
Part I:
Computer arithmetic and logic

George Boole Claude Shannon

(1815–1864) (1916–2001)

FoC-I (episode 1.1) 1

Why are computers binary?

Computers are electronic devices whose ‘language’ is based
on electrical signals; the simplest signals are on and off. So the
alphabet of this language has only two symbols 1 and 0

known as binary digits or bits .

Computer words consist of a fixed number of bits, which

depends on the processor design and computer architecture, usually 64 or 32.

Example: 32-bit word 11000000︸ ︷︷ ︸
byte

01010000︸ ︷︷ ︸
byte

10001010︸ ︷︷ ︸
byte

00000011︸ ︷︷ ︸
byte

Binary words can encode and store numbers of different type, computer
instructions, texts in natural languages, etc. We start with the numbers.

George Boole (in ‘The Laws of Thought’ 1854) invented Boolean algebra,

an algebra of two values, which is the basis for all modern computer arithmetic.

Claude Shannon (in his MSc thesis) designed electrical switching circuits and

showed how they could solve all problems that Boolean algebra could solve. This has

become a fundamental concept that underlies all electronic digital computers.
FoC-I (episode 1.1) 2

Numbers

are abstract mathematical objects used for counting and
measuring. There are several types of numbers:

N Natural numbers (0, 1, 2, 3, 4, 5, . . . ad infinitum)

Z Integer numbers (. . . ,−3,−2,−1, 0, 1, 2, 3, . . .)

Q Rational numbers (−
7

3
,
4

9
, etc.;

formally, they are of the form
m

n
, where m and n are integers and n ̸= 0)

see https://en.wikipedia.org/wiki/Rational_number

R Real numbers (like π = 3.14159265358 . . . ,
√
2 = 1.41421356237 . . . , etc.)

see https://en.wikipedia.org/wiki/Irrational_number

• . . .

How can we represent all of these numbers in computers?

• Computer words are binary (no problem: binary can encode everything)

• Computer words are finite, usually of 32 or 64 bits
(can lead—actually has already led—to disaster)

FoC-I (episode 1.1) 3

https://en.wikipedia.org/wiki/Rational_number
https://en.wikipedia.org/wiki/Irrational_number

Numeral systems

A numeral is a symbol or group of symbols that represents a number

• Unary: numeral ||||||| means 7 – Roman numerals

• Decimal: numeral 456 means (4 × 102) + (5 × 101) + (6 × 100)

numeral 10110 means (1 × 102) + (0 × 101) + (1 × 100)

• Binary: numeral 1012 means (1 × 22) + (0 × 21) + (1 × 20),
i.e., decimal 5

A 32-bit binary word a31a30 . . . a1a0 means the number

a31 × 231 + a30 × 230 + · · · + a1 × 21 + a0 × 20

From now on, we assume that computer words are binary and 32 bits long.
This means that we can represent the natural numbers from 0 to 232 − 1:

0000 0000 0000 0000 0000 0000 0000 00002 = 010

0000 0000 0000 0000 0000 0000 0000 00012 = 110

0000 0000 0000 0000 0000 0000 0000 00102 = 210

.

1111 1111 1111 1111 1111 1111 1111 11102 = 232 − 2 = 4, 294, 967, 29410

1111 1111 1111 1111 1111 1111 1111 11112 = 232−1 = 4, 294, 967, 29510
FoC-I (episode 1.1) 4

https://en.wikipedia.org/wiki/Roman_numerals

Converting decimal numbers to binaries: divide by 2

Rule: divide repeatedly by 2, keeping track of the remainders as you go

Example: covert 12310 to binary

(123 = 61 × 2 + 1)123/2 = 61 remainder = 1

61/2 = 30 remainder = 1

30/2 = 15 remainder = 0

15/2 = 7 remainder = 1

7/2 = 3 remainder = 1

3/2 = 1 remainder = 1

1/2 = 0 remainder = 1

The result is read from the last remainder upwards:

12310 = 11110112 why does it work?
FoC-I (episode 1.1) 5

‘Important’ binary numbers: powers of 2
‘Important’ decimal numbers are 10 = 101, 100 = 102, 1000 = 103, . . .

Adham she run ii in

FoC-I (episode 1.1) 6

Binary addition and subtraction (for unsigned numbers)

• The four basic rules for adding binary digits are as follows:

0 + 0 = 0 sum of 0 with a carry of 0
0 + 1 = 1 sum of 1 with a carry of 0
1 + 0 = 1 sum of 1 with a carry of 0
1 + 1 = 10 sum of 0 with a carry of 1

Example:

Carry Carry Carry

1 1 1

0 1 1

+ 1 0 1

1 0 0 0

• Formulate four rules for subtracting bits (0 − 1 = 1 with a borrow of 1)

• What about multiplication? (multiplication in binary is exactly as it is in decimal)

FoC-I (episode 1.1) 7

Negative numbers: sign-magnitude representation

How to represent negative integer numbers?

Obvious idea: treat the most significant (left-most) bit in the word as a sign :
if it is 0, the number is positive; if the left-most bit is 1, the number is negative;

the remaining 31 bits contain the magnitude of the integer

Example:

+1810 = 0000 0000 0000 0000 0000 0000 000

18︷ ︸︸ ︷
1 00102

−1810 = 1000 0000 0000 0000 0000 0000 0001 00102

This representation was used in early machines, but several shortcomings
have been revealed

• Awkward arithmetic: 18 + (−18) = 0

• Two zeros: +0 and −0

• . . .

FoC-I (episode 1.2) 8

Sign-magnitude representation

.

.0000
0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111

0 1
2
3
4
5

6
7-0-1

-2
-3
-4
-5

-6
-7

000 . . . 0

010 . . . 0

011 . . . 1
100 . . . 0

110 . . . 0

111 . . . 1

0

2n-2

2n-1-1-0

-2n-2-2n-2

-2n-1

4-bit numbers n-bit numbers

Ones’ complement representation: invert the bits

+1810 = 0000 0000 0000 0000 0000 0000 0001 00102

−1810 = 1111 1111 1111 1111 1111 1111 1110 11012 (invert the bits of +18)

• still two zeros: +0 and −0 (used in some computers until the late 1980s)

• still a little bit awkward arithmetic: compute 3 + (−1) as an exercise
FoC-I (episode 1.2) 9

Two’s complement representation

• The most significant bit represents the sign, as before

• The positive numbers are also represented as before

0a30 . . . a0 means 0 × 231 + a30 × 230 + · · · + a1 × 2 + a0

• To represent a negative number, take its complement to 231: more precisely,

1a30 . . . a0 means −1 × 231 + a30 × 230 + · · · + a1 × 2 + a0

0000 0000 0000 0000 0000 0000 0000 00002 = 010
0000 0000 0000 0000 0000 0000 0000 00012 = 110
0000 0000 0000 0000 0000 0000 0000 00102 = 210
.
0111 1111 1111 1111 1111 1111 1111 11012 = 2, 147, 483, 64510
0111 1111 1111 1111 1111 1111 1111 11102 = 2, 147, 483, 64610
0111 1111 1111 1111 1111 1111 1111 11112 = 2, 147, 483, 64710
1000 0000 0000 0000 0000 0000 0000 00002 = − 2, 147, 483, 64810
1000 0000 0000 0000 0000 0000 0000 00012 = − 2, 147, 483, 64710
1000 0000 0000 0000 0000 0000 0000 00102 = − 2, 147, 483, 64610
.

1111 1111 1111 1111 1111 1111 1111 11012 = − 310
1111 1111 1111 1111 1111 1111 1111 11102 = − 210
1111 1111 1111 1111 1111 1111 1111 11112 = − 110

FoC-I (episode 1.2) 10

Two’s complement representation (cont.)

.

.0000
0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111

0 1
2
3
4
5

6
7-8-7

-6
-5
-4
-3

-2
-1

000 . . . 0

010 . . . 0

011 . . . 1
100 . . . 0

110 . . . 0

111 . . . 1

0

2n-2

2n-1-1
-2n-1

-2n-2-2n-2

-1

4-bit numbers n-bit numbers

John von Neumann suggested use of two’s complements in computers in the 1940s

FoC-I (episode 1.2) 11

Two’s complement arithmetic: negation

a31a30 . . . a1a0 represents −a31 × 231 + a30 × 230 + · · · + a1 × 2 + a0

Rules for forming negation −N of an integer N (in two’s complement notation)

• Take the Boolean negation of each bit of the integer (including the sign bit)
That is, set each 1 to 0 and each 0 to 1.

• Treating the result as an unsigned binary integer, add 1.

Example 1: Negate 210 = 0000 0000 0000 0000 0000 0000 0000 00102

Invert the bits
and add 1:

1111 1111 1111 1111 1111 1111 1111 11012

+ 12

1111 1111 1111 1111 1111 1111 1111 11102 (= −210)

Example 2: Negate −210 = 1111 1111 1111 1111 1111 1111 1111 11102

Invert the bits
and add 1:

0000 0000 0000 0000 0000 0000 0000 00012

+ 12

0000 0000 0000 0000 0000 0000 0000 00102 (= 210)

• Negate 0. Any problem? Overflow; but is the result correct?

• Negate 100000000000000000000000000000002 = −2, 147, 483, 64810. Any problem? Why?
FoC-I (episode 1.2) 12

Two’s complement addition and subtraction

• Subtraction is achieved using addition x− y = x+ (−y):
to subtract y from x, negate y and add the result to x

• Addition is the same as the addition of unsigned numbers on page 7

The result of addition can be larger than can be held in a 32 bit word.
This situation is called overflow.

• Detecting overflow: if two numbers are added, and they are both positive
or both negative, then overflow occurs if the result has the opposite sign

Examples of overflow: assume that we deal with 4 bit words only

01012 = 510

+ 01002 = 410

10012 = −710 overflow

10012 = −710

+ 10102 = −610

1 00112 = 310 overflow

When adding numbers with different signs, overflow cannot occur. Why?

FoC-I (episode 1.2) 13

Scientific notation

The two’s complement representation allowed us to deal with the integer
numbers in the interval between −231 and +231 − 1

• What if we need larger numbers (say, in astronomy)?

• How to deal with small fractions (say, in nuclear physics)?

‘Scientific’ notation: 976, 000, 000, 000, 000 = 9.76 × 1014

in the UK: standard form 0.0000000000000976 = 9.76 × 10−14

We dynamically slide the decimal point to a convenient location and use the

exponent of 10 to keep track of that decimal point

Any given number can be written in the form a× 10b in many ways; e.g.,

350 = 3.5 × 102 = 35 × 101 = 350 × 100

In normalised scientific notation , exponent b is chosen such that 1 ≤ |a| < 10

Using binary numeral system instead of decimal, we can represent any
real non-zero number in the form a× 2E with 1 ≤ |a| < 2, or

(−1)S × (1 + F) × 2E, 0 ≤ F < 1 S = 0, 1 is the sign
FoC-I (episode 1.3) 14

Binary fractions

A binary number anan−1 . . . a1a0 . a−1 . . . a−m has the following meaning:
an × 2n + an−1 × 2n−1 + · · · + a1 × 21 + a0 × 20 + a−1 × 2−1 + · · · + a−m × 2−m

16.62510 = 1 × 101 + 6 × 100 + 6 × 10−1 + 2 × 10−2 + 5 × 10−3

= 1×24+0×23+0×22+0×21+0×20+1×2−1+0×2−2+1×2−3

= 10000.1012 0.12 = 1/2 = 0.510 0.012 = 1/4 = 0.2510 0.0012 = 1/8 = 0.12510

To convert a decimal number with both integer and fractional parts, convert each
part separately and combine the answers (integer conversion is on page 5)

Example: convert 0.687510 to binary

Rule: multiply by 2 keeping track of the resulting integer and fractional part
0.6875 × 2 = 1.3750 integer = 1

0.3750 × 2 = 0.7500 integer = 0

0.7500 × 2 = 1.5000 integer = 1

0.5000 × 2 = 1.0000 integer = 1

The result is read from the first integer downwards :

0.687510 = 0.10112

FoC-I (episode 1.3) 15

IEEE 754 floating-point standard

Every real number different from 0 can be represented in the form

(−1)S × (1 + F) × 2E, 0 ≤ F < 1

• S is the sign (0 for positive and 1 for negative)

• F is the fraction (0 ≤ F < 1)

• E is the exponent (determining the actual location of the binary point)

The size of E and F may vary: a fixed word size means that one must take a bit from

one to add a bit to the other. There existing compromises are:

Single precision floating-point format: 8 bits for E and 23 bits for F

S Exponentb F (fraction)︸︷︷︸
1 bit

︸ ︷︷ ︸
8 bits

︸ ︷︷ ︸
23 bits

Double precision floating-point format: 11 bits for E and 52 bits for F

S Exponentb F (fraction)︸︷︷︸
1 bit

︸ ︷︷ ︸
11 bits

︸ ︷︷ ︸
52 bits

FoC-I (episode 1.3) 16

IEEE 754 floating-point standard (cont.)

If we number the bits of the fraction F from left to right b1, b2, . . . , bn
(where n = 23 or n = 52), then the IEEE 754 standard gives us the number

(−1)S × (1 + b1 × 2−1 + b2 × 2−2 + b3 × 2−3 + · · · + bn × 2−n) × 2E

• How to represent E? We need both positive and negative exponents.

Biased notation: fix Bias = 12710 = 27 − 1 = 0111 11112 for single precision
Bias = 102310 = 210 − 1 = 011 1111 11112 for double precision

Exponentb = E+Bias E = Exponentb−Bias

where Exponentb, biased exponent, is the number stored in the exponent field

Examples:

• An exponent of −1 is represented by the bit pattern of the value
−1 + 12710 = 0111 11102 (single precision)

• An exponent of +1 is represented by the bit pattern of the value
1 + 12710 = 1000 00002 (single precision)

FoC-I (episode 1.3) 17

Biased representation

Biased representation (aka offset binary representation) is a coding scheme
where all-0 is the minimal negative value and all-1 the maximal positive value

decimal number biased representation
(E) (Exponentb = E + 127)
−127 0000 0000
−126 0000 0001

.
−1 0111 1110
0 0111 1111
+1 1000 0000
.

+128 1111 1111

NB. There are some special numbers (say all-0 and all-1 exponents)

FoC-I (episode 1.3) 18

IEEE 754 floating-point standard (cont.)

The range of single precision numbers is then from as small as

±1.0000 0000 0000 0000 0000 0002 × 2−126

to as large as

±1.1111 1111 1111 1111 1111 1112 × 2127

Number
line−(1 − 2−24) × 2128 −0.5 × 2−127 0 0.5 × 2−127 (1 − 2−24) × 2128

• • • • •
overflow︷ ︸︸ ︷ expressible negatives︷ ︸︸ ︷underflow︷ ︸︸ ︷underflow︷ ︸︸ ︷ expressible positives︷ ︸︸ ︷ overflow︷ ︸︸ ︷

• 0 is represented as both 0000 . . . 0000 (+0) and 1000 . . . 0000 (−0)

• not all numbers in the intervals between −(1−2−24)×2128 and −0.5×2−127

and between 0.5 × 2−127 and (1 − 2−24) × 2128 are represented (why?)

FoC-I (episode 1.3) 19

Example: floating point representation

Show the IEEE 754 binary representation of the number −0.7510 in
single and double precision

−0.7510 = − (3/4)10 = − (3/22)10 = − 112/2
2
10 = − 0.112 =

= − 0.112 × 20 = − 1.12 × 2−1

The general representation is

(−1)S × (1 + Fraction) × 2E

In our case: S = −1, Fraction = 0.1, E = −1, Exponentb = −1+127 = 126

The single precision binary representation of −0.7510 is therefore

1 01111110 10000000000000000000000︸︷︷︸
1 bit

︸ ︷︷ ︸
8 bits

︸ ︷︷ ︸
23 bits

• What is the double precision representation?

FoC-I (episode 1.3) 20

Example: converting binary to decimal floating point

What decimal number is represented?

1 10000001 01000000000000000000000︸︷︷︸
1 bit

︸ ︷︷ ︸
8 bits

︸ ︷︷ ︸
23 bits

The sign bit is 1, the exponent field contains 100000012 = 12910 = Exponentb,
and the fraction field contains 0.012 = 1 × 2−2 = 1

4
= 0.25

(−1)S × (1 + Fraction) × 2Exponentb−Bias = (−1)1 × (1 + 0.25) × 2129−127 =

= − 1 × 1.25 × 22 = − 1.25 × 4 = −5

FoC-I (episode 1.3) 21

How do computers add, subtract etc.?

FoC-I (episode 1.3) 22

Logic

Logic is the formal systematic study of the principles of valid inference and
correct reasoning

Are the following inferences (or arguments) valid?

• If it is raining then I take an umbrella
• It is raining
• Therefore I take an umbrella

• If it is raining then I take an umbrella
• It is not raining
• Therefore I don’t take an umbrella

What does it mean for one sentence to follow logically from certain others?

✓ ✗

The sentences above are declarative sentences, or propositions,
which one can, in principle, argue as being true or false

Boolean algebra (or Boolean logic) is a logical calculus of truth values,
developed by George Boole in the 1840s

FoC-I (episode 1.4) 23

Elements of Boolean logic

Basic assumption: every proposition can either be true or false (but not both)

Examples:

(A) Donald Trump is the current president of the United States of America.

(B) Joe Biden is the current president of the United States of America.

(C) Extraterrestrial life does not exist (even though we don’t know whether it’s true or false)

NB: Questions/exclamations, paradoxical statements like ‘this proposition is false’ are

not propositions.
Propositional connectives:

• not (negation) denoted by ¬ (! in C++/Java) Is ¬A true?

• and (conjunction) denoted by ∧ (&& in C++/Java) Is A ∧B true?

• or (disjunction) denoted by ∨ (|| in C++/Java) Is A ∨B true?

• if . . . then . . . (implication) denoted by → Is A → C true?

? Are there any other propositional connectives?

Complex propositions (formulas): (¬A) → (B ∨ C), ((¬B) ∧ (¬¬C)) → ¬A, etc.

FoC-I (episode 1.4) 24

Semantics: truth-tables

Notation: 1 for ‘true’, 0 for ‘false’

A,B,C,A1, B1, . . . for atomic (in a given context) propositions
a.k.a. propositional variables

A ∨B, (¬A) → (A1 ∧ ¬B2), . . . for complex propositions
a.k.a. propositional or Boolean formulas

Truth-tables for ∧, ∨, → and ¬:

A B A ∧B A ∨B A → B ¬A
0 0 0 0 1 1
0 1 0 1 1 1
1 0 0 1 0 0
1 1 1 1 1 0

so the proposition ‘if the Moon is made of green cheese, then 2 × 2 = 7’ is true

FoC-I (episode 1.4) 25

Explaining ‘implication’

One possible ‘explanation’ of the truth-table for the implication → is as follows:

The following statement is known to be true for every natural number n:

If n is divisible by 4, then n is divisible by 2.

So the following instances of this general statement must be true as well:

If 8 is divisible by 4, then 8 is divisible by 2 (1 → 1) = 1

If 7 is divisible by 4, then 7 is divisible by 2 (0 → 0) = 1

If 2 is divisible by 4, then 2 is divisible by 2 (0 → 1) = 1

And of course, ‘if 8 is divisible by 4, then 7 is divisible by 2’ is false (1 → 0) = 0

(also: analyse the wrong inference on page 23)

This interpretation of logical connectives is a mathematical abstraction. Under such
abstractions, meaningless sentences may become sensible, and the other way round.

There are different interpretations of logic connectives,
e.g., with three or more truth-values.

FoC-I (episode 1.4) 26

Truth-tables for Boolean formulas

Exercise: construct the truth-table for the formula (¬ A) ∨B
by first computing the truth-values for ¬A and then for (¬ A) ∨B

A B (¬ A) ∨B
0 0 1 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 1 0 1 1 1

Note that this truth-table (the column under the main connective ∨)
is the same as the truth-table for A → B

So we can say that (¬A) ∨B is equivalent to A → B

Exercise Brown, Jones and Smith are suspected of income tax evasion.
They testify under oath as follows:

• Brown: Jones is guilty and Smith is innocent.

• Jones: If Brown is guilty, then so is Smith.

• Smith: I’m innocent, but at least one of the others is guilty.

Assuming everyone’s testimony is true, who is innocent and who is guilty?
FoC-I (episode 1.4) 27

Solution

BG stands for ‘Brown is guilty’, JG for ‘Jones is guilty’ and SG for ‘Smith is guilty’

– Brown says: JG ∧ ¬SG Jones says: BG → SG Smith says: ¬SG ∧ (BG ∨ JG)

BG JG SG JG ∧ ¬SG BG → SG ¬SG ∧ (BG ∨ JG)
0 0 0 0 1 0
0 0 1 0 1 0
0 1 0 1 1 1
0 1 1 0 1 0
1 0 0 0 0 1
1 0 1 0 1 0
1 1 0 1 0 1
1 1 1 0 1 0

The only case where all of the statements are true: BG = 0, JG = 1, SG = 0

This problem can be solved in a more direct way. From the first statement we can infer

that Jones is guilty and Smith is innocent. From the second statement, it follows that if

Smith is not guilty then Brown is not guilty. Therefore we can infer that Brown is innocent.

FoC-I (episode 1.4) 28

Formalising English sentences

Exercise: Translate the following English sentences to propositional logic:

(1) If I am not playing tennis, I am watching tennis.

(2) If I am not watching tennis, I am reading about tennis.

(3) I cannot do more than one of these activities at the same time.

Solution: First we choose our propositional variables.
(NB: they must denote propositions! say T : ‘playing tennis’ is no good)

T : ‘I am playing tennis’

W : ‘I am watching tennis’

R: ‘I am reading about tennis’

Then we can formalise the above English sentences as follows:

(1) ¬T → W

(2) ¬W → R

(3) ¬(T ∧W) ∧ ¬(T ∧R) ∧ ¬(W ∧R)

or (T ∧¬W ∧¬R)∨ (¬T ∧W ∧¬R)∨ (¬T ∧¬W ∧R)∨ (¬T ∧¬W ∧¬R)

FoC-I (episode 1.5) 29

Logically correct arguments in propositional logic

An argument is a sequence of propositions:

p1
p2
···
pn

 n premises (aka assumptions)

Therefore

q one conclusion

An argument is logically correct if

in every ‘situation’ that makes all the premises true, the conclusion is true as well

a situation = a row in the truth table for p1, . . . , pn, q

= a possible assignment for the propositional variables in p1, . . . , pn, q

p1

p2

. . .
pn

q

is logically correct iff the formula (p1∧p2∧· · ·∧pn) → q is always true

a formula that is always true is called a tautology

FoC-I (episode 1.5) 30

Logically correct argument: an example
If I am not playing tennis,

I am watching tennis ¬T → W

If I am not watching tennis,
I am reading about tennis ¬W → R

I cannot do more than one of
these activities at the same time ¬(T ∧W) ∧ ¬(T ∧R) ∧ ¬(W ∧R)

3 premises

Therefore,
I am watching tennis W conclusion

In every situation that makes all the premises true, the conclusion is true as well:

T W R ¬T → W ¬W → R ¬(T ∧W) ∧ ¬(T ∧R) ∧ ¬(W ∧R) W

1 1 1 1 1 0 1
1 1 0 1 1 0 1
1 0 1 1 1 0 0
1 0 0 1 0 1 0
0 1 1 1 1 0 1
0 1 0 1 1 1 1
0 0 1 0 1 1 0
0 0 0 0 0 1 0︸ ︷︷ ︸

premises
︸ ︷︷ ︸

conclusion
FoC-I (episode 1.5) 31

Incorrect argument: a simple example

If you solve every exercise in the textbook, then you will get an A. S → A

You did not solve every exercise in the textbook. ¬S

Therefore

You won’t get an A. ¬A

Incorrect argument: It is not the case that
‘in every situation that makes all the premises true, the conclusion is true as well.’

So, to show that an argument is incorrect, it is enough to find one situation where

• all premises are true,

• but the conclusion is false.
S A S → A ¬S ¬A

1 1 1 0 0
1 0 0 0 1
0 1 1 1 0
0 0 1 1 1

If such a situation doesn’t exist the argument is correct

Example: The argument ‘if A and ¬A, then B’ is correct for any A and B
FoC-I (episode 1.5) 32

Boolean logic in computers

In the world of computers, 0 and 1 are called bits (for binary digit)

• 0 is represented by the lower voltage level (LOW), say, 0V – 0.1V

• 1 is represented by the higher voltage level (HIGH), say, 0.9V – 1.1V

All computer circuits consist of hundreds of millions of interconnected primitive
elements called gates, which correspond to the basic logic connectives:

Basic logic gates:

AND gate
A

B
C = A ∧B

OR gate
A

B
C = A ∨B

NOT gate eb
bb
"

""
A C = ¬A

Since the 1990s, logic gates are made of transistors
(semiconductor devices used to amplify and switch electric signals)

FoC-I (episode 1.6) 33

Example: Boolean circuit

A

B

eb
bb
"

""

rr C

What does this circuit compute?

• Represent the circuit as a Boolean equation

C = (A ∨B) ∧ ¬(A ∧B)

• Construct the truth-table A B (A ∨ B) ∧ ¬ (A ∧ B)
0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 1 1 0 0 1
1 0 1 1 0 1 1 1 0 0
1 1 1 1 1 0 0 1 1 1

The circuit, the truth-table and the formula (A ∨B) ∧ ¬(A ∧B) represent
the Boolean function known as exclusive or and denoted by XOR, or A⊕B

FoC-I (episode 1.6) 34

Boolean functions of one argument
(intuitive explanation of ‘function’: https://en.wikipedia.org/wiki/Function_(mathematics))

A 0
0 0
1 0

— constant function 0 (always returns 0 and doesn’t depend on A)

draw a Boolean circuit for this function

A 1
0 1
1 1

— constant function 1 (always returns 1 and doesn’t depend on A)

draw a Boolean circuit for this function

A A
0 0
1 1

— identical function (always returns the input A)

draw a Boolean circuit for this function

A ¬A
0 1
1 0

— function NOT or ¬ (inverts the input A)

draw a Boolean circuit for this function
FoC-I (episode 1.6) 35

https://en.wikipedia.org/wiki/Function_(mathematics)

Boolean functions of two arguments

A B A ∧B A ∨B A → B A⊕B A ↔ B A | B A ↓ B
0 0 0 0 1 0 1 1 1
0 1 0 1 1 1 0 1 0
1 0 0 1 0 1 0 1 0
1 1 1 1 1 0 1 0 0

XOR gate
A

B
C = A⊕B

A ↔ B — equivalence (if and only if, or iff), equivalent to (A → B) ∧ (B → A)

NAND gate e
A

B
C = A | B = ¬(A ∧B) Scheffer stroke

NOR gate e
A

B
C = A ↓ B = ¬(A ∨B) Pierce arrow

• What functions are missing here?
• What is the number of Boolean functions of two arguments?

FoC-I (episode 1.6) 36

Important questions

There are very many Boolean functions: 22n distinct functions of n variables
For example, there are 22

5
= 4, 294, 967, 296 functions with 5 inputs

We don’t know a priori which of them are required in computer architecture

• Is it possible to fix some, relatively simple set(s) of Boolean functions (gates),

using which one can build all other Boolean functions?

We have already seen that the same Boolean functions can be realised in
different ways using different gates.

Of course we need smallest possible circuits (formulas). . .

• How to build ‘optimal’ Boolean circuits (formulas)?

• How to simplify Boolean circuits (formulas)?

• What basic gates to choose?

We consider some aspects of these problems.

FoC-I (episode 1.6) 37

Example: the majority function

Suppose we want to realise, using only the AND, OR and NOT gates,
the majority function µ(A,B,C) whose output takes the same value

as the majority of inputs:
A B C µ(A,B,C)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Each triple of truth-values for A,B,C on the left-hand
side of the table for which µ(A,B,C) = 1 can be
represented as conjunctions in the following way:

0 1 1 is represented by ¬A ∧B ∧ C
it equals 1 if and only if A = 0, B = 1, C = 1

1 0 1 is represented by A ∧ ¬B ∧ C
it equals 1 if and only if A = 1, B = 0, C = 1

etc.

The function µ(A,B,C) can then be realised as a disjunction of
the resulting four conjunctions:

(¬A ∧B ∧ C)∨(A ∧ ¬B ∧ C)∨(A ∧B ∧ ¬C)∨(A ∧B ∧ C)

such formulas are said to be in disjunctive normal form

FoC-I (episode 1.6) 38

Example: the majority function (cont.)

• Use the formula above to construct a Boolean circuit for µ(A,B,C)

• Can you simplify it?

Consider, for instance, the formula

(A ∧B) ∨ (B ∧C) ∨ (A ∧C)

• Does it define the same function? (Construct the truth-table)

• Is the corresponding circuit simpler?

• Can you simplify it?

what about the formula (A ∧ (B ∨ C)) ∨ (B ∧ C) ?

FoC-I (episode 1.6) 39

Universal sets of Boolean functions

The method shown on page 38 can be used to represent any Boolean function
by means of a formula with the connectives ¬, ∧ and ∨

if there is no 1 among the function values then this function is 0,

which can be represented as A ∧ ¬A

We say that {¬,∧,∨} is a universal set of Boolean connectives/functions
or a functionally complete set

• Are there other universal sets of Boolean formulas?

• Can simplifications like those on page 39 be done in a systematic way?

Boolean formulas φ, ψ are called equivalent if their truth-tables are identical.
In this case we write φ ≡ ψ.

(Greek letters φ, ψ, χ are often used to denote formulas)

As equivalent formulas φ and ψ determine the same Boolean function,
we can use either of them to construct Boolean circuits

FoC-I (episode 1.7) 40

Useful equivalences

¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ (φ and ψ are arbitrary
¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ Boolean formulas)(De Morgan laws)

¬¬φ ≡ φ (the law of double negation)

¬φ ∨ φ ≡ 1 (the law of the excluded middle, ‘to be or not to be’)

¬φ ∧ φ ≡ 0 (the law of contradiction)

φ ∧ (ψ ∨ χ) ≡ (φ ∧ ψ) ∨ (φ ∧ χ) (distributivity of ∧ over ∨)

φ ∨ (ψ ∧ χ) ≡ (φ ∨ ψ) ∧ (φ ∨ χ) (distributivity of ∨ over ∧)

φ ∧ 1 ≡ φ, φ ∧ 0 ≡ 0, φ ∨ 1 ≡ 1, φ ∨ 0 ≡ φ, φ ∧ φ ≡ φ, φ ∨ φ ≡ φ

It follows, for instance, that φ ∨ ψ ≡ ¬((¬φ) ∧ (¬ψ))

φ ∧ ψ ≡ ¬((¬φ) ∨ (¬ψ))

Thus, we can express ∨ by means of ¬ and ∧;
likewise, ∧ can be expressed by means of ¬ and ∨

So both {¬, ∧} and {¬, ∨} are universal (e.g., φ → ψ ≡ ¬φ ∨ ψ)

FoC-I (episode 1.7) 41

How to show equivalence: method 1

A ∨ (A ∧B) ≡ (A ∧ 1) ∨ (A ∧B)

≡ (A ∧ (B ∨ ¬B)) ∨ (A ∧B)

≡ (A ∧B) ∨ (A ∧ ¬B) ∨ (A ∧B)

≡ (A ∧B) ∨ (A ∧B) ∨ (A ∧ ¬B)

≡ (A ∧B) ∨ (A ∧ ¬B)

≡ A ∧ (B ∨ ¬B)

≡ A ∧ 1

≡ A

Thus, A ∨ (A ∧B) ≡ A

FoC-I (episode 1.7) 42

How to show equivalence: method 2

Exercise 1: Show that P ⊕Q ≡ (P ∨Q) ∧ ¬(P ∧Q)

Solution: P Q P ⊕Q

1 1 0
1 0 1
0 1 1
0 0 0

P Q P ∨Q P ∧Q ¬(P ∧Q) (P ∨Q) ∧ ¬(P ∧Q)

1 1 1 1 0 0
1 0 1 0 1 1
0 1 1 0 1 1
0 0 0 0 1 0

Exercise 2: Show that P ↔ Q ≡ (P ∧Q) ∨ (¬P ∧ ¬Q)

Solution: P Q P ↔ Q

1 1 1
1 0 0
0 1 0
0 0 1

P Q P ∧Q ¬P ¬Q ¬P ∧ ¬Q (P ∧Q) ∨ (¬P ∧ ¬Q)

1 1 1 0 0 0 1
1 0 0 0 1 0 0
0 1 0 1 0 0 0
0 0 0 1 1 1 1

FoC-I (episode 1.7) 43

Other universal sets of Boolean functions

NAND is universal

To prove this, it is enough to show that, using NAND, we can express
both NOT and AND:

• ¬A ≡ (A | A) ≡ ¬(A ∧A) ≡ ¬A, because A ∧A ≡ A

• A ∧B ≡ (A | B) | (A | B) why?

NOR is universal Exercise

{1, ⊕, ∧} is universal (recall that ⊕ is XOR)

• ¬A ≡ (A⊕ 1)

FoC-I (episode 1.7) 44

The SAT problem

A Boolean formula φ(A1, . . . , An) with propositional variables A1, . . . , An is

satisfiable if there is an assignment of the truth-values 0 and 1 to
the variables A1, . . . , An under which φ evaluates to 1

Problem: design an algorithm that, given an arbitrary formula φ(A1, . . . , An),
returns YES if this formula is satisfiable and NO otherwise

Solution: construct the truth-table for φ(A1, . . . , An) and check whether it
contains 1 in the column for φ

How complex is this algorithm? there are 2n rows in the truth-table

If n = 1000, checking every one of the 21000 possible combinations of truth values of
the variables cannot be done by a computer in even trillions of years

There is no known algorithm that efficiently solves SAT (for any given φ). It
is generally believed that no such algorithm exists; yet this belief has not
been proven mathematically, and resolving the question of whether SAT has
a polynomial-time algorithm is equivalent to the P versus NP problem, which
is a famous open problem in the theory of computing.

FoC-I (episode 1.7) 45

Arithmetic and logic unit (ALU)

The ALU is the part of computer that performs arithmetic and logical operations.
It is the workhorse of the CPU because it carries out all the calculations.

The hardware required to build an ALU is the basic gates: AND, OR and NOT
We use these gates to construct a 32-bit adder for integers

Such an adder can be created by connecting 32 1-bit adders

Inputs and outputs of a single-bit adder:

• two inputs for the operands (the bits we want to add), say, A and B;

• a single-bit output for the sum;

• a second output to pass on the carry CarryOut

• a third input is CarryIn — the CarryOut from the previous adder

CarryIn

CarryOut

Sum+
B

A
?

?

-
-

-

FoC-I (episode 1.8) 46

Designing a single-bit adder

We begin by giving precise input and output specifications (truth-table)

A B CarryIn CarryOut Sum Comments
0 0 0 0 0 0 + 0 + 0 = 002

0 0 1 0 1 0 + 0 + 1 = 012

0 1 0 0 1 0 + 1 + 0 = 012

0 1 1 1 0 0 + 1 + 1 = 102

1 0 0 0 1 1 + 0 + 0 = 012

1 0 1 1 0 1 + 0 + 1 = 102

1 1 0 1 0 1 + 1 + 0 = 102

1 1 1 1 1 1 + 1 + 1 = 112

Then we turn this truth-table into logical equations:

CarryOut = (¬A ∧B ∧ CarryIn) ∨ (A ∧ ¬B ∧ CarryIn) ∨
(A ∧B ∧ ¬CarryIn) ∨ (A ∧B ∧ CarryIn)

can be simplified to (remember the majority function?)

CarryOut = (B ∧ CarryIn) ∨ (A ∧ CarryIn) ∨ (A ∧B) and

Sum = (A ∧ ¬B ∧ ¬CarryIn) ∨ (¬A ∧B ∧ ¬CarryIn) ∨
(¬A ∧ ¬B ∧ CarryIn) ∨ (A ∧B ∧ CarryIn)

FoC-I (episode 1.8) 47

Boolean circuits for the 1-bit adder

t

t
t

t

T
TT�

��e

t

t

t
t

T
TT�

��e

t
t

T
TT�

��e

t
t

t t t

- Sum

CarryInA B

tt
t - CarryOut

CarryIn

A

B

FoC-I (episode 1.8) 48

Boolean circuit for the 1-bit adder (cont.)

Check that the following circuit with XOR gates realises the same functions
CarryOut and Sum

tt
tt

- CarryOut

- Sum
CarryIn

A

B

FoC-I (episode 1.8) 49

32-bit adder

Adding A = a31a30 . . . a2a1a0 and B = b31b30 . . . b2b1b0

CarryOut Sum

?

? ? ?
CarryInA B

Full adder

?
CarryOut

a31 b31

s31

. . .

CarryOut Sum

?

? ? ?
CarryInA B

Full adder

a2 b2

s2

CarryOut Sum

?

? ? ?
CarryInA B

Full adder

a1 b1

s1

CarryOut Sum

?

? ? ?
CarryInA B

Full adder

a0 b0 CarryIn

s0

• CarryIn in the least significant adder is supposed to be 0

• What happens if we set this CarryIn to 1 instead of 0?

FoC-I (episode 1.8) 50

32-bit adder and subtractor

Control bit C:

• C = 0: Add A+B (because bi ⊕ 0 = bi)

• C = 1: Subtract A−B (because bi ⊕ 1 = ¬bi)

CarryOut Sum

?

? ? ?
CarryInA B

Full adder

?
CarryOut

a31

b31

s31

. . .

CarryOut Sum

?

? ? ?
CarryInA B

Full adder

a2

t
b2

s2

CarryOut Sum

?

? ? ?
CarryInA B

Full adder

a1

t
b1

s1

CarryOut Sum

?

? ? ?
CarryInA B

Full adder

a0

t t
b0

s0

C

FoC-I (episode 1.8) 51

