the result follows by Lemma 6.1.

(Induction): Assume that the result holds for some d > 1. We prove that the result holds
for d + 1 levels. Let r; in T[n;] and r2 in T[ng] be typical nodes at the least level ¢ of T for
which x(r1) # x(r2). Let n3 be a new move such that T[ns] is isomorphic to T[ns] except that
x(r3) = x(r1) for each node r3 at level ¢ in T[ns]. Thus n3 >4 na. Moreover, n; > n3 and
the numbers of children of nodes in T[n;] and T[ns] differ at precisely d levels. Therefore,
prob(ng) > prob(ng) by Lemma 6.1 and prob(ni) > prob(ns) by the induction hypothesis,
yielding the result. O

15



Corollary 6.3 For any nodes ny and ng in moves(T), if ny = ng then prob(ni) > prob(nz).
O

Example 1 Consider the 3-ply game tree shown in Figure 1, in which node a strictly domi-
nates node b, i.e., a > b, and suppose a = 2. From the definition of prob and Lemma 5.1,

prob(a) EQ(a,1)LE(b, 1)241—2EQ(3, 2)LE(b,?2) 7 (23)

since N the number of leaves is 12.

For the subtree rooted at a, ¢ = 2 and my = 3. So, from Lemma 5.3 with k£ = 1, we have
LE(a,i) = L1 (i) = L3(2)° — (L3(2)* — L3(i)*)*.

Since the nodes at level 3 are leaf nodes, L3(i) = i, so LE(a,i) = 20 — (23 — 43)2. Similarly,
for the subtree rooted at b, ¢ = 3 and mg = 2, so LE(b,i) = 26 — (22 — i2)3,

Substituting these values into (23), and using (1) to compute EQ, gives prob(a) =
3691/4096. A similar calculation yields prob(b) = 2283/4096. Thus prob(a) > prob(b),
in accordance with the domination theorem. (In fact, by the domination theorem, prob(a) >
prob(b) for any «.)

Max

Min

gododo cdocdo

Figure 1: A 3-ply game tree

The presence of domination implies that random minimaxing will tend to choose “good”
moves provided the following assumption holds.

Assumption 6.4 (Mobility assumption) The more a move made by white restricts black’s
choice of moves and the less this move restricts white’s subsequent choice of moves the “better”
that move 1s.
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As we observed in the introduction, the mobility assumption is reasonable for many com-
binatorial games. If, for the game under consideration, the mobility assumption is valid then,
when one moves dominates another, the domination theorem guarantees that the “better”
move has a higher probability of being chosen.

We close this section with an example in which there is no domination.

Example 2 Let us modify the game tree shown in Figure 1 so that, instead of x(b) = 3,
we have x(b) = 1. So neither a nor b dominates the other. For a = 2, it can be verified
that prob(a) = 211/256 and prob(b) = 207/256; in this case, prob(a) > prob(b). For a = 3,
however, prob(a) = 4562/6561 and prob(b) = 4802/6561; in this case prob(a) < prob(b).
By computation we have verified that, for 3 < a < 100, prob(a)/prob(b) is monotonically
decreasing in «. Moreover, it can be shown that prob(a) < prob(b) for all o > 2.

7 Increased lookahead

Domination implies that there is a relationship between the probabilities of two moves in a
single game tree, but does not take into account the effect of increased lookahead. We now
investigate sufficient conditions for deeper search to be “beneficial” in the following sense.
Let us assume that the set of moves can be partitioned into “good” moves which tend to lead
to advantageous game positions and “bad” moves which tend to lead to game positions which
are not advantageous. (Recall that a move is chosen by white, so both “good” and “bad”
are from white’s point of view.) If, for the game under consideration, random minimaxing
can discriminate between “good” and “bad” moves, then it is reasonable to assume that the
probability of “good” moves is above average and the probability of “bad” moves is below
average. (The average probability of a move could, for example, be defined as 1/|moves(T)|,
but using any other reasonable formula for defining the average probability of a move does
not affect the results below.)

We say that increased lookahead (i.e., deeper search) is “beneficial” if the probability of
each “good” move relative to the probability of each “bad” move increases with the depth of
search. As we shall see below, it is not always the case that increased lookahead is “beneficial”
in this sense.

Let us assume that 77 is a §1-ply game tree and that 75 is a Jo-ply game tree, where
01 > d2, such that root(T1) and root(Ts) represent the same current position (i.e., T5 consists
of the first &5 ply of T1). Furthermore, let n{,n% € moves(Ty) and n3,n4 € moves(Tz) be
such that n{ represents the same position as nj and n represents the same position as n}.
We are interested in the situation when n{ (or equivalently n3) is assumed to be any “good”

move and n? (or equivalently n8) is assumed to be any “bad” move.

We now investigate sufficient conditions for

prob(nilj) prob(nf) (24)
1

prob(nj) prob(ng)

to hold, i.e., for increased lookahead to be “beneficial”.
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By Lemma 5.1 and the definitions of prob and I (n

~—

, inequality (24) is equivalent to

o EQ(nf i Q EQ(ndi i

O T D) Y TGO I DR & B | M (Y

=1 1 nyemoves(Th) S =1 27 no€moves(Ty) (25)
& BEQ(nt i) : & BQ(nbi) 1A

> > 11(n1) > : 11 (n2)

i=1 LE(n’i,z) ni€moves(T1) ! =1 LE(ng’l) na€moves(Ts) !

Let r be a node at level d9 in T7. Define the product of the my’s between levels do and d;
in T1[r] by
61—1

M(r) = H my,

k=42
where we put mi = 1 when k is odd. Correspondingly, define the product of the ¢i’s between

levels d2 and 97 in Ti[r] by
61—1

Q(r)= I

k=02
where we put g = 1 when k is even.
In order to ensure that both the above products are over non-trivial sets, we assume for

the rest of this section that §; > d2 + 2. Now let 7{ be a node of Ti[n]] at level d; and 7} be
a node of Ty[n?] at level d2. We claim that

EQ(nd,i
Lg((% 1 as M(rd) — oo (26)
and 2O ) )
ni,t b
TR 0w Q) — o 7

for 1 < i < a. When i = 1, the left-hand sides of both (26) and (27) are equal to 1, since
EQ(ni,1) = LE(ny,1). We argue that we can make the left-hand side of (26) as close to one
as we require and the left-hand side of (27) as close to zero as we require.

Firstly, consider (26). Assuming that M (r{) is large, then my. is large for some odd k,
where 09 < k+ 1 < §71. Let

e1 = ([15)™ " and €3 = (lf o)™ 1.

We consider the case when ¢ = « separately; so assume now that ¢ < a. Since l}:C 4o I8
strictly increasing in ¢ and my4; is large, we have

< Ke k1.
On using (9) we obtain

G 1= (= (L= (1= ()i ™eon). )
K T— (1= (- (1= (1= (1—ey)t)mr-1)...)m2)a"

Now, on using the approximation (1 — €)? &~ 1 — ge, which follows from the binomial
theorem provided ge < 1, we obtain

llfl qi(--- (qper)™ =1 ---)™m2 <€1>mk_1mk_3~~m2
B ol (g™ e '

(28)
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Together with (14), this now yields (26), since €; < e2. We note that the convergence is
exponential in mamy - - - Mp_1Mp11.

When i = o then €2 = 1 and a similar argument will confirm that (26) also holds in this
case.

Secondly, consider (27). Assuming that Q(r}) is large, then g1 is large for some even k,
where 09 < k+1 < §1. Now let

- .
€1 = (gjy0) ™" and e = (gp40) %+,
Since gi 4o 18 strictly decreasing in 7 and g1 is large, we have
1>e>e>0.

Analogously to (28), we now obtain

B (1= (= (1= (L))t e
Ut 1—(1—=(--(1—=(1=(1—e)mk)d-1)..)m2)a1
~ 1- (mz( . (mkel)%—l) .. .)th _ 1— ue(ik’lqk*?’"'ql
71— (mal- - (mpeg) 1))@ 1 — pied T (29)

where g = m§tm$P?* ... PPN Together with (14), this now yields (27), and again the
convergence is exponential, this time in q1q3 - - - qx—1qx+1-

Intuitively, increasing M (r{) increases white’s mobility for “good” moves relative to
white’s mobility for “bad” moves. On the other hand, increasing Q(r}) increases black’s
mobility for “bad” moves relative to black’s mobility for “good” moves, and thus black’s mo-
bility for “good” moves relative to black’s mobility for “bad” moves decreases. If we measure
the relative mobility of one white move compared to another white move by how much choice
white has when it is white’s turn to move and how little choice black has when it is black’s
turn to move, then increasing M (r{) and Q(r}) increases white’s relative mobility for the
move nj compared to the move nf.

Assuming that M (r{) and Q(r?) are large enough, we can approximate the left-hand side
of inequality (25) by

[}

I1 hn) + % I1 i (n1)
ni€moves(Tr) 1=2 njEmoves(Th)
I i(m) ’
n1€moves(Th)

which is greater than « since li(n;) is strictly increasing in i. (We note that the right-hand
side of inequality (24), and consequently (25), is bounded as « increases; this is because,
as a — 00, prob(n) tends to the corresponding probability of n when the scores of the leaf
nodes are independent continuous random variables uniformly distributed on [0,1].) It follows
that, provided « is sufficiently large, the left-hand side of inequality (25) will be greater than
its right-hand side. Intuitively, provided « is large enough, by sufficiently increasing white’s
relative mobility, we can ensure that inequality (24) will hold, i.e., that the probability of
a “good” move relative to the probability of a “bad” move will increase with the depth of
search.
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A maz-modification of Ty with respect to r{ is a game tree resulting from modifying
T1[r{] by increasing some of the my’s for even k between ds and d; — 1. Correspondingly,
a min-modification of Ty with respect to 7¥ is a game tree resulting from modifying 7} [r}]
by increasing some of the gp’s for odd k between do and §; — 1. The above discussion is
summarised in the following theorem.

Theorem 7.1 (Increased lookahead theorem) For a sufficiently large, there exist thresh-
old values M and @Q such that, for all max-modifications of 7 with respect to r{ with
M(r{) > M and all min-modifications of 71 with respect to 7 with Q(r%) > @, inequal-
ity (24) holds. O

We note that in the proof of the above theorem we only considered a restricted case of
max and min modifications, where just a single m; and g; were increased. It is likely that a
more detailed analysis would reveal that it would be sufficient to make smaller modifications
at a number of levels.

It is interesting to note that, in order to prove the increased lookahead theorem, we
have assumed that é; > 2 + 2. By increasing the depth of search by at least two ply, we
are able to increase white’s relative mobility to a sufficient extent. This involves increasing
white’s relative choice and correspondingly decreasing black’s relative choice. It is an open
problem whether the conditions of the theorem can be relaxed, i.e., the above argument does
not show whether a single threshold value, resulting from either a min-modification or a
max-modification, is sufficient to ensure that increased lookahead is beneficial. A particular
unresolved case of this is when 7 = do + 1.

We also note that it follows from (28) and (29) that the rate of convergence of the ratio
of the probabilities on the left-hand side of (24) is exponential. Thus, provided « is large
enough, we do not expect the threshold values implied by the increased lookahead theorem
to be excessively large.

Using these results, we can now state sufficient conditions for the game playing automaton
A% to be a stronger player than A%, where §; > d5. The result hinges upon the strong
mobility assumption given below. If the game under consideration satisfies this assumption
then, assuming that « is large enough and that §; > d2+42, we can show that win(dy,d2) > 1/2,
i.e., in this case random minimaxing appears to play reasonably “intelligently”.

When M (r{) is above the threshold value M indicated in the increased lookahead theorem,
we will say that white’s subsequent choice for “good” moves is “much greater” than white’s
subsequent choice for “bad” moves”. Correspondingly, when Q(r}) is above the threshold
value () indicated in the increased lookahead theorem, we will say that black’s subsequent
choice for “bad” moves is “much greater” than black’s subsequent choice for “good” moves.

Assumption 7.2 (Strong mobility assumption) Each move is either “good” or “bad”.
Moreover, when increasing the lookahead, white’s subsequent choice for “good” mowves is “much
greater” than white’s subsequent choice for “bad” moves; correspondingly, black’s subsequent
choice for “bad” moves is “much greater” than black’s subsequent choice for “good” mowves.

The strong mobility assumption allows us to compare the probabilities of moves with-

out assuming that “good” moves dominate “bad” ones. The following corollary is a direct
application of the increased lookahead theorem and the above assumption.
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Corollary 7.3 (Increased lookahead corollary) Assume that « is sufficiently large and
that for the game under consideration the strong mobility assumption holds. Then win(é;, d2) >
1/2 provided §; > 02 + 2.

b

Proof. Let Ty, Ty, n{,n9,n} and n} be as in the previous section, where n? and n;

the “good” and “bad” moves in moves(T}), respectively, for j =1 and 2.

range over

Now, since a is large, the probability that a good move will be chosen by A% is approxi-
mately

P! = Zprob(n?).
nd
J

Similarly, the probability that a bad move will be chosen by A% is approximately

le; = Zprob(ng’»).

b
"

We need to show that P{ > Py, or equivalently that PP < P, since Pjg + P]’? ~ 1 for large
a — see the discussion following (5).

If the probabilities of all “good” moves in T} are greater than their corresponding proba-
bilities in T%, then the result follows. Otherwise, suppose that prob(n{) < prob(nf) for some
n{ and nj. As §; > dy + 2, the strong mobility assumption implies that the conditions stated
in the increased lookahead theorem are satisfied, and thus inequality (24) holds. It follows
that, for all “bad” moves n? and n}, we have prob(n}) < prob(n}) and therefore P} < P2,
yielding the result. O

We note that if P§ is close to one then there is no need to increase the depth of search
since A% will almost certainly choose a “good” move. We further observe that increased
lookahead seems to be beneficial in practice for many combinatorial games such as Chess,
Checkers, Othello and Go (see [22]). Regarding the condition d; > ds + 2, it is interesting to
note that, in the experiments carried out in [22], the number of ply was increased by two at
each stage, since the authors claim that “it introduces more stability into the search”.

8 Concluding Remarks

Our analysis of random minimaxing provides some insight into the utility of the minimax
procedure. Our results show that, under certain assumptions, we can closely relate the utility
of the minimax procedure for game trees with random leaf values to the structure of the game
tree under consideration. If the semantics of the game concerned match these assumptions,
then it is fair to say that random minimaxing plays reasonably “intelligently”. In particular,
we have shown that if one move dominates another then its probability of being chosen is
higher. Under the mobility assumption, the domination theorem (Theorem 6.2) implies that,
when domination occurs in a game tree, random minimaxing is more likely to choose a “good”
move. Moreover, under the strong mobility assumption, Corollary 7.3 implies that increasing
the depth of search (by at least two ply) is “beneficial”, provided « is large enough.

Although, in practice, we can only expect our assumptions to hold approximately, we
suggest that they do provide a reasonably good model for a large class of combinatorial games.
As a consequence of the domination theorem, when given the choice between two moves ng
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and ne where n; dominates ny, a random minimaxing player will prefer ny. This provides
theoretical support to Hartmann’s analysis of Chess grandmaster games [9], which showed
a strong correlation between winning and having an advantage in mobility. In addition, the
domination theorem gives a plausible explanation of Beal and Smith’s results [3]: the reason
why a random minimaxing player is stronger than a player who chooses moves according to
a uniform distribution is that, in general, the former player will maximise his/her mobility.

One way of incorporating random minimaxing into game playing software is suggested
by one of the experiments carried out by Beal and Smith [3]. In this experiment, one Chess
program, with an evaluation function based solely on material balance, was played against
another Chess program with an evaluation function based on a weighted sum of material
balance and a random evaluation, where the weight of the random component was small. The
results showed that including the random component in the evaluation function improved
the strength of play and, moreover, the improvement increased with deeper search. Our
results, considered in conjunction with these preliminary experiments, suggest that it may be
beneficial to include a small random component in the evaluation functions of current game
playing software.

We are currently attempting to generalise the domination theorem in order to improve
our understanding of the conditions, both sufficient and necessary, for prob(ni) to be greater
than prob(ng). We hope that this will allow us to obtain a more general measure of mobility
than that implicit in the domination theorem. One plausible conjecture is that, for large «,
the mobility of a move is related to the ratio of some product of the my’s to a similar product
of the ¢i’s, for k =1,2,...,9.

A Appendix : Monotonicity properties

In this appendix we prove some fundamental results concerning the monotonicity properties
of some functions closely related to the propagation function.

Lemma A.1 For all 0 <z <1 and t > 1 we have f(x,t) = (1 —x)! + 2t > 1.

Proof. On differentiating f with respect to = we obtain

% = t—t(l—xz)" >0,
since, when t > 1, we have 0 < (1 —z)'~! < 1. The result now follows, since f(0,¢) =1. O

In order to analyse equation (14), we define the function h(z,y,t) by
1—at

hz,y,t) = T4

where 0 < z,y < 1 and ¢t > 0. We also define the function hi(e,y,t) by

1-(1-ey)

hi(e,y,t) =h(l —ey,1 —y,t) = Tyt

Lemma A.2 For all 0 < e,y <1andt>1, hi(e,y,t) is strictly increasing in both y and e.
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Proof. 1t is evident that hi(e,y,t) is strictly increasing in e, so it is sufficient to show that

ohy
aiy > 0-

On partially differentiating In h; with respect to y we obtain

10m el —ey™t tQ-y't 1 1

hlaiy B 1- (1 _ey)t - 1- (1 _y)t B h2(€7y7t) h2(1ayat)7

where
1-(1-ey) (I-ey)'—1+ey
et(l—ey)t=1 et ’
It now suffices to show that ha (e, y, t) is strictly increasing in e. On partially differentiating
ho with respect to ¢ we obtain

hZ(Ev Y, t) =

Ohy (L—ey)' +eyt—1
de e?t(1 — ey)?

This is strictly positive by Lemma A.1, since the denominator is clearly positive. The
result now follows. O

Corollary A.3 Let 0 < z1,22,y1,y2 < 1 satisfy the following inequalities:

X1 T2
T2 <Y2, Y1 <yY2, — < —.
Y1 Y2
Then, for all t > 1,
1—(1—mx)t 1—(1— )t

—(I—g) = 1-(-p)t

Proof. From the given inequalities it easily follows that x1 < y; and 1 < x2. We assume
that ¢ > 1 since the result is trivial when ¢ = 1. Now let ¢ = x1/y; and €2 = x2/y2, so
0 < €1 < €2 < 1. Then, on using Lemma A.2, we have

I-(1-—eayn) 1-QQ—ey) 1—(1--ey)
1—(1—yp)t 1—(1—yp)t 1—(1—yy)t’

concluding the proof. O

The following corollary is immediate from the previous one.

Corollary A.4 With the same conditions as in Corollary A.3, for all m > 0 and ¢ > 1,

1—(1—am)e 1—(1—ap)
1—(1—ypm)e I—(1—y5m)e

Corollary A.5 If 0 <x <y <1, m; >me >0 and ¢ > 1 then

1—(1—am)? 1—(1—am2)d
1—(1—ym)e 1—(1—ym)e
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Proof. Let t = q, x1 = 2™, xo = 22, y1 = y"™ and ys = y™2. Then, since 0 < x <y < 1
and my > mg > 0, it follows that xo < yo and y; < yo2. Furthermore,

T z\™ x\ "2 T
) e
Al Yy Yy Y2

The result now follows immediately by Corollary A.3. O
We define a function J, which will be useful in establishing the monotonicity properties
of the function h(z,y,t):
1-—0“
1—0p

JO) =
where 0 <8 <1and 0 <p < u.
Lemma A.6 The function J is strictly increasing in 8 for 0 < 6 < 1 and 0 < p < .

Proof. We show that the derivative of J with respect to 6 is positive. Now

d7  —uf* (1 —6P) + poPt(1 - 6v) (30)

do (1—06r)2

Since the denominator of (30) is positive, it remains to be shown that
—uf "l 4wt 4opgr=t — peutrl S,
On dividing by upf®tP~!, this is equivalent to the inequality
1 < 1 1) S 1 ( 1 1)
u \ v p \ OP )

Now let 5 = 1/0; it is thus sufficient to show that the function (5* — 1)/z is strictly
increasing for z > 0, i.e., that

d (1(52_1)) _ _$(5Z_1)+%ﬁzmﬁ > 0,

dz \z
Multiplying this by z257% yields
877>1—zInp. (31)
Since it is well known that e > 1 + w for all w # 0, inequality (31) follows on setting

w=—znpg. O

Corollary A.7 Let t > 0. Then,
(i) if 0 < z < y < 1, the function h(z,y,t) is strictly decreasing in ¢, and

(ii)) if 0 <y < x < 1, the function h(z,y,t) is strictly increasing in ¢.
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Proof. (i) Let to > t; > 0. Then, by Lemma A.6,

and thus

1— a2 1—yt
T—at = 1—gyh’
1—ah 1—at
11—yt - 1—yt2’

yielding the result.

(ii) If y < x then, by part (i), h(y, x,t) is strictly decreasing in ¢, so its reciprocal h(x,y,t)

is strictly increasing in . O
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