M.Sc Computer Science

Object-Oriented Design and Programming

Session 1

Oded Lachish

Room: (T session) Malet 404 13:30-17:00, (pT session) Malet 407 18:00-21:00
Visiting Hours: Tuesday 17:00 to 19:00

Email: oded@dcs.bbk.ac.uk

Web Page: http://www.dcs.bbk.ac.uk/~oded/O0ODP12/00DP2012.html

Resources

Textbooks:

= “Applying UML and Patterns; An Introduction to Object-
Oriented Analysis and Design and Iterative Development”,
Craig Larman, 3" edition, Prentice-Hall 2002

= “Design Patterns. Elements of Reusable Object-Oriented
Software.” E. Gamma, R. Helm, R. Johnson, J. Vlissides.

Lecture Notes:
= http://www.dcs.bbk.ac.uk/~oded

OO0 Design and Programming

Main objectives:

= Anintroduction to software engineering.

What will we see:

= Object-oriented analysis and design (OODP) methodologies.
= UML for illustrating analysis and design models.

= Design Patterns

= Refactoring

Congratulations

* New Job

¢ You are now responsible for developing a new software

product from scratch

Great,

what next?

| know C++, Java, UML?

How do you develop software?

Me?
| write the code,
all of it
compile

AND IT WORKS

EVERY SINGLE TIME

(that is why | teach)

You?

Test Driven Development (TDD)

Philosophy
* Untested code is “not code”
¢ Short development cycle

¢ Testing is understanding

TDD benefits

TDD Cycle

~
Write Fai @
Production {2k

Code

. \
Write Code Fai
Properly

New feature, write a test
to make sure you
understand

Test should fail, since
there is no implementatio

Less Debugging (debugging is tedious and expensive)
Small steps — easier to backtrack (less debugging)
Small pieces drive developers towards modularity
Bugs caught earlier

Testing is understanding

TDD vulnerabilities

TDD implementation

Developer writing tests for his own code

Checking private variables may require dedicated “hacks”
that may remain in the code.

More code
Longer time to write

Over reliance on unit testing

Wish List

* Easy to upgrade code (refactor)

¢ Dedicated testing tools

* Friendly version control

Examples of software products

So | “Know” TDD
Can | Start

Real time: air traffic control

Embedded systems: digital camera, GPS

Data processing: telephone billing, pensions
Information systems: web sites, digital libraries

Sensors: weather data

System software: operating systems, compilers
Communications: routers, mobile telephones

Offices: word processing, video-conferences
Scientific: simulations, weather forecasting
Graphical: film making, design

etc.

Putting software production in perspective

= Biggest program that you have written?

= Biggest program that you have worked on?

Biggest project team that you have been part of?

Longest project that you have worked on?
Most people who have used your work?
Longest that your project has been in production?

The coursework for OODP should be about 0.01 person-years.
A big project may be 100 to 1,000+ person-years.

Software production requires team work.

Large software projects are built on older ones.
Software is expensive.

What makes good software?

= Relevance
= Usability

= Robustness

Fault-tolerance
= Maintainability
= Efficiency

The emphasis on these metrics varies across projects.

So?

= The number of possible tasks seems unbounded
= The scale of some tasks is immense

= There can be many different quality constraints

A systematic approach is required!

Software Engineering

What is software engineering?

...Typical look on the average student
‘when asked aboul software engineering

Software engineering is not just coding

= Knowing an OO language, like Java or C++, is necessary, but not
sufficient in order to create object software.

= In between a nice idea and a working software, there is much
more than programming.

Engineers, Managers, Clients, Users

Investigation
the problem

Programming

code 5

Logical solutiolﬁ
Design Patterns
Verification

What Next?

Is there a magic book that will ensure success?

Regretfully probably no.

A large variety of entities some

with massive resources have

failed miserably!

So BUZZWORDS

E’“reme.

egia“ ll'l'ogramn"na

Wat

Agile

Start from the beginning.ysmansoy

= |n the beginning there was CHAOS
« Software is written on the fly
= Bugs — verification takes forever

= Maintenance virtually impossible

| Engineering Methodologies |

= Plan before building

= Predictable, Efficient

The (classical) waterfall model

‘ Feasibility study ‘

‘ Requirements ‘

’ System design ‘

| Program design |

| Coding ‘

‘ Testing ‘

‘ Acceptance testing ‘

Next phase only after previous l Operation & maintenance

is 100% percent done!

Why waterfall model?

= Emphasis on documentation
¢ knowledge not lost,
¢ less dependence on team members
= Predict problems and deal with them as early as possible

= Simple structured approach

= (Like in other engineering areas such as construction)

The (classical) waterfall model

:

What are the problems with the waterfall model?

So?

Accept that
= Requirements may change
= System design problems may arise during program design

= Program design problems may arise when coding

Need a design methodology that can deal with these problems.

Agile Software Development

A group of software development methodologies

Focus: THE BIG PICTURE

“Everything is personal”

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions
Working software
Customer collaboration
Responding to change

over processes and tool
over comprehensive documentation
over contract negotiation

over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James Grenning, Jim
Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland
Dave Thomas

©2001, the above authors
his declaration may be reely copied n any form,
butonly in s entirety through tis ntice

Principles behind the Agile Manifesto

We follow these principles:

Our highest priority is to satisfy the customer
through early and continuous delivery
of valuable software.

Welcome changing requirements, even late in
development. Agile processes harness change for
the customer's competitive advantage.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals.
Give them the environment and support they need,
and trust them to get the job done.

©2001, the above authors
this declaration may be fresly copid in any form,
butonly in s entrey through tis notice.

Principles behind the Agile Manifesto

Working software is the primary measure of progress.
Agile processes promote sustainable development.

The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

Continuous attention to technical excellence
and good design enhances agility.

Simplicity--the art of maximizing the amount
of work not done--is essential.

The best architectures, requirements, and designs
emerge from self-organizing teams.

Atregular intervals, the team reflects on how
to become more effective, then tunes and adjusts
its behaviour accordingly.

©2001, the above authors
this declaration may be feely copied i any form,
butonly n s enirty through thi notie.

The big conceptual changes

Software development methodologies that are

1. Iterative

2. Incremental

3. Interactive

(Treat software development as a learning process)

Iterative, Incremental, Interactive

| Customer

Interaction

Complete
Product

Skeleton

v

TIME

Agile Software Development Processes

® Extreme Programming
® Test-driven development
® Continuous integration
® Scrum
® “war room” — common project room

® Daily meetings

What do we want?

A software development FRAMEWORK that deals with
¢ Analysis and design
¢ Object-oriented technology
¢ Well-defined

¢ Clear documentation and sharing of information during
software development

Re-usability

Verification

Testing

Both vertical and horizontal partition

I Customer |

Interaction Complete
Product

Skeleton

v

TIME

UP - Unified Process

Unified Process (UP)

= The Unified Process is a process framework particularly suited
for building OO systems.

= Rational Unified Process (RUP) is a detailed refinement of UP

= Why use the Unified Process to develop software?

Why UP?

® |terative and evolutionary (incremental) development

contrasted with a sequential or “waterfall” lifecycle.

® Early programming and testing of a partial system, in
repeating cycles.

® |t assumes development starts before all the requirements
are defined in detail.

® Feedback is used to clarify and adapt the system to evolving
specifications

The UP iterative development

= Feedback from iteration N leads to refinement and
adaptation of the requirements and design in iteration N+1

= lterations are fixed in length - Outcome is a tested,
integrated and executable partial system.

- \/,7 / - '\\/'

Iteration N Iteration N+1

Time

UP phases

= Inception
« Feasibility phase and approximate vision

= Elaboration
« Core architecture implementation, high risk resolution

= Construction
 Implementation of remaining elements

= Transition
* Beta tests, deployment

UP phases

Increment
Difference betwee
Release Final

Afte cach eration o Release!

-

T uone.al|

uonoNISU)
uonIsuRLL

T uonelal|
uonjeioge|3
ZuoneJal|
uoljeIOqe);
£ uone.a|
uojei0qe|3
Zuonesa)|
uonINIISUOD
€ uonedayl
uonaNISU)
7 uonea)|
uonANISUOD
S uoneayl
uonaNISU)
9 uone.al|
uonoNISU)
L uoneay|
uonINIISUOD
g uone.al|
uonoNISU)
T uoneaal|
Zuonesa)|
uonIsueiL

TIME

v

UP artifacts and disciplines

= The UP describes work activities, which result in work products
called artifacts. Examples of artifacts:
» Code
* Web graphics
 Database schema
* Use cases (text documents explaining business scenarios)
» Diagrams, models and so on

= Adiscipline (or workflow) is a set of work activities. Examples:
* Requirements
* Business modeling
 Design

Inception

Inception

(Usually, lasts one or two weeks (e.g. one iteration))
= Define the vision and business scope of the project
= Define high-level goals and constraints
= |nvestigate core requirements
= Study feasibility
= |dentify critical (business, technical, schedule, ...) risks
= Obtain an order-of-magnitude estimate of the cost
= Determine who will do it (buy and/or build)
= Decide if it is worthwhile to invest in deeper exploration
= Plan the first iteration of elaboration
= Estimate the number of iterations needed for elaboration

Artifacts that may be started during inception:

Avrtifact Description
Vision and Business Case High level goals and constraints
Use-Case Model Eunctional requirements
Supplementary Specifications Non functional requirement
Glossary Key domain terminology, and data dictionary

Risk List and Risk Management Plan | Risks and their mitigations

Prototypes and Proof-of-Concepts | Validating technical ideas

Iteration Plan Description of first iteration

Phase Plan & Software Development Plan | Guess for elaboration duration. Tools etc.

Development Case Description of the Customized UP

Requirements

Importance of requirements specification

= Factors on challenged software projects
Poor user input

13% T 37%of

factors are
related to
Incomplete requirements requiremen[s

12%

Changing requirements
12%

Other
50%

Poor technical skills
%

Poor staffing
6%

= The UP embraces changes in requirements and suggests
their skilful specification through use-case writing.

Requirements

= Requirements are capabilities and conditions to which the
system — and more broadly, the project - must conform. Either
derived directly from user needs, or stated in a contract,
standard, spec, formally imposed document.

= The FURPS+ model [Grady92]:

= Functional

= Usability quality

= Reliabilit requirements non-functional
Y requirements

= Performance

= Supportability

= +: {implementation, interface, J

operations, packaging, legal}

* Implementation
* Required standards, implementation languages, resource limits.
e Interface
« Specifies external items with which the system must interact
¢ Physical
« Constraints the hardware used to house the system, shape, size or
weight for example.
e Legal

* Licensing etc

Examples

= The project will be localised (support multiple
human languages)

= The persistence will be handled by a relational
database.

= The database will be Oracle 9i.
= The system will run 24x7

= All presentation logic will be written in Visual
Basic.

Vision,
Supplementary
Specification
and
Glossary

Vision, Supp. Spec. and Glossary

= The Vision includes the big ideas regarding why the project was
proposed, what the problems are, who the stakeholders are, what
they need, and what the proposed solution looks like.

= The Supplementary Specification captures non-functional
requirements, e.g. documentation, packaging, supportability,
licensing etc.

= The Glossary is like a data dictionary; it defines terms used in
other artifacts (use cases, SS, vision etc.).

Suggestion: start the glossary early!

A (partial) Vision example

Revision History: (version, date, description, author)
Introduction: We envision a fault-tolerant point-of-sale appl.
With the flexibility to support varying business rules ... and
integration with multiple third-party supporting systems.
Positioning:
Business Opportunity: (what existing systems can't do)
Problem Statement: (problems caused by lack of features)
Product Position Statement: (who the system is for,
outstanding features, how is it different from competition)
Stakeholder Descriptions:
Stakeholder (non-user) summary: Stakeholder goals:
User summary (and their goals): User-level goals:
Product Overview: ..
Product perspective: Product benefits:
Cost and Pricing: Licensing and Installation:
Summary of System Features:
Other Requirements and Constraints:

A (partial) SS example

Revision History: (version, date, description, author)

Introduction: This document is the repository of all requirements
not captured in the use cases.

Functionality:
Logging and Error Handling: Log all errors to pers. storage
Pluggable Business Rules: Customize functionality...
Security: All usage requires user authentication

Usability:

Reliability: ...

Performance: ...

Supportability: (Adaptability: and Configurability:) ...

Implementation Constraints: Java technology solution

Purchased Components: Tax calculator.

Interfaces: (Hardware: and Software:)

Domain (Business) Rules: (id, rule, changeability, source)

Legal Issues:

Information in Domains of Interest: (pricing, sales tax, item ids)

Use-Cases

Description of Functionality

Problem
= The Clients are not engineers
= Throwing UML diagrams at them, is at best confusing

= Good communications with them is critical!

HOW?

The use-case model [Jacobson92]

The use-case model — the set of all use cases - is an artifact
within the requirements discipline of the Unified Process.

Use cases are stories of using a system to meet goals.

Use case example (in brief format):

Process Sale: A customer arrives at a checkout with items to purchase. The
cashier uses the system to record each purchased item. The system presents
a running total and line-item details. The customer enters payment
information, which the system validates and records. The system updates
inventory. The customer receives a receipt and leaves with items.

Use-cases what for and why?

= What for?

= To describe how the system will behave

= Why?
= Simple, easy to communicate

= Replace the old feature list, with something that
relates to the “structure” of the problem

A good way of understanding and describing requirements (esp. functional ones).

Guidelines for writing use cases

Try to answer the question: How can using the system provide
observable value to the users or fulfil their goals?

Don’t think of system requirements in terms of a check list of
features or functions.

Emphasize the functional requirements (other requirement
types are sometimes included, but have a secondary role).

Text, not diagrams.

Black-box use cases are highly recommended. We describe the
responsibilities of a system, not the internal workings.
Process Sale: ... The system records the sale ...

NOT: The system generates an SQL INSERT stmt for the sale...

Use case formats

= Brief:

one paragraph describing the main success scenario
Previously

= Casual:

multiple paragraphs that cover various scenarios

= Fully-dressed:

Next
Coleman’s Use Case Template

Already have brief and casual use cases

An actor is something with behaviour, such as a person,
computer system, or organization; e.g. a cashier.

A scenario — also called use case instance - is a specific
sequence of actions and interactions between actors and the
system under discussion. It is one path through the use case.

A use case is a collection of related success and failure
scenarios that describe actors using a system to support a goal.
Process Sale

Main Success Scenario: A customer arrives at a checkout with items to
purchase ...

Alternate Scenarios:
If the system rejects customer’s credit card...

If the customer has less cash than the required payment...

Actors?

Actor — anything with a behaviour (including the system under
discussion if it requires other systems)

= Primary actor — has goals fulfilled by SuD.
= Supporting Actor — service provider, information.

= Offstage actor — anyone with an interest in the SuD that is not
one of the above, HMRC,...

Coleman’s Use Case template

[Fields___[pescription __________|

Use Case Use case identifier and reference number and modification
history.

Description Goal to be achieved by use case and sources for
requirement.

Actors List of actors (primary, secondary) involved in use case.

Assumptions Conditions that must be true for use case to terminate
successfully.

Steps Interactions between actors and system that are necessary
to achieve goal.

Variations Any variations in the steps of a use case.

(optional)

Non-Functional List of non-functional requirements that the use case must
(optional) meet.

Issues List of issues that remain to be resolved

Steps

® Astep completes when all its interactions have completed.

® Each step is completed before the next is started.
<sequence number><interaction>

1. interaction a

2. interaction b

3. IF test THEN 3.1 interaction a

3.2 interaction
ELSE 3.3 interaction b
4. Repeat 4.1 interaction a

4.2 interaction b

UNTIL no more

Steps

® Concurrency
1.IN PARALLEL interaction a| |interaction b| |interaction ¢

2 .Interaction d

1.IN PARALLEL 1.1 interaction al|1l.2interactionb||1.3

interaction c

2 .Interaction d

Variations

1. Buyer calls in with purchase request

1. Buyer may phone in, or fax in, or use web order
form.

Non functional requirements
<keyword>:<requirement>

Performance, Reliability, Fault Tolerance, Frequency,
Priority

Example 1

g
m story created 1/5/98 Derek Colema odified 5/5/98.
Description Operator rectified a report by changing parameters of a cell.
sources [Operating Manual 1993],[Jones 1998]
Assumptions Changes to network are always successful when applied to a
network.
Actors Operator (primary)

Cellular network
Field maintenance engineer (secondary)
Steps 1. Operator notified of network problem
2. Operator starts repair session
3. REPEAT
1. Operator runs network diagnosis application
2. Operator identified cells to be changed and their new
parameter values.
3. IN PARALLEL
1. Maintenance engineer tests network cells | |
2. Maintenance Engineer sends fault reports.
UNTIL no more reports of problems.
4. Operator closes repair session

Example 1 (cont)

Va

ions #1 System may detect fault and notifiy operator or Field
maintenance engineer may report fault to Operator.

Non-Functional Performance Mean: time to repair network fault must be less than 3

hours.

Fault tolerance: A repair session must be able to tolerate fialure of

Operator’s console.

Issues What are the modes of communication between field maintenance
engineer and operator?

Uses Relationship

® In UML, commonalties between use cases are expressed
with the uses relationship.

® The relationship means that the sequence of behaviour
described in a used (or sub) use case is included in the
sequence of the using use case.

Using a use case is thus analogous to the notion of calling a
subroutine.

Sub use cases are full use cases in their own right, and
therefore can be expressed using the use case template.

Uses example

Using a sub- use case in a step is expressed by a keyword such as
PERFORM (or USING). For example, if Tune_Cell were a use case it

could be used by the following interaction:

3. Operator PERFORMS 2.1 Tune_Cell

In allocating reference numbers to use cases it maybe convenient to use a
Dewey Decimal numbering scheme to convey the using hierarchy. Thus if
use case W, with reference number n, uses three sub use cases X, Y and Z,

then X may be numbered n.1, Y n.2 etc.

Extending a Use-Case
<extension identifier> extends <use case identifier>

Description/Change Goal to be achieved by extension

Steps Changes to use case steps
Variations (optional)
Non-functional (optional)

Issues

Use Case Extension <Repair_may_fail> extends
<2.Repairing_Cellular_Networks>

Example 2

Descirption A user arrives at a POS sales point and tries to purchase an item.

Actors Cashier (Primary)
Assumptions Cashier is identified and authenticated

Steps 1. Customer arrives at POS checkout with goods to purchase.
2. Cashier starts a new sale.
3. REPEAT
1. Cashier enters item identifier.

2. System records sale line item and presents item
description, price and running total.

Description/Change Deals with assumption that network changes UNTIL EMPTY_BASKET
can never fail. 4. System presents total with taxes calculated.
Steps #3.3 if changes to network fail then the network 5. Cashier tells Customer the total, and asks for payment.
is rolled back to its previous state 6. Customer pays and System handles payment.
Issues How are failures detected? Are roll backs 7. System updates Accounting and Inventory systems.
automatic or is Operator intervention required? 8. System presents receipt.
9. Customer leaves with receipt and goods (if any).
Extensions? Extensions

® Can you think of useful extensions
(alternative flows) that are not covered by
the use case?

*a. At any time, System fails:
Ensure all transaction states are recoverable.
1. Cashier restarts the system, logs in, and requests rollback.
2. System rollback.
3a. Invalid identifier:
1. System signals error and rejects entry.

3b. There are multiple of same item category and tracking unique item identity not
important.

1. Cashier enters item category identifier and the quantity.
3-6a. Customer tells Cashier to cancel sale:

1. Cashier cancels sale on System.

Actor-goal lists

Actor Goal Actor Goal
Cashier process sales System add users
What do we do handle returns Administrator | modify users
. cashin delete users
with all the use cases? cash out
Manager start up Sales Activity | analyze sales
shut down System
What happened in inception? Summary

A short requirements workshop
Most actors, goals and use cases named

Most use cases written in brief format; 10-20% of cases written
in fully dressed format

Most influential and risky quality requirements identified
First version of the Vision and SS documents

User interface-oriented prototypes to clarify the vision of
functional requirements

Recommendations on what components to buy/build/reuse

Plan for the first iteration of elaboration

The Use-Case Model is an artifact of the Requirements
discipline that includes:

= writing use cases and designing use case diagrams (during
Inception and Elaboration)

= designing system sequence diagrams (in Elaboration)

Vision, SS and Glossary are other artifacts of the Requirements
discipline, which start in Inception and are further refined in
Elaboration.

10-20% of requirements are defined in detail by the end of the
Inception phase.

Almost all requirements are defined in detail by the end of
Elaboration.

