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Abstract

Clustering is an activity purported to help in enhancing knowledge of the domain the data
relate to. We describe a method for clustering similarity data derived within the data recovery
framework. In this method, ADDI-S, one parameter, the similarity shift value, determines other
clustering parameters such as the number of clusters.

Since similarity data do not involve entity features directly, the shift value is useful as a
mechanism that relates domain knowledge to the clustering. The similarity shift value serves as
a soft threshold that can be obtained as follows. We assume that domain knowledge can provide
two sets of pairs of entities: those that should and those that should not be placed in the same
clusters. This data may considerably narrow the choice of reasonable threshold values; this
is illustrated using the problem of aggregating motif-defined homologous protein families over
herpesvirus genomes. We further show that, in a situation in which there is an independent
interpretation device (such as reconstruction of the evolutionary histories of protein families
corresponding to clusters), this may lead to further reduction of choices for the clustering using
the criterion of consistency among the interpretations.

This approach leads to a number of substantively meaningful results for herpesvirus data.
In particular, we indicate a set of proteins that arguably represent descendants of the same
gene despite having lost all similarity between their amino acid sequences. Nevertheless, this
situation can be recognised if their corresponding neighbouring genes are always homologous.

1 Introduction

1.1 Clustering and Similarity Shift

Similarity data is an important data type that emerges naturally, for example, out of web interaction
networks, as well as from the analysis of complex data, such as protein sequences or foldings. On
the one hand, there have been a number of heuristic algorithms proposed for clustering similarity
data, some recently reviewed in [7]. On the other hand, there exists a long standing tradition of
data recovery criteria and methods for clustering similarity data (see, for instance, [16, 38, 27]).
Clustering methods considered in this paper are within this second tradition and are, in essence,
extensions of methods proposed in [27, 29].

These methods are based on modelling similarity data by weighted sums of partitions or clusters,
the clusters and their weights being determined by minimizing the differences between the given
similarity data and those generated by the putative model. We utilize the least-squares criterion
for explicitly expressing the data recovery approach. We extract clusters one-by-one [26, 27],
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which not only finds clusters effectively, but also supplies meaningful estimates of their intensity
and contribution to the data scatter. In a data recovery clustering model, there is a parameter
analogous to the intercept of the regression line that plays the role of a similarity shift applied prior
to clustering. This parameter is a kind of similarity threshold, so that entities whose similarity is
less than it are unlikely to get combined in the same cluster. Its value, which may strongly affect
the number and contents of the clusters, could be derived according to the least-squares criterion.
However, as we shall illustrate, a better choice may be made by using domain knowledge.

A clustering method, ADDI-S, derived from the data recovery approach is applied to evolution-
ary intergenomic studies in which homologous protein families (HPFs) contain similar proteins from
different genomes. These families are assumed to be inherited from the same ancestral gene and are
therefore parsimoniously mapped to an evolutionary tree on the set of genomes under considera-
tion, thereby reconstructing the HPFs’ evolutionary histories and the ancestral genomes. Obviously,
these histories may critically depend on the level of aggregation: a highly aggregated family inter-
secting all or almost all genomes would be mapped to the last common ancestor. However, if the
family is partitioned, the parts would be mapped to different, more recent, ancestors. These two
mappings would lead to two different histories of the function of the HPF under consideration. In
other words, the evolutionary mapping of protein families is a rather powerful interpretation tool
that can be used for fine tuning the similarity threshold/shift value by analysing the consistency
of the reconstructed histories of different functions.

1.2 Neighbourhood Approach

We demonstrate how this approach can work in the framework of the analysis of HPFs over a set
of 30 herpesvirus genomes representing three superfamilies residing in different tissues of humans
and animals. Specifically, starting with HPFs that have been pre-clustered on the basis of a similar
contiguous fragment in the virus database VIDA [2], we try to further aggregate them according to
their overall similarity. We assign to each HPF, as its neighbourhood list, the set of proteins similar
to those in the HPF, and then define similarity between HPFs according to the similarity of their
neighbourhoods rather than of the sequences themselves. This neighbourhood approach is utilised
for the following reasons.

(a) It is robust. Specifically, it may overcome the problem that conventional sequence similarity
scores, obtained using tools such as PSI-BLAST [3], do not necessarily correspond to the
‘real’ homology between proteins (see examples in section 5.2).

(b) It is universal. Similarity between sets is a relatively well studied problem that, unlike se-
quence alignment problems, does not rely on empirical parameter values..

(c) It may have an evolutionary meaning in terms of the HPFs (see section 5.2).

1.3 Interaction with Domain Knowledge

To determine an appropriate value for the similarity shift, we analyse a set of pairs of HPFs whose
functions are known. The expectation is that proteins with the same function should be more similar
to each other than would be proteins with dissimilar functions. This should indicate an appropriate
similarity value that could distinguish those pairs that should be in the same cluster from those
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that should not. The actual distribution of similarity scores turned out to be more complex than
we had hoped, and two reasonable similarity shift values emerged: one which would guarantee that
HPFs with dissimilar functions would be in different clusters, whereas the other would give the
minimum relative error in separating protein pairs with similar and dissimilar functions. Both of
these values are derived using domain knowledge. The final choice, however, requires further domain
knowledge, viz. the consistency of the suggested reconstructions of ancestral genomes. In fact, with
the current level of knowledge, both thresholds lead to very similar results. However, the latter
shift value leads to more consistent reconstructions and was therefore selected. Among further
conclusions, for example, is a situation in which some HPFs have little sequence similarity but
should be taken as homologous because of evidence coming both from the reconstructed ancestors
and the juxtaposition with homologous neighbouring genes.

1.4 Contents

The rest of the paper is organised as follows. Section 2 introduces the data recovery approach to
clustering similarity data. The additive clustering model [38] is described in Section 3 and the
ADDI-S method for one-by-one clustering [27] in Section 4. Section 5 is devoted to a description of
the results of aggregating protein families with ADDI-S and mapping them onto an evolutionary
tree of herpesviruses. The domain knowledge used to identify similarity shift values and insight
gained from our approach are described in Sections 5.3 and 5.4. In Section 6 we conclude and
outline possible future work.

2 Structuring and clustering using the data recovery approach

2.1 Similarity clustering: a review

Let I be a set of entities under consideration and let A = (aij) be a symmetric matrix characterising
similarities (or, synonymously, proximities or interactions) between entities i, j ∈ I. The greater
the value of aij , the greater is the similarity between i and j. A cluster is a set of highly similar
entities whose similarity to entities outside of the cluster is low.

Similarity is a quantitative feature of pairs of individual entities. It should be noted in this
regard that we distinguish between two types of quantitative features. For the first, both summation
and averaging are meaningful operations. Physical characteristics, such as time and distance, are
examples of this type. For the second type of feature, summation is meaningless, and only averaging
is meaningful. Density and temperature are examples of this. We use the term similarity data for
only this second type of feature. Features of the former type, admitting both summation and
averaging, will be referred to as flow data. Some examples of similarity data are (i) individual
judgements of similarity expressed using a fixed range, and (ii) the probability of both entities
being generated from the same source. Some examples of flow data are (i) co-occurrence counts for
disjoint categories, and (ii) values of transactions between the two entities. In our view, different
clustering models should be used for these two types of data [29]. In this paper we only consider
clustering models for similarity data.

Similarity clustering emerged quite early in graph theory, probably before the discipline of
clustering itself. A graph may be thought of as a structural expression of similarity data, its nodes
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corresponding to entities with edges joining similar nodes. Cluster related graph-theoretic concepts
include: (a) connected component (a maximal subset of nodes in which there is a path connecting
each pair of nodes), (b) bicomponent (a maximal subset of nodes in which each pair of nodes belongs
to a cycle), and (c) clique (a subset of nodes in which each pair of nodes is connected by an edge).

Other early clustering concepts include the B-coefficient method for clustering variables using
their correlation matrix [18] and the Wrozlaw taxonomy [11]. These are precursors to the ADDI
and ADDI-S methods [27], described later, and the single linkage method [16, 15], respectively.

Two more recent graph-theoretic concepts are also relevant: maximum density subgraph [12]
and min-multi-cut in a weighted graph [13].

The density g(S) of a subgraph S ⊂ I is the ratio of the number of edges in S to the cardinality
of S. For an edge weighted graph with weights specified by the matrix A = (aij), the density g(S)
is equal to the Raleigh quotient sTAs/sT s, where s = (si) is the characteristic vector of S, viz.
si = 1 if i ∈ S and si = 0 otherwise. A subgraph of maximum density represents a cluster. After
removing such a cluster from the graph, a maximum density subgraph of the remaining graph can be
found. This may be repeated until no “significant” clusters remain. Such an incomplete clustering
procedure is natural for many types of data, including protein interaction networks. However,
to our knowledge, this method has never been applied to such problems, probably because it
involves rather extensive computations. A heuristic analogue can be found in [4]. We consider that
the maximum density subgraph problem is of interest because it is a relaxation of the maximum
clique problem and fits well into data recovery clustering (see section 2.3). The maximum value
of the Raleigh quotient of a symmetric matrix over any real vector s is equal to the maximum
eigenvalue and is attained at an eigen vector corresponding to this eigenvalue. This gives rise to
spectral clustering, a method of clustering based on first finding a maximum eigenvector s∗ and
then defining the spectral cluster by si = 1 if s∗i > t and si = 0 otherwise for some threshold t.
This method may have computational advantages when A is sparse. Unfortunately, this method
does not necessarily produce an optimal cluster [29], but empirically it produces good clusters in
most cases.

The concept of min-multi-cut is an extension of the max-flow min-cut concept in capacitated
networks and, essentially, seeks a partition of nodes into classes having minimum summary sim-
ilarities between classes or, equivalently, maximum summary similarities within classes. When
similarities are non-negative, this criterion may often lead to a highly unbalanced partition with
one huge class and a number of singleton classes. This can be somewhat alleviated by requiring
certain pairs of entities to be in the same clusters and other pairs in different clusters. This line of
research has led to using the normalized cut, proposed in [39], as a meaningful clustering criterion.
The normalized cut criterion assumes that the set I should be split into two parts, S and S̄, so
that the normalized cut

nc(S) = a(S, S̄)/a(S, I) + a(S, S̄)/a(S̄, I)

is minimized. Here a(S, T ) denotes the summary similarity between subsets S and T . The criterion
nc(S) can be expressed as a Raleigh quotient for a generalized eigenvalue problem [39], so the
spectral clustering approach may be applied to minimizing the normalized cut.

It is probably worth mentioning that this criterion only applies to flow data. Flow data can
be standardized using Quetelet coefficients [30]. If A = (aij) is a flow data matrix over I, then its
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Quetelet transformation is defined by

qij =
aija++

ai+a+j
− 1,

where ai+ and a+j are the sums of the flows aij over row i and column j, respectively, and a++ is
the total of all the flows.

The aggregate Quetelet coefficient qST is defined similarly in terms of the aggregate flows from
S and to T . Flow data, especially co-occurrence frequency data, have been successfully handled
using the Correspondence Analysis approach [6, 35], a version of Principal Component Analysis
that approximates the underlying Quetelet coefficients. It is easy to see that the normalized cut
nc(S) is the aggregate Quetelet coefficient qSS̄ plus a constant, which implies that minimising nc(S)
is equivalent to minimising qSS̄.

In the context of this paper, it is important to note that the user typically finds it meaningful,
in the framework of domain knowledge, to define a similarity threshold α, such that entities i and
j should be aggregated if aij > α but not if aij < α. When this is the case, the data should be
pre-processed to take the threshold into account.

There are two different ways of implementing this idea: (1) by zeroing all similarities aij that
are less than α, or (2) by shifting the zero similarity to α by subtracting α from each similarity aij .

The former is popular, for example, in image analysis because it makes the similarity data
sharper and sparser. However, we favour the latter as better fitting in with the additive structure
recovery models presented later. In fact, the similarity shift originated from these models (see, for
example, [25, 26]).

2.2 The Additive Structuring Model and Iterative Extraction

To represent a set of structures assumed to underly the similarity matrix A, we use the terminology
of binary relations since these are naturally represented by an “ideal” similarity matrix. A binary
relation on the set I can be defined by a (0,1) matrix R = (rij) such that rij = 1 if i and j are
related and rij = 0 otherwise. Partitions, rankings and subsets can be represented by equivalence,
ordering and square relations, respectively. A quantitative expression of the intensity of a relation
can be modelled by a real value λ. So a relation of intensity λ is represented by the product λR.

Given a set of binary relations R defined by a general property (for example, equivalence or
order relations), an additive structuring model for a given N × N similarity matrix A = (aij) is
defined by the equations

aij =
K∑

k=0

λkr
k
ij + eij , for i, j ∈ I, (1)

where Rk = (rk
ij) ∈ R and λk is the intensity of Rk; the number of relations K +1 in (1) is typically

assumed to be much smaller than |I|, the cardinality of I. The goal is to minimise the residuals eij

with respect to the unknown relations Rk and intensities λk. In some problems, the intensities λk

may be given, based on substantive or model considerations.
In certain cases, we may require one of the relations Rk to be the universal relation, for which

rk
ij = 1 for all i, j ∈ I. The corresponding intensity λk then plays the role of an intercept in the

model (1), similar to that in linear regression. Conventionally, we relabel the universal relation as
R0 and denote its matrix by 1. The intercept value λ0 may be interpreted as a similarity shift,
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with the shifted similarity matrix A′ = (a′ij) defined by a′ij = aij − λ0. Equation (1) for the shifted
model has a′ij on the left and the sum on the right starting from k = 1.

To minimise the residuals in (1), the least-squares criterion can be applied. Moreover, we can
employ the greedy heuristic of extracting the relations Rk one by one in order to reduce the amount
of computation. This may be particularly useful if the relations Rk contribute very unequally to
the data as, for example, when the λk vary significantly. At step k, k = 0, 1, 2, ...,K, we find Rk

using an algorithm for minimising

L2(R) =
∑

i,j∈I

(ak
ij − λrij)2 (2)

over R ∈ R and λ (unless pre-specified). Given R, the optimal value of λ is equal to the average
similarity ak

ij over all related pairs (i, j), i.e. those for which rij = 1. The complexity of this
minimization problem depends on the type of relations in R. Therefore, in some cases, we only find
a local minimum of (2). The similarity matrix Ak = (ak

ij) is updated after each step by subtracting
λkR

k from it. At the start, A0 = A and, at the end, AK+1 = (eij), the matrix of residuals.
This method, which will be referred to as ITEX (ITerative EXtraction), was first proposed in

[26] as a method for “categorical factor analysis”, and was called SEFIT in [28].
When the λk are not pre-specified, then, at each step, the residual similarity matrix is orthogonal

to the relation extracted. This implies the following Pythagorean decomposition [28, 29]:

∑

i,j∈I

a2
ij =

K∑

k=0

λ2
k

∑

i,j∈I

rk
ij +

∑

i,j∈I

e2
ij (3)

This equation additively decomposes the data scatter into the contributions of the extracted
relations Rk (“explained” by the model) and the minimised residual square error (the “unexplained’
part).

The decomposition (3) makes it possible to prove that the residual part converges to zero under
relatively mild and easily checked assumptions on the solutions found at each iteration [28, 29].

Obviously, our convention implies that, when ITEX is applied to the shifted model, the universal
relation R0 must be extracted first. In this case, the optimal value of λ0 will be equal to ā, the
average of the similarities in A.

2.3 Additive Clustering Model

The additive clustering model in [38] is the special case of the shifted version of the model (1) that
emerges when R consists of square relations, each corresponding to a subset S ⊆ I. Specifically,
let s = (si) be the characteristic vector of S. Then the square relation ‘i and j belong to S’ can be
represented by r = (rij) = (sisj). The universal relation R0 = 1, used in the shifted model, is the
square relation corresponding to the universal cluster I.

When we assume that the similarities in A are generated by a set of ‘additive clusters’ Sk ⊆ I,
k = 0, 1, ...,K, in such a way that each aij approximates the sum of the intensities of those clusters
that contain both i and j, the shifted version of (1) becomes:

aij =
K∑

k=1

λks
k
i s

k
j + λ0 + eij , (4)
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where sk = (sk
i ) are the membership vectors of the unknown clusters Sk, k = 1, 2, ...,K, and

eij are the residuals to be minimised. In this model, introduced in [38], the intensities λk, k =
1, 2, ...,K, and the shift λ0 also have to be optimally determined. In the more general formulation
of ‘categorical factor analysis’ [26, 27], these values may be user specified.

We note that the role of the intercept λ0 in (4) is three-fold:

1. it is an intercept of the bilinear model, similar to that in linear regression;

2. it is the intensity of the universal cluster I;

3. it is a ‘soft’ similarity threshold in the sense that the shifted similarity matrix a′ij is used
to determine the clusters Sk, k = 1, 2, ...,K. This role is of special interest when λ0 is user
specified.

When the one-by-one ITEX strategy is applied to fitting (4) with none of the λs pre-specified,
the data scatter decomposition (3) holds for the optimal values of λk. In this case, λk is equal to
āk, the average of the residual similarities ak

ij for i, j ∈ Sk. Substituting sk
i s

k
j for rk

ij and āk for λk,
(3) can be written in the form:

(A,A) =
K∑

k=0

[skTAksk/skT sk]2 + (E,E) (5)

The inner products (A,A) and (E,E) denote the sums of the squares of the elements of the
matrices, considering A and E as vectors; these are conventionally expressed as the traces (sums
of diagonal elements) of the products AT A and ET E, respectively.

3 Approximate Partitioning

In this section, we restrict the additive clustering model to nonoverlapping clusters.
If the clusters Sk, k = 1, ...,K, are mutually disjoint (so the membership vectors sk are mutually

orthogonal), the optimal intensity λk depends only on the elements a′ij, i, j ∈ Sk, of the shifted
matrix A′ = A − λ01 and not on the residual matrix Ak. The following decomposition of A′

corresponding to (5) then holds and is independent of the the order of the clusters.

(A′, A′) =
K∑

k=1

[skTA′sk/skT sk]2 + (E,E). (6)

Since A′ = A − λ01, it follows that

(A,A) = 2λ0(ā − λ0/2)(1,1) +
K∑

k=1

[skT A′sk/skT sk]2 + (E,E) (7)

When λ0 is not pre-specified and must be found according to the least-squares criterion, its
optimal value, found by differentiating (7) with respect to λ0, is:

λ0 =
∑

i,j∈I aij(1 − sij)∑
i,j∈I(1 − sij)

, (8)
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where sij =
∑K

k=1 sk
i s

k
j (so sij = 1 if both i and j belong to Sk for some k = 1, 2, ...,K and sij = 0

otherwise).
Thus, the optimal λ0 is the average of the similarities aij for i and j belonging to different

clusters.
Equation (6) is analogous to the representation of the trace of A′T A′ as the sum of the squares

of the eigenvalues of A′ because the terms are squares of the Raleigh quotients

g(sk) = skT A′sk/skT sk. (9)

which are attained at zero/one rather than arbitrary vectors sk.
According to (6), an optimal partition with weights λk adjusted according to the least-squares

criterion must maximise the sum of the cluster contributions g(sk)2, that is,

K∑

k=1

g2(sk) =
K∑

k=1

(
∑

i,j∈Sk

a
′
ij/Nk)

2 (10)

where Nk = |Sk|, the cardinality of Sk.
An “unsquared” version of this criterion comes from applying the data recovery approach to an

entity-to-feature data matrix [30], which leads to

K∑

k=1

g(Sk) =
K∑

k=1

∑

i,j∈Sk

aij/Nk (11)

as the contribution of the clusters to the entity-to-feature data scatter. The similarity aij is defined,
in this approach, as the inner product of the feature vectors corresponding to entities i and j. In
matrix terms, if Y is an entity-to-feature data matrix then A is defined as A = Y Y T . The difference
between criteria (10) and (11) is somewhat similar to that between the spectral decomposition of
A = Y Y T and singular-value decomposition of Y .

In contrast to (11), criterion (10) has never been analysed, either theoretically or experimentally.
To illustrate the difference between preset and optimal values of the shift λ0 when model (4)

is used for approximate partitioning, let us consider the similarity data between eight entities in
Table 1.

For λ0 = 2, the only positive values of a′ij = aij − λ0 are within clusters 1-2-3, 4-5, and 6-7-8
plus similarities between entity 4 and both 6 and 7. These positive extra-cluster similarities lead

Table 1: Illustrative similarities between eight entities; self-similarity is not defined.

Entity 1 2 3 4 5 6 7 8
1 - 4.33 5.60 -0.20 -0.16 -0.21 -0.49 0.17
2 4.33 - 4.93 0.79 0.06 1.22 -0.10 -0.45
3 5.60 4.93 - 0.21 0.79 -1.20 -0.15 0.80
4 -0.20 0.79 0.21 - 4.62 3.29 2.80 0.32
5 -0.16 0.06 0.79 4.62 - -1.00 0.25 -0.08
6 -0.21 1.22 -1.20 3.29 -1.00 - 5.96 4.38
7 -0.49 -0.10 -0.15 2.80 0.25 5.96 - 5.23
8 0.17 -0.45 0.80 0.32 -0.08 4.38 5.23 -
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to differences in the clustering if λ0 is changed. At the average similarity shift λ0 = ā = 1.49,
these three clusters with respective intensities 3.46, 3.13 and 3.70 form the optimal partition. This
partition contributes 37.1% to the original data scatter. For the global optimum partition, the
λ0 = 0.49 and entity 4 joins the cluster 6-7-8. The optimal partition then consists of clusters
1-2-3 (with intensity 4.47), 4-6-7-8 (with intensity 3.17), and singleton 5 (since self-similarity is not
defined, the intensity has no meaning). This contributes 65.6% of the data scatter. The rather
large difference between the two contributions to the data scatter is mainly due to the difference
between the contributions due to λ0, i.e., the first term on the right-hand side of (7).

4 One Cluster Clustering

In this section, we turn to the problem of applying ITEX to the additive clustering. This involves
extracting a single cluster from, possibly residual, similarity data presented in the form of a sym-
metric matrix A, assuming that any requred shift λ0 has already been made. For the sake of
simplicity, in this section, we assume that the diagonal entries aii are all zero.

4.1 Pre-specified Intensity

We first consider the case in which the intensity λ of the cluster to be found is pre-specified.
Remembering that s2

i = si for any 0/1 variable si, criterion (2) can be expressed as

L2(S) =
∑

i,j∈I

(aij − λsisj)2 =
∑

i,j∈I

a2
ij − 2λ

∑

i,j∈I

(aij − λ/2)sisj (12)

Since
∑

i,j a2
ij is constant, for λ > 0, minimizing (12) is equivalent to maximizing the summary

within-cluster similarity after subtracting the threshold value π = λ/2, i.e.,

f(S, π) =
∑

i,j∈I

(aij − π)sisj =
∑

i,j∈S

(aij − π). (13)

This criterion implies that, for an entity i to be added to or removed from the S under
consideration, the difference between the value of (13) for the resulting set and its value for S,
f(S ± i, π) − f(S, π), is equal to ±2f(i, S, π) where

f(i, S, π) =
∑

j∈S

(aij − π) =
∑

j∈S

aij − π|S|

.
This gives rise to a local search algorithm for maximizing (13): start with S = {i∗, j∗} such

that ai∗j∗ is maximum element in S, provided that ai∗j∗ > π. An element i �∈ S may be added
to S if f(i, S, π) > 0; similarly, an element i ∈ S may be removed from S if f(i, S, π) < 0.
The greedy procedure ADDI [27] iteratively finds an i �∈ S maximising +f(i, S, π) and an i ∈ S

maximizing −f(i, S, π), and takes the i giving the larger value. The iterations stop when this
larger value is negative. The resulting S is returned along with its contribution to the data scatter,
4π

∑
i∈S f(i, S, π). To reduce the dependence on the initial S, a version of ADDI can be utilised

by starting from the singleton S = {i}, for each i ∈ I, and finally selecting the S that contributes
most to the data scatter, i.e. minimises the square error L2(S) (12).
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The algorithm CAST [5], popular in bioinformatics, is a version of the ADDI algorithm, in
which f(i, S, π) is reformulated as

∑
j∈S aij − π|S| and

∑
j∈S aij is referred to as the affinity of i to

S.
Another property of the criterion is that f(i, S, π) > 0 if and only if the average similarity

between a given i ∈ I and the elements of S is greater than π, which means that the final cluster S

produced by ADDI/CAST is rather tight: the average similarities between i ∈ I and S is at least
π if i ∈ S and no greater than π if i �∈ S [27].

Intuitively, changing the threshold π should lead to corresponding changes in the optimal S:
the greater π is, the smaller S will be [27].

4.2 Optimal Intensity

When λ in (12) is not fixed but chosen to further minimise the criterion, it is easy to prove that:

L2(S) = (A,A) − [sT As/sT s]2, (14)

in line with the decomposition (6), with K = 1 ans L2(S) = (E,E). The proof is based on the fact
that the optimal λ is the average similarity a(S) within S, i.e.,

λ = a(S) = sT As/[sT s]2, (15)

since sT s = |S|.
The decomposition (14) implies that the optimal cluster S must maximise the criterion

g2(S) = [sT As/sT s]2 = a2(S)|S|2 (16)

According to (16), the maximum of g2(S) may correspond to either positive or negative value of
a(S). The latter case may emerge when the similarity shift λ0 is large and corresponds to S being
the so-called anti-cluster [29]. In this paper, we do not consider this case, but focus on maximising
(16) only for positive a(S). This is equivalent to maximising the Raleigh quotient,

g(S) = sT As/sT s = a(S)|S| (17)

To maximise g(S), one may utilise the ADDI-S algorithm [27], which is the same as the algorithm
ADDI/CAST, described above, except that the threshold π is recalculated after each step as π =
a(S)/2, corresponding to the optimal λ in (??).

A property of the resulting cluster S, similar to that for the constant threshold case, holds: the
average similarity between i and S is at least half the within-cluster average similarity a(S)/2 if
i ∈ S, and at most a(S)/2 if i �∈ S.

To obtain a set of (not necessarily disjoint) clusters within the framework of the additive clus-
tering model, one may use ITEX by repeatedly extracting a cluster S using ADDI-S and then
replacing A by the residual matrix A − a(S)ssT .

We can apply this method to the partitioning problem, by repeatedly using ADDI-S to find
a cluster S and then removing from consideration all the entities in S. The process stops when
the similarity matrix on the remaining entities has no positive entries. The result is a set of non-
overlapping clusters Sk, k = 1, ...,K, each assigned with its intensity a(Sk), and also the remaining
unclustered entities in I.

10
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Figure 1: A pattern of clustering depending on the subtracted similarity shift λ0.

ADDI-S utilises no ad hoc parameters, so the number of clusters is determined by the process of
clustering itself. However, changing the similarity shift λ0 may affect the clustering results, which
can be of advantage in contrasting within- and between- cluster similarities. Figure 1 demonstrates
the effect of changing a positive similarity aij to a′ij = aij −λ0 for λ0 > 0; small similarities aij < λ0

are transformed into negative similarities a′ij .

5 Domain knowledge in determining similarity shift

5.1 Aggregation of proteins in protein families

In this section, we apply ADDI-S above to the aggregation of proteins in the so-called homologous

protein families (HPFs) combining proteins of the same function and considerable sequence similar-

ity from different genomes. The concept of homologous protein family, HPF, can be considered an

empirical expression of the concept of gene as a unit of heredity in the intergenomic evolutionary

studies. As such the HPF is an important instrument in the analysis of the evolutionary history

of the function that it bears. The evolutionary history of a set of genomes under consideration is

depicted as an evolutionary tree, or phylogeny, whose leaves are labelled by genomes of the set, and

internal nodes correspond to hypothetical ancestors. An HPF can be mapped to the tree in the

following natural way. First, the HPF is assigned to the leaves corresponding to genomes contain-

ing its members. Then the pattern of belongingness can be iteratively extended to all the ancestor

nodes in a most parsimonious or most likely way. For example, if each child of a node bears a

protein from the HPF then the node itself should bear the same gene itself, because it is highly

unlikely that the same gene emerged in the children independently. Exact formulations of the al-

gorithms can be found in [?, 33]. Having annotated the evolutionary tree nodes with hypothetical

evolutionary histories of various HPFs, realistic conclusions of possible histories and mechanisms

of evolution of biomolecular function may be drawn for the purposes of both theoretical research

and medical practice.

Assignment of proteins to HPFs is often determined with a large manual component because
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Figure 2: An evolutionary tree over genomes A to L with three protein families shown in black, grey and
patterned tones present in genomes C, D (one family), G (another family) and H, I, L (third family). Their
reconstructed ancestors are shown with greater boxes in nodes A1, G and A2. If, however, these three
families would be recognised as parts of the same family, then their reconstructed ancestor ought be pplaced
at the root, node LCA.

the degree of similarity between proteins within an alignment of protein sequences is not always

sufficient to automatically identify the families. Significant protein similarity over the full length

of the protein is often insufficient to group proteins into families, especially for rapidly evolving

organisms such as bacteria and viruses.

This is why a two-stage strategy for identifying HPFs has been considered in [33]. According

to this strategy, HPFs are created, first, as groups of proteins that have a common motif, a con-

tingent fragment of protein sequence that is similar in all HPFs members. This motif represents

a relatively well conserved segment of the genetic material that can be associated with a protein

function. Obviously such, motif defined, HPFs may be overly fragmented since many proteins are

multifunctional and thus could bear resemblances to different proteins at different fragments.

The fragmented HPFs may lead then to wrong reconstructions of functional histories such as

presented in Figure 2: Reconstructed ancestral nodes of the first emergence of each of the three

HPFs labeled by differently patterned boxes are shown with greater boxes in nodes A1, G and A2.

These histories, however, may be due to an erroneous aggregation: The three HPFs may, in fact,

bear similar proteins and thus should be combined into a single aggregate HPF whose origin then

ought to be in the ultimate ancestor corresponding to the tree root.

Therefore, the next stage of the strategy is to cluster the first stage motif-based HPFs into larger

aggregations based on whole sequence similarity. Since entities at this stage are not single proteins

but protein families, we need to score similarities between families rather than single proteins. This

12



Table 2: List of 30 herpesvirus genomes under consideration.

# VIDA Ref. Genome GenBank Ref.

Alphaherpesvirinae
01 CeHV-1 Cercopithecine hv 1 NC 004812
02 HHV-1 Human hv 1/simplex 1 NC 001806
03 HHV-2 Human hv 2/simplex 2 NC 001798
04 EHV-4 Equid hv 4 NC 001844
05 EHV-1 Equid hv 1 NC 001491
06 BoHV-1 Bovine hv 1 NC 001847
07 BoHV-5 Bovine hv 5 NC 005261
08 CeHV-7 Cercopithecine hV 7 NC 002686
09 HHV-3 Human hv 3/varicella-zoster NC 001348
10 MeHV-1 Meleagrid hv 1 NC 002641
11 GaHV-2 Gallid hv 2/Marek’s disease NC 002229
12 GaHV-3 Gallid hv 3 NC 002577
13 PsHV-1 Psittacid hv 1 NC 005264

Betaherpesvirinae
14 HHV-6 Human hv 6 NC 001664
15 HHV-7 Human hv 7 NC 001716
16 HHV-5 Human hv 5/cytomegalovirus NC 006273
17 ChCMV Chimpanzee cytomegalovirus NC 003521
18 MuHV-2 Murid hv 2/rat cytomegalovirus NC 002512
19 TuHV Tupaiid hv NC 002794

Gammaherpesvirinae
20 HVS-2 Saimiriine hv 2 NC 001350
21 AtHV-3 Ateline hv 3 NC 001987
22 EHV-2 Equid hv 2 NC 001650
23 BoHV-4 Bovine hv 4 NC 002665
24 MuHV-4 Murid hv 4/murine hv 68 NC 001826
25 RRV-17577 Macaca mulatta rhadinovirus NC 003401
26 HHV-8 Human hv 8/Kaposi’s sarcoma NC 003409
27 AIHV-1 Alcelaphine hv 1 NC 002531
28 CeHV-15 Cercopithecine hv 15 NC 006146
29 HHV-4 Human hv 4/Epstein-Barr NC 001345
30 CaHV-3 Callitrichine hv 3 NC 004367

issue will be covered in the next section after the data we deal with are described in greater detail.

5.2 Neighbourhood similarity between HPFs

The data for this analysis come from studies of herpesvirus - a pathogene highly affecting both

animals and humans. A set of 30 complete herpesvirus genomes covering the so-called α, β and γ

herpesvirus superfamilies that differ by the tissue in which the virus resides, have been extracted

from the herpesvirus database VIDA, release 3 [2] (see Table 2); and an evolutionary tree has been

built over the genomes for the conserved DNA polymerase gene using the PHYLIP package [10]

(see Figure 3). This tree agrees well, within the uncertainty limits, with the previously published

instances of herpesvirus phylogenies and, moreover, all of the results reported here hold for the

other topology as well (see details in [33]).

A set of 740 homologous protein families (HPFs) represented in these 30 genomes have been
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extracted from the VIDA database [2]. Each VIDA HPF is defined by a conserved fragment in

proteins constituting the HPF; these were computed using the algorithm XDOM [14, 2]. In this

way, each HPF is proposed to represent a basal functional grouping, whose origin can be mapped

to the evolutionary tree under the assumption that the function is inherited according to the

tree topology. As discussed above, such motif based protein family assignment can suffer from

fragmentation of protein families and from the non-assignment of proteins to a family due to lack

of pair-wise similarity.

To further aggregate the VIDA HPFs, we have to develop a system for scoring similarity between

them. A most straightforward idea would be to score first similarities between proteins belonging

to different HPFs with follow-up averaging them. Another approach would dwell on the property of

VIDA HPFs that they may overlap, sometimes significantly, because different HPFs can be defined

by different fragments of the same sequences. According to this approach, similarity between HPFs

should reflect set-theoretic similarity between them as ’bags’ of proteins. We accept an intermediate

approach: we measure set-theoretic similarity but between HPF neighbourhoods defined by using

a whole-sequence alignment tool PSI-BLAST [3] rather than between HPFs themselves. Given an

HPF, this approach works as follows. First, for every protein from the HPF a list of similar proteins

is created using PSI-BLAST. Second, these lists are combined according to a majority rule. The

resulting set of proteins constitutes the HPF’s neighbourhood. Note that it consists of proteins,

not of HPFs. Third step is computing matrix of a set-similarity index values by applying it to the

HPF neighbourhoods, for every pair of HPFs.

There are several features of this approach that made us to use it.

One of them is the issue of relying on the accuracy of alignment of protein sequences in scoring

similarity between them. Alignment tools, including PSI-BLAST [3] which we utilise, rely on a

number of user-defined parameter values, that are specified for default options based on experi-

ments. These parameter values work quite well when sequences are similar indeed. However, there

is a great uncertainty in their values at proteins that are not homologous, which is a typical case

when proteins are from different HPFs. Therefore, by limiting action of PSI-BLAST to aligning

only similar sequences, we avoid the uncertainty and arbitrariness of similarity estimates at distant

protein sequences.
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Another feature relates to the idea that neighbourhoods may give more reliable information

on functional aspects of proteins. There are many examples of proteins, especially virus encoded

proteins, whose pair-wise similarity is low, but which are known to be functionally related and which

have many common homologues. For example the glycoprotein H like protein of murine herpesvirus

4 (gi: 1246777) and the UL22 protein of Bovine herpesvirus 1 (gi: 1491636) have minimal sequence

identity (15%, identified on the second PSI-BLAST iteration), and have been initially assigned

to separate HPFs within the VIDA database, namely HPFs 12 and 42 [2]. However, their sets

of homologous protein neighbours (with 20% or greater sequence identity), contain 25 and 20

sequences, respectively, and have 14 common proteins, making the overlap between the homologous

protein lists quite significant: the average relative overlap is 63% (14/25=56% in one of the sets and

14/20=70% in the other). To alleviate the issue, PSI-BLAST runs are conventionally reiterated

for accruing distantly related proteins into families. This, however, may import irrelevant proteins

or proteins that are not within the organism group under investigation. An HPF obtained in this

way requires manual curation, but the overlap between the neighbourhood lists suggests that our

computational strategy may be useful in overcoming the issue.

One more feature of our approach relates to the stage of combining individual neighbourhoods

of protein sequences into an HPF neighbourhood. The set of HPF member proteins covers an

evolutionary time span during which they have developed from a hypothetical ancestor. It is

assumed that the greater the difference between sequences, the greater the time at which they

diverged. This phenomenon should be reflected in the composition of the neighbourhood lists.

That means that we can regulate the time span taken into account by choosing different majority

thresholds when combining the neighbourhoods. This may provide an alternative to the way PSI-

BLAST seeks for more distant relatives by relying on statistical frequency profiles [3].

The idea of employing neigbourhoods to measure similarities between entities is not original. It

is used in information retrieval starting probably from work [41] and generalising to what is referred

to as the ”semantic similarity” in the natural language processing [20]. It has been employed in

bioinformatics as well, mostly in the analysis of gene expression data (see, for example, [40]). In the

perspective of clustering of complex data, this approach allows for a unified framework of between-

subset similarities rather than individual frameworks of domain-specific similarity measures.
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Figure 3: Herpesvirus evolutionary tree. The root corresponds to the herpesvirus ultimate common ancestor
(HUCA); its child on the right to the ancestor of α superfamily, and the child on the left, to the common ancestor of
β and γ superfamilies.
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Let us describe in more detail how we take neighbourhoods of HPF members and combine them

all into a majority set. .

Given a query protein sequence p, we utilise the PSI-BLAST program [3] to sort all protein

sequences under consideration (we use those in the NCBI Entrez web site [36]) by their similarity

to the query sequence. An initial fragment of this sorted list, defined by a contrasting cut-off

similarity value, is identified. The list of all those proteins from this fragment that also belong in

our collection of herpesvirus genome protein sequences makes the homology neighbourhood (HN)

of p, denoted by l(p).

Given a protein family h consisting of m proteins p1, p2,...,pm, with herpesvirus constrained HN

sets l(p1), l(p2), ...,l(pm) assigned to each of them, we aggregate these sets by using the majority

rule. Let us assign a membership score s(p) to each sequence; s(p) being defined as the proportion

of the HN sets l(p1),..,l(pm) to which p belongs; this is 1 if p belongs to all m of the sets.

Given t > 0, the t-majority list Mt(h) is defined as the set of those p for which s(p) ≥ t. For

t = 1/2, M1/2(h) is the so-called simple majority list. As t decreases, the size of Mt(h) can only

increase, so that for t ≤ 1/m the t-majority list Mt(h) is the set-theoretic union of sets l(pi) for all

pi ∈ h.

To measure similarity between two HPFs represented by their HN sets of protein sequences,

L1 and L2, one should rely on the quantities involved: the size of the overlap between L1 and L2,

denoted by n, the number of elements in L1 denoted by n1, and the number of elements in L2

denoted by n2. To take into account the relative size of the overlap, we use the average proportion

of the overlap, mbc = 1
2( n

n1 + n
n2), known as the Maryland Bridge coefficient [32]. This index is co-

monotone with the popular Jaccard coefficient J = n
n1+n2−n , but does not suffer from the intrinsic

flaw of the Jaccard coefficient, which systematically underestimates the similarity [32].

To determine an appropriate value for majority threshold t, we accept the view that the proteins

in an HPF have developed over a period of time; thus, the longer the time period spanned by the

t-majority list proteins, the smaller should be the value chosen for t.

Specifically, in the case under consideration, the majority threshold has been set at the level of

20%, i.e. t = 1/5, based on analysis of clusterings of HPFs produced at neighbourhoods defined at

different thresholds. Specifically,:
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1. The median mbc similarity value between clusterings corresponding to “neighbouring” ma-

jority thresholds 1/6 and 1/5 is 0.98; 1/5 and 1/4, 1.00; 1/4 and 1/3, 0/99; 1/3 and 1/2,

0.96. The average mbc similarity value varies similarly, taking its maximum at the majority

thresholds 1/5 and 1/4. The similarity between clusterings at non “neighbouring” thresholds

slightly decreases, though overall clusterings produced at different similarity shift levels differ

little.. The sets of unclustered entities behave similarly.

2. The clustering found over 1/5=20%-majority lists is “central” among other clusterings; it is

more similar to the other clusterings than at any other of the considered majority thresholds.

3. The clustering found over 20%-majority lists is more similar than the others to clusterings

produced with the homology lists obtained with the iterated PSI-BLAST search [3], starting

from a random protein in an HPF. Repeated PSI-BLAST search, over an averaged profile of

the first search results, allows one to catch more distant homologues to the query sequence

[3]. The median similarity between the clustering at 20%-majority lists and the clustering

found at HPF neighbourhood lists of the first iteration is 0.91; lists of the second iteration,

0.82; and lists of the third iteration, 0.50. (We take these results to support our view that

repeated iterations of BLAST may need manual curation.)

The similarity between two clusterings as sets of clusters is defined by the index mbc applied to

the situation when entities are clusters and two clusters are considered the same if they are either

equal or one is part of the other differing by not more than two elements.

We therefore used our method of generating and assessing similarity between lists of homologous

proteins to check the validity of the starting HPFs and merge HPFs those with similar neighbour-

hoods into aggregate protein families (APFs). This however is not quite straightforward exercise

because results highly depend on the similarity shift value. In further sections we describe how the

domain knowledge may help in choosing right shift similarity value.

5.3 Utilising domain knowledge

At different similarity shifts we get different numbers of clusters of HPFs. Specifically, at the zero

similarity shift, b = 0, there are 99 non-trivial clusters. The number of clusters rises to 107 at
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b = 0.10 and then gradually falls down, from b = 0.40, when the similarity shift is risen further

so that there are 29 non-singleton clusters at b = 0.97. Note that the latter number corresponds

to the situation when HN sets of the clustered HPFs are practically the same: to overlap at the

level of 97% or higher, majority lists of less than 30 elements in an HPF (this is true for almost all

HPFs) must be equal to each other.

The optimal similarity value is almost 0 (0.017, to be exact), which implies that to choose a right

similarity shift, one should involve external knowledge of the domain. Such external knowledge,

independent of sequence similarity estimates, is knowledge of functional activities of the proteins

under consideration. Each HPF is supposed to have a function (for examples of function see

Table 3 below), though unfortunately functions of most part of proteins available are unknown.

If functions are known, as it happens to at least some HPFs, then we can play on those HPFs

that are synonymous. Two proteins are considered synonymous if they are consistently named

between the herpesvirus genomes and/or they share the same known function. Such proteins

should therefore belong in the same aggregate protein family. Two proteins are considered non-

synomymous if they have different functions and thus should belong to different protein families.

Thus, what needs to be done is to identify HPFs with known function and form pairs of those with

clearly synonymous function and those whose functions clearly differ (this may not be necessarily a

straightforward exercise because authors of different submissions of data to databases tend to use

different terminology).

Sequence similarity values should be high between synonymous sequences and should be low

between non-synonymous sequences. The similarity shift value should be taken between these

groups so that similarities between not synonymous HPFs get negative after the shift while those

between synonymous HPFs remain positive.

To implement this idea, we analysed 287 available pairs of HPFs with known function and

positive similarity value. Among them, no non-synonymous pair has a greater mbc similarity than

0.66, which should imply that the shift value b = 0.67 confers specificity for the production of

APFs.

Unfortunately, the situation is less clear cut for synonymous proteins. Out of the 86 synonymous

pairs available, there are 24 pairs (28%) that have their mutual similarity value less than 0.67. Thus
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Figure 4: Empirical percentage frequency functions (y-values) for the sets of synonymous pairs (solid line) and
non-synonymous pairs (dashed line). The x-values represent the mbc similarity.

at the similarity shift at 0.67, 28% of the synonymous pairs will not be identified as such suggesting

that at this similarity shift the method would lack sensitivity. To choose a similarity shift that

minimises the error in assigning negative and positive similarity values, one needs to compare

the distribution of similarity values in the set of synonymous pairs with that in the set of non-

synonymous pairs. As Figure 4 shows, the graphs intersect when the similarity value mbc is 0.42.

The number of synonymous pairs whose similarity falls into the wrong side of 0.42 (that is, less

than 0.42) falls to 11, whereas the number of non-synonymous pairs whose similarity is higher than

0.42 increases to 7 (from 0 at 0.67), which leads to the minimum summary error rate of 16%, at

b = 0.42.

Thus the external knowledge of synonymity/non-synonymity among pairs of HPFs suplies us

with two candidates for the similarity shift values: (a) b = 0.67 to guarantee specificity in that

non-synonymous HPFs are not be clustered together, and (b) b = 0.42 to ensure the minimum

misclassification error rate.

The two similarity shift values indicated, i.e. b = 0.67 and b = 0.42, lead to somewhat different

but rather compatible clusterings of the set of 740 HPFs under consideration. There are 80 APF

clusters comprising original 180 HPFs and leaving 560 HPFs unclustered at b = 0.67. There are

102 APF clusters over original 249 HPFs, and 491 HPFs unclustered at b = 0.42.

The first 80 clusters extracted at similarity shift b = 0.42 correspond one-to-one to the 80

clusters obtained at b = 0.67. All 22 of the additional clusters extracted at b = 0.42 are doublets

with mbc similarity values of 0.50 to 0.62 (implying that there is a gap in mbc similarity values

between 0.42 and 0.50).

The aggregation found at b = 0.67 suggests 560 + 80 = 640 APFs altogether whereas b = 0.42
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leads to a smaller total, 491 + 102 = 593. Which one is correct? Probably that better fitting into

the domain knowledge.

5.4 Advancing domain knowledge

Luckily, we have a strong interpretation tool, the mapping of HPFs to the evolutionary tree resulting

in their evolutionary histories. This tool supplies us with reconstructed HPF contents of all the

genome ancestors according to the tree. Of these, currently most useful are reconstructions of

the most ancient genomes, those of ancestors of superfamilies α, β and γ as well as the more

universal common ancestors, HUCA and βγ. This is because the similarities and differences among

herpesvirus species are somewhat better understood at this level.

The multitude of reconstructed histories may provide us with an additional criterion for choosing

right aggregate HPFs. This additional criterion is consistency among the histories as well as domain

knowledge.

The reconstructions of the five ancestors with APFs found at similarity shifts b = 0.42 and

b = 0.67 are essentially the same.

The only exception is the common ancestor of the α superfamily, which gains three more APFs

when b changes from b = 0.67 to b = 0.42. These are APF81 comprised of HPFs 9 and 504,

both of glycoprotein C; APF82 comprised of HPF 38 and HPF 736, both of glycoprotein I; and

APF84 comprised of HPF 47 and HPF 205, both of glycoprotein L. Unfortunately, at the current

state of domain knowledge, we cannot interpret the phenomenon of simultaneously gaining three

glycoprotein families in terms of the α herpesvirus activities alone.

We can, however, look at the mutual positions of genes bearing these proteins within the virus

genomic circular structures.

We find that in all 13 genomes comprising α superfamily in our data, gene bearing glycoprotein

E always immediately precedes that bearing glycoprotein I. This by itself may be considered a strong

indication that there must be a mechanism in the superfamily involving both glycoproteins that

has been developed already in the α ancestor. Moreover, it appears, glycoprotein E corresponds

to an aggregate protein family comprised of HPF 26 and HPF 301 (at both levels of the similarity

shift, 0.67 and 0.42) that has been mapped by our alogorithm to the ancestral α node [33]. This
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leads us to conclude that glycoprotein I must also belong to the α ancestor, thus implying that

similarity shift = 0.42, at which glycoprotein I’s aggregate family falls in α ancestor, better fits to

the knowledge added than b = 0.67, at which glycoprotein I’s HPFs are not aggregated and are

mapped into more recent ancestors. Aa additional supporting evidence comes from glycoprotein

D’s aggregate family comprising HPF 4 and HPF 45 at both similarity shift values. It is also

mapped into α ancestor. And, moreover, its gene immediately precedes the gene of glycoprotein

I in almost all (eleven) genomes of the α superfamily. (In two genomes, CeHV-7 and HHV-3, the

preceding gene is of protein kinase rather than of glycoprotein D, which itself may lead to some

speculations of possible mechanisms underlying such a substitution.)

5.5 Final results

Therefore, we accept the value b = 0.42 and corresponding number of protein families, after aggre-

gation, 593.

Now we can draw structural conclusions from the mapping of the aggregate families to the

evolutionary tree; some of them are presented below.

The common ancestor of herpesviruses, HUCA, according to our reconstruction, should comprise

45 HPFs aggregated to 29 APFs, i.e. 29 protein families. These are well studied proteins with only

three of the participating families, HPFs 17, 23 and 107, of no known function. Our HUCA

is consistent with the work of others, D-HUCA[8, 9], but does not include all the protein families

assigned by Davidson et al. This concurs with our view that our approach, relying only on sequence

similarity alone, is conservative.

Typical relations between our mapping results and D-HUCA are illustrated in Table 3

In some cases, it is clear that the fragmented HPFs fail to aggregate at that level of moving

from the α, β and γ-ancestor into HUCA because of almost zero sequence similarity between

them. For example, all three ancestors, of each α-, β-, and γ families, have a glycoprotein L.

However, the corresponding HPFs, 47, 50 and 296, have no significant sequence similarity and,

thus, cannot be combined together, even in terms of the neighbourhood lists. Still, at the genome

organisation level, illustrated on Figure 5, each of the glycoprotein L genes always exactly precedes

the corresponding Uracil-DNA glycosylase gene, which is mapped into HUCA. This suggests these
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Table 3: Comparison between a previously determined herpesvirus common ancestor D-HUCA’s [8, 9] list of
functions in the herpesvirus ancestor (two columns on the right) versus the results from the mapping of HPF/APFs
(first four columns), with function descriptions taken from VIDA.

Mapping A/HPF Function Description HSV-1 Gene D-HUCA

Peripheral Enzymes

HUCA 8 Nucleotide repair/ uracil-DNA glycosylase, UL2 Uracil-DNA glycose
metabolism HHV-1 UL2

HUCA 24 Nucleotide repair RNA reductase large UL39 RNA reductase;
metabolism subunit, HSV-1 UL39 large subunit

HUCA 33 Nucleotide repair RNA reductase small UL40 RNA reductase
metabolism subunit, HHV-1 UL40 small subunit

HUCA APF 10 UL23 Thymidine Kinase
2 Nucleotide repair/ thymidine kinase

metabolism
27 ” thymidine kinase

HUCA 43 Nucleotide repair/ dUTPase, HHV-8 ORF54 UL50 dUTPase
metabolism

Surface and Membrane

HUCA 20 Membrane glycoprotein M, UL10 Glycoprotein M; complexed
glycoprotein HHV-1 UL10 with glycoprotein N

HUCA 3 Membrane glycoprotein B, UL27 Glycoprotein B
glycoprotein HHV-1 UL27

HUCA APF 3 UL22 Glycoprotein H; comp-
42 Membrane/ glycoprotein H, lexed with glycoprotein L

glycoprotein HHV-1 UL22
12 ” glycoprotein H, HHV-8 ORF22
531 ” glycoprotein H, HHV-8 ORF22

Node 32 267 Virion protein envelope protein, UL49A Glycoprotein N; complexed
HHV-1 UL49A with glycoprotein M

ALPHA 47 Membrane glycoprotein L, UL1 Glycoprotein L; complexed
glycoprotein HHV-1 UL1 with glycoprotein H

BETA 50 ” glycoprotein L, HHV-5 UL115
GAMMA 114 ” glycoprotein L, HHV-8 ORF47
GAMMA 296 ” glycoprotein L, MuHV-4 ORF47
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Figure 5: Positional homology between glycoprotein L sites in the herpesvirus superfamilies α, β and γ. The
homology suggests that the glycoprotein L gene co-functions with the glycosylase gene and thus the former, like the
latter, should be mapped to HUCA.

are common ancestral genes indeed; just they have undergone sequence change to a level where

sequence similarity is no longer sufficient to assign homology. Putting the corresponding gene

UL2 into D-HUCA has been based on experimental evidence that in the α-, β-, and γ families,

glycoprotein L sequences in HPF 47, 50 and 296 functionally complex with glycoprotein H [9].

This is a clear example of a situation in which sequence similarity is not indicative of the

homology so that association between the proteins can be seen only at a higher level of gene

arrangement in genomes. We do not know any other example of such a situation in the published

literature.

Concerning other four superfamily ancestors in our study, α, βγ, β and γ, we can claim that

only the contents of the α superfamily is relatively well studied. Of its 33 gained HPFs (plus the

inherited HUCA contents) only 9 are of unknown function.

This pattern is not repeated in the βγ ancestor, with 10 gains (plus the inherited HUCA) of

which only 2 are of known function. Similarly, of 31 additional gains at β-ancestor, only 10 have

known function and of 32 additional gains at the γ-ancestor, the function is known for only 9.

Together, these three ancestors, βγ, β and γ, received 73 gains of which 52, more than 70%, are of

unknown function.

This shows that so far researchers in the area concentrated their efforts more on commun

features among the herpesviridae. The mechanisms separating the three superfamilies, especially

those for β and γ, are yet to be investigated. Our reconstructions give clear indications of what

proteins should be studied next.
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Conclusion

Clustering is an activity purported to help in enhancing knowledge of the domain the data relate to.

Typically, this comes via set of features assigned to entities that are to be clustered; the features

reflect the knowledge and are to be used in interpreting cluster results. In situations in which

entities are supplied with their similarities only, entity features still can be used for interpretation,

too. However, the general knowledge of the data is much weaker in this case, which is reflected,

indeed, in the choice of similarity rather than feature data and, respectively, leading to lack of

sensible features to look at when interpreting results. In such a situation, data recovery clustering

supplies a reasonable device for reflection of the domain knowledge, the soft similarity threshold that

serves as the similarity shift value. This value, in the data recovery clustering context, determines

other clustering parameters such as the number of clusters. The domain knowledge, even if rather

weak, can produce two sets of pairs of entities: those that should and those that should not fall

into the same clusters. This may lead to considerably narrowing down the choice of reasonble

threshold values as shown in the previous section in which herpesvirus data from VIDA database

are analysed. We further show that in a situation in which there is an independent interpretation

device such as reconstruction of the evolutionary history of the protein family corresponding to

a cluster, the clusters lead to enhancing knowledge with a set of interpretations. These may

allow further reduction of choices for the clusterings using the criterion of consistency among the

interpretations.

As an independent result, we have come to a set of proteins that represent descendants of

the same gene but have lost all the similarity between their amino acid sequences. Still, their

positioning in metabolic processes have been caught on the higher syntactic level, of the gene

arrangement within genomes.

This shows that a possile direction for further work can be application of similar principles for

clustering and interpreting at other genomic databases.
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