Fundamentals of Computing Tutorial 1: binary representations of numbers Model answers

1. Find the decimal representation of the binary numbers $10110011_{2}, 0.1011_{2}$, and 11.001_{2}.

Answer. Recall from the lecture notes that a binary number

$$
a_{n} a_{n-1} \ldots a_{1} a_{0} \cdot a_{-1} \ldots a_{-m}
$$

where the a_{i} are bits (0 or 1), means the number

$$
a_{n} \times 2^{n}+a_{n-1} \times 2^{n-1}+\cdots+a_{1} \times 2^{1}+a_{0} \times 2^{0}+a_{-1} \times 2^{-1}+\cdots+a_{-m} \times 2^{-m}
$$

So $10110011_{2}=2^{7}+2^{5}+2^{4}+2^{1}+2^{0}=128+32+16+2+1=179_{10}$, $0.1011_{2}=2^{-1}+2^{-3}+2^{-4}=0.6875_{10}$, and $11.001_{2}=2^{1}+2^{0}+2^{-3}=2+1+0.125=3.125_{10}$ (Try to remember the powers of 2 !)
2. Find the binary representation of the decimal numbers $203_{10}, 0.8125_{10}$, and 203.8125_{10}.

Answer. To find the binary representation of 203_{10}, we use the algorithm explained in the lecture slides (FoC-I, page 5): divide by 2 and keep track of the remainders:

$203=2 \times 101+$	1
$101=2 \times 50+$	1
$50=2 \times 25+$	0
$25=2 \times 12+$	1
$12=2 \times 6+$	0
$6=2 \times 3+$	0
$3=2 \times 1+$	1
$1=2 \times 0+$	1

Now we read the remainders bottom-up and obtain the answer: 11001011_{2}.
As explained on page 15 of FoC-I, the binary representation of 0.8125_{10} is computed by multiplying by 2 and keeping track of the resulting integer and fractional parts:

$$
\begin{array}{c|c}
0.8125 \times 2=1.625=0.625+ & \text { integer 1 } \\
0.625 \times 2=1.25=0.25+ & \text { integer 1 } \\
0.25 \times 2=0.50=0.5+ & \text { integer 0 } \\
0.5 \times 2=1.00=0.0+ & \text { integer 1 }
\end{array}
$$

Thus, $0.8125_{10}=0.1101_{2}$. Finally, $203.8125_{10}=203_{10}+0.8125_{10}=11001011.1101_{2}$.
3. Represent the decimal number -44_{10} as
(a) a sign-magnitude 32 -bit binary number;
(b) a ones' complement 32 -bit binary number;
(c) a two's complement 32-bit binary number.

Answer. Using the algorithm from the lecture slides (divide by 2 and keep track of the remainders), we obtain

$$
44_{10}=00000000000000000000000000101100_{2}
$$

(a) The number is negative, so we just flip the left-most bit to 1 , which gives the answer
(b) As explained on page 9 of FoC-I, since the number is negative, we just invert all of the bits in the binary representation of 44 and obtain the answer:

11111111111111111111111111010011.

(c) As explained on page 12 of FoC-I, we can take the Boolean negation (that is, invert all of the bits) of the binary representation of 44_{10}

11111111111111111111111111010011 ,
and then add 1 obtaining the final answer:
11111111111111111111111111010100.
4. Given the machine 32 -bit word

1111111111111111111111011011 1101,
find the decimal number represented by this word assuming that it is
(a) a two's complement integer;
(b) an unsigned integer;
(c) a ones' complement integer;
(d) a sign-magnitude integer.

Answer. (a) The first formula on page 12 of FoC-I gives the answer:

$$
-2^{31}+2^{30}+\cdots+2^{10}+2^{8}+2^{7}+2^{5}+2^{4}+2^{3}+2^{2}+2^{0}
$$

which is acceptable. The following argument gives a better answer. The given number N is negative. We can compute its negation $-N$ but inverting the bits and then adding 1 , which gives

$$
00000000000000000000001001000011
$$

representing the number $-N=2^{9}+2^{6}+2^{1}+2^{0}=512+64+3=579_{10}$. So $N=-579_{10}$. (b) $2^{31}+2^{30}+\cdots+2^{10}+2^{8}+2^{7}+2^{5}+2^{4}+2^{3}+2^{2}+2^{0}(=4294966717)$. You do not have to compute the sum.
(c) The given ones' complement integer N is negative. We can compute its negation $-N$ but inverting the bits, which gives

$$
00000000000000000000001001000010
$$

representing the number $-N=2^{9}+2^{6}+2^{1}=512+64+2=578_{10}$. So $N=-578_{10}$.
(d) The first bit represents the sign, so we know that it is a negative number. The rest of the bits represent the magnitude:

$$
2^{30}+\cdots+2^{10}+2^{8}+2^{7}+2^{5}+2^{4}+2^{3}+2^{2}+2^{0}=2147483069
$$

So the number is -2147483069_{10}.
5. Given the 32-bit word

$$
11000001010111010000000000000000
$$

find the decimal number represented by this word assuming that it is
(a) a single precision IEEE 754 floating-point number;
(b) a two's complement integer (you can give the number as a sum of powers of 2).

Answer. (a) In this case, the word

$$
1|10000010| 10111010000000000000000
$$

gives the $\operatorname{sign} S=1$, the biased exponent $\operatorname{Exp}_{b}=10000010_{2}=2^{7}+2^{1}=128+2=130$, and the fraction $F=0.1011101_{2}$. Recalling that Bias $=127$, we obtain

$$
(-1)^{S} \cdot 2^{\text {Exp }_{b}-\text { Bias }} \cdot(1+F)=-1 \cdot 2^{3} \cdot 1.1011101_{2}=-1101.1101=-13 \frac{13}{16}=-13,8125
$$

(b) Let N be the given number. Then we either represent N as

$$
2^{16}+2^{18}+2^{19}+2^{20}+2^{22}+2^{24}+2^{30}-2^{31}
$$

or we first find the absolute value of the number by inverting all bits and adding 1 , which gives

$$
-N=2^{29}+2^{28}+2^{27}+2^{26}+2^{25}+2^{23}+2^{21}+2^{17}+2^{16}
$$

So

$$
N=-2^{29}-2^{28}-2^{27}-2^{26}-2^{25}-2^{23}-2^{21}-2^{17}-2^{16}
$$

6. Represent 16.6875 as a single precision IEEE 754 floating-point number.

Answer. First, we convert the number to the binary normalised scientific notation:

$$
16.6875_{10}=16 \frac{11}{16}=10000.1011_{2}=1.00001011 \times 2^{4}
$$

as explained on page 15 of FoC-I. Thus, $S=0, E=4$, $\operatorname{Exp}_{b}=E+$ Bias $=131_{10}=$ $10000011_{2}, F=0.00001011_{2}$, and so the answer is

01000001100001011000000000000000 .

